يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"modelo C-CASM"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
  2. 2
    Dissertation/ Thesis

    المؤلفون: Basto Urbina, Diego Fernando

    المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki

    جغرافية الموضوع: Orinoquía - Colombia

    وصف الملف: xx, 140 páginas; application/pdf

    Relation: AFCAP. (2014). Review of specification for the use of laterite in road pavements.; Arroyo, M., Ciantia, M., Castellanza, R., Gens, A., & Nova, R. (2012). Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach. Computers and Geotechnics, 45, 140–150. https://doi.org/10.1016/j.compgeo.2012.05.008; Atkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils. McGRAW-HILL Book Company (UK) Limited.; Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99; Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in Lowland and other environments. ASCE PRESS.; Bergado, D. T., Taechakumthorn, C., Lorenzo, G. A., & Abuel-Naga, H. M. (2006). Stress-Deformation Behavior Under Anisotropic Drained Triaxial Consolidation of Cement-Treated Soft Bangkok Clay. Soils and Foundations, 46(5), 629–637. https://doi.org/10.3208/SANDF.46.629; Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378. https://doi.org/10.1680/geot.1990.40.3.329; Chai, J., & Carter, J. P. (2011). Deformation Analysis in Soft Ground Improvement (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-007-1721-3; COLLINS, I. F., & YU, H. S. (1996). UNDRAINED CAVITY EXPANSIONS IN CRITICAL STATE SOILS. International Journal for Numerical and Analytical Methods in Geomechanics, 20(7), 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:73.0.CO;2-V; De Medina, J. (1964). Laterite and their Application to Highway Construction.; Elliott, G. M., & Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), 413–423. https://doi.org/10.1680/geot.1985.35.4.413; Endo, M. (1976). Recent development in dredged material stabilization and deep chemical mixing in Japan.; Estabragh, A. R., Beytolahpour, I., & Javadi, A. A. (2011). Effect of Resin on the Strength of Soil-Cement Mixture. Journal of Materials in Civil Engineering, 23(7), 969–976. https://doi.org/10.1061/(asce)mt.1943-5533.0000252; Fernández París, J. (1975). La pasta hidratada de cemento portland. Materiales de Construcción, 157, 17–26.; Fredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (Inc. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492; García Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín. Universidad Católica de Colombia.; Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soil and weak rocks. International Conference on Hard Soils-Soft Rocks, 483–494.; González, N. (2011). Development of a family of constitutive models for geotechnical applications (Issue May). Universidad Politécnica de Catalunya.; González, N. A., Arroyo, M., & Gens, A. (2009). Identification of Bonded Clay Parameters in SBPM Tests: A Numerical Study. Soils and Foundations, 49(3), 329–340. https://doi.org/10.3208/sandf.49.329; Horpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096–1105. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1096); Huang, J. T., & Airey, D. W. (1998). Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492); Ingeominas, & UIS. (2010). Geología del Piedemonte llanero en la cordillera oriental, departamentos de Arauca y Casanare. Memoria Explicativa. Convenio UIS-INGEOMINAS.; Jaky, J. (1948). Pressure in soils. 2nd International Conference on Soil Mechanics and Foundation Engineering, 103–107.; Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573–589. https://doi.org/10.1061/(asce)1090-0241(2009)135:4(573); Kolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026–1036. https://doi.org/10.1016/j.conbuildmat.2013.06.008; Lefebvre, G. (1970). Contribution à l’étude de la stabilité des pentes dans les argiles cimenteés [PhD thesis]. Université Laval.; Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. https://doi.org/10.1680/geot.1990.40.3.467; Lorenzo, G. A., & Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042); Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18(2), 161–174. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(161); Maher, M., & Ho, Y. (1993). Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads. Geotechnical Testing Journal, 16(3), 330. https://doi.org/10.1520/GTJ10054J; Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (Inc. John Wiley & Sons, Ed.; 3rd ed.).; Muhunthan, B., & Sariosseiri, F. (2008). Interpretation of Geotechnical Properties of Cement Treated Soils.; Nguyen, L. (2016). Developing constitutive model to simulate behaviour of cement treated clay composite capturing effect of cementation degradation. University of Technology Sydney.; Panda, A. P., & Narasimha Rao, S. (1998). Undrained strength characteristics of an artificially cemented marine clay. Marine Georesources and Geotechnology, 16(4), 335–353. https://doi.org/10.1080/10641199809379976; Porbaha, A. (1998). State of the art in deep mixing technology: part I. Basic concepts and overview. Ground Improvement, 2(2), 81–92. https://doi.org/10.1680/gi.1998.020204; Porbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III:geomaterial characterization. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(3), 91–110. https://doi.org/10.1680/grim.2000.4.3.91; Prusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record, 1(1652), 215–227. https://doi.org/10.3141/1652-28; Rios, S., Ciantia, M., González, N., Arroyo, M., & da Fonseca, A. V. (2016). Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 73, 100–108. https://doi.org/10.1016/j.compgeo.2015.11.019; Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of ‘wet’ clay. In J. Heyman & F. Leckie (Eds.), Engineering Plasticity (pp. 535–609). Cambridge University Press.; Roscoe, K. H., & Schofield, A. N. (1963). Mechanical behaviour of an idealized ’wet’ clay. In Proc. 2nd Eur. Conf. Soil Mech., 1963 (pp. 47–54).; Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the Yielding of Soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22; Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193; Sasanian, S. (2011). The Behaviour of Cement Stabilized Clay At High Water Contents (Issue April). University of Western Ontario.; Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.; Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified Structured Cam Clay: A generalized critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37(7–8), 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002; Tan, T. S., Goh, T. L., & Yong, K. Y. (2002). Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journal, 25(4), 422–433. https://doi.org/10.1520/gtj11295j; Tejedor Bonilla, C. A. (2022). Efecto de la cementación en la el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. Universidad Nacional de Colombia.; Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. In Geotechnical Engineering (Vol. 28, Issue 1, pp. 89–119).; UNAL. (2021). Estudio para el desarrollo de un laboratorio virtual de Ingeniería Geotécnica.; Wild, K. M., Barla, M., Turinetti, G., & Amann, F. (2017). A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 519–530. https://doi.org/10.1016/j.jrmge.2017.04.003; Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139878272; Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:83.0.CO;2-8; Yu, H.-S. (2006). Plasticity and geotechnics. In Choice Reviews Online (Vol. 44, Issue 07). https://doi.org/10.5860/choice.44-3893; https://repositorio.unal.edu.co/handle/unal/82921; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/