-
1Dissertation/ Thesis
المؤلفون: Arrieta Arbulu, Iñigo
المساهمون: Martínez de Alegría Mancisidor, Iñigo, Master de Ingeniería (Ind902), Ingeniariako Master (Ind902)
مصطلحات موضوعية: microred de corriente continua, Matlab, Simulink
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10810/67887; 138155-801432-06; 162782-801432
الاتاحة: http://hdl.handle.net/10810/67887
-
2Dissertation/ Thesis
المؤلفون: Mariluz Ruiz, Marlene Isabel
المساهمون: Pichilingue Nuñez, Flor Victoria
مصطلحات موضوعية: Liderazgo transformacional, Trabajo en equipo, Microred, https://purl.org/pe-repo/ocde/ford#3.03.02
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.14067/9311
-
3Dissertation/ Thesis
المؤلفون: Rivera Cárdenas, Nelson Daniel
المساهمون: Correa Florez, Carlos Adrian, Marín collazos, Luis Gabriel, Sarmiento López, Armando, Diez Medina, Rafael Fernando
مصطلحات موضوعية: Sistema de gestión de energía, Microred, Energía renovable, Energy management system, Microgrid, Renwable energy, Maestría en ingeniería electrónica - Tesis y disertaciones académicas, Maestría en energía y sostenibilidad - Tesis y disertaciones académicas, Recursos energéticos renovables, Abastecimiento de energía
وصف الملف: PDF; application/pdf
Relation: http://hdl.handle.net/10554/67540; instname:Pontificia Universidad Javeriana; reponame:Repositorio Institucional - Pontificia Universidad Javeriana; repourl:https://repository.javeriana.edu.co
الاتاحة: http://hdl.handle.net/10554/67540
-
4Dissertation/ Thesis
المؤلفون: Xu, Zimu
المساهمون: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Castilla Fernández, Miguel
مصطلحات موضوعية: Àrees temàtiques de la UPC::Enginyeria electrònica::Electrònica de potència, Harmonic oscillators, Microgrids (Smart power grids), Armónicos, SVPWM, SOGI, Microred SEPIC, Método de compensación resonante, Multi-SOGI, Oscil·ladors harmònics, Microxarxes (Xarxes elèctriques intel·ligents)
وصف الملف: application/pdf
Relation: http://hdl.handle.net/2117/412681; PRISMA-185591
الاتاحة: http://hdl.handle.net/2117/412681
-
5Dissertation/ Thesis
المساهمون: Baldeón Blanco, Julio Cesar
المصدر: Repositorio Institucional - UTP ; Universidad Tecnológica del Perú
مصطلحات موضوعية: Instalación de microred, Paneles fotovoltaicos, Centro de datos, Edificio de oficinas, https://purl.org/pe-repo/ocde/ford#2.03.01, https://purl.org/pe-repo/ocde/ford#2.02.01
وصف الملف: application/pdf
Relation: https://hdl.handle.net/20.500.12867/9301
-
6Academic Journal
المؤلفون: Osorio Arroyave, Estéfany
المساهمون: Mojica Nava, Eduardo Alirio, Programa de Adquisición y Análisis de Señales - PAAS-UN
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines, Control, Resiliente, Microred, Inversor, Ciber-ataque, Cooperativo, Observador, Resilient, Microgrid, Inverter, Cyber-attack, Communication-link, Cooperative, Observer
وصف الملف: application/pdf
Relation: Abhinav, S. ;Modares, H. ;Lewis, F. L. ;Ferrese, F. ;Davoudi, A.: Synchrony in Networked Microgrids Under Attacks. In: IEEE Transactions on Smart Grid9 (2018), Nov, Nr. 6, S. 6731–6741. – ISSN 1949–3053; Abhinav, S. ;Schizas, I. D. ;Davoudi, A.: Noise-resilient synchrony of AC microgrids. In: 2015 Resilience Week (RWS), 2015. – ISSN null, S. 1–6; Amin, Saurabh; Schwartz, Galina A.; Sastry, S S.: Security of interdependent and identical networked control systems. In: Automatica 49 (2013), Nr. 1, S. 186–192; Antsaklis, P.: Goals and Challenges in Cyber-Physical Systems Research Editorial of the Editor in Chief. In: IEEE Transactions on Automatic Control 59 (2014), Dec, Nr. 12, S. 3117– 3119. – ISSN 2334–3303; Ayas, M. S.; Djouadi, S. M.: Undetectable sensor and actuator attacks for observer based controlled Cyber-Physical Systems. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016. – ISSN null, S. 1–7; Basseville, Michèle; Nikiforov, Igor V. [u. a.]: Detection of abrupt changes: theory and application. Bd. 104. . Prentice Hall Englewood Cliffs, 1993; Bidram, A.; Davoudi, A.: Hierarchical Structure of Microgrids Control System. In: IEEE Transactions on Smart Grid 3 (2012), Dec, Nr. 4, S. 1963–1976. – ISSN 1949–3053; Davoudi, A.; Lewis, F. L.; Qu, Z.: Secondary control of microgrids based on distributed cooperative control of multi-agent systems. In: IET Generation, Transmission Distribution 7 (2013), Aug, Nr. 8, S. 822–831. – ISSN 1751–8687; Davoudi, A.: Distributed Control Systems for Small-Scale Power Networks: Using Multiagent Cooperative Control Theory. In: IEEE Control Systems Magazine 34 (2014), Dec, Nr. 6, S. 56–77. – ISSN 1066–033X; Qu, Z.: Frequency control of electric power microgrids using distributed cooperative control of multi-agent systems. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, 2013. – ISSN null, S. 223–228; Bidram, Ali: Distributed cooperative control of AC microgrids, The University of Texas at Arlington, Dissertation, 2014; Bolden, Scott; Bolden, Scott (Hrsg.): NARUC Releases Two New Cybersecurity Manual Resources. 2019. – Forschungsbericht.; Bollobás, Béla; Axler, S. (Hrsg.); Gehring, F.w. (Hrsg.); Ribet, K.A. (Hrsg.): Modern graph theory. Bd. 184. 1. Springer Science & Business Media, 2013. – ISBN 978–1–4612–0619–4; Chandorkar, M. C.; Divan, D. M.; Adapa, R.: Control of parallel connected inverters in standalone AC supply systems. In: IEEE Transactions on Industry Applications 29 (1993), Jan, Nr. 1, S. 136–143; Chen, Chia-Mei; Hsu, Sung-Chien; Lai, Gu-Hsin: Defense Denial-of Service Attacks on IPv6 Wireless Sensor Networks. In: Zin, Thi T. (Hrsg.); Lin, Jerry Chun-Wei (Hrsg.); Pan, Jeng-Shyang (Hrsg.); Tin, Pyke (Hrsg.); Yokota, Mitsuhiro (Hrsg.): Genetic and Evolutionary Computing. Cham : Springer International Publishing, 2016. – ISBN 978–3–319–23204–1, S. 319–326; Chen, Wei; Xiao, Fei; Liu, Jilong; Wang, Hengli: Study on the topology of three-phase inverter systems based on parallel- connected bridges. In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) IEEE, 2013, S. 3678–3682; Costantini, Lynn P.; Acho, Matthew: Understanding Cybersecurity Preparedness: Questions for Utilities. 1. https://pubs.naruc.or /pub/3BACB84B-AA8A-0191-61FB-E9546E77F220: NARUC, June 2019; Dhakne, A. R.; Chatur, P. N.: Detailed Survey on Attacks in Wireless Sensor Network. In: Satapathy, Suresh C. (Hrsg.); Bhateja, Vikrant (Hrsg.); Joshi, Amit (Hrsg.): Proceedings of the International Conference on Data Engineering and Communication Technology. Singapore: Springer Singapore, 2017. – ISBN 978–981–10–1678–3, S. 319–331; Du, Xiaona; Yu, Hui: Consensus of multi-agent systems with delayed sampled-data and directed topologies. In: Neurocomputing 363 (2019), S. 78 – 87. – ISSN 0925–2312; Farwell, James P.; Rohozinski, Rafal: Stuxnet and the future of cyber war. In: Survival 53 (2011), Nr. 1, S. 23–40; Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations. In: IEEE Transactions on Automatic Control 49 (2004), Sep., Nr. 9, S. 1465–1476. – ISSN 1558–2523; García, Diana C.: Visión WEC en torno a la Transición Energética. In: IV Seminario de Actualización en Sistemas Eléctricos Rama Estudiantil de la IEEE Universidad Tecnológica de Pereira, 2019; Guerrero, J. M.; Vasqez, J. C.; Matas, J.; de Vicuna, L. G.; Castilla, M.: Hierarchical Control of Droop-Controlled AC and DC Microgrids - A General Approach Toward Standardization. In: IEEE Transactions on Industrial Electronics 58 (2011), Jan, Nr. 1, S. 158–172. – ISSN 1557–9948; Guerrero, Josep M.; Chandorkar, Mukul; Lee, Tzung-Lin; Loh, Poh C.: Advanced control architectures for intelligent microgrids, Part I: Decentralized and hierarchical control. In: IEEE Transactions on Industrial Electronics 60 (2013), Nr. 4, S. 1254–1262; Hossam-Eldin, Ahmed; Abdelsalam, Ahmed K.; Refaey, Mostafa; Ali, Ahmed A.: A topological review on recent improvements of three-phase impedance source inverter. In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON) IEEE, 2017, S. 1106–1112; Jadbabaie, A.; Jie Lin; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: IEEE Transactions on Automatic Control 48 (2003), June, Nr. 6, S. 988–1001. – ISSN 1558–2523; Jin, X.; Haddad, W. M.; Yucelen, T.: An Adaptive Control Architecture for Mitigating Sensor and Actuator Attacks in Cyber-Physical Systems. In: IEEE Transactions on Automatic Control 62 (2017), Nov, Nr. 11, S. 6058–6064. – ISSN 2334–3303; Kaur, Gurjit; Tomar, Pradeep; Agrawal, Archit; Singh, Prabhjot: Attacks and Their Solution at Data Link Layer in Cognitive Radio Networks. In: Somani, Arun K. (Hrsg.); Shekhawat, Rajveer S. (Hrsg.); Mundra, Ankit (Hrsg.); Srivastava, Sumit (Hrsg.); Verma, Vivek K. (Hrsg.): Smart Systems and IoT: Innovations in Computing. Singapore : Springer Singapore, 2020. – ISBN 978–981–13–8406–6, S. 351–361; Khoo, S.; Xie, L.; Man, Z.: Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems. In: IEEE/ASME Transactions on Mechatronics 14 (2009), April, Nr. 2, S. 219–228. – ISSN 1941–014X; Lewis, F.L.; Zhang, H.; Hengster-Movric, K.; Das, A.: Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. . Springer London, 2013 (Communications and Control Engineering). – ISBN 9781447155744; Liu, X.; Li, Z.: Local Load Redistribution Attacks in Power Systems With Incomplete Network Information. In: IEEE Transactions on Smart Grid 5 (2014), July, Nr. 4, S. 1665–1676. – ISSN 1949–3053; LLC, The Cadmus G.: Cybersecurity Preparedness Evaluation Tool. 1. U.S.A: NARUC, June 2019; Lopes, J. A. P.; Moreira, C. L.; Madureira, A. G.: Defining control strategies for MicroGrids islanded operation. In: IEEE Transactions on Power Systems 21 (2006), May, Nr. 2, S. 916–924; Lu, Zhiguo; Wu, Chunjun; Zhao, Lili; Zhu, Wanping: A new three-phase inverter built by a low-frequency three-phase inverter in series with three high-frequency single-phase inverters. In: Proceedings of The 7th International Power Electronics and Motion Control Conference Bd. 3 IEEE, 2012, S. 1573–1577; Mehrizi-Sani, A.; Iravani, R.: Potential-Function Based Control of a Microgrid in Islanded and Grid-Connected Modes. In: IEEE Transactions on Power Systems 25 (2010), Nov, Nr. 4, S. 1883–1891; Mesbahi, Mehran; Egerstedt, Magnus: Graph theoretic methods in multiagent networks. Bd. 33. Princeton University Press, 2010. – ISBN 978–0–691–14061–2; Mohan, Apurva; Khurana, Himanshu: Implementing Cyber Security Requirements and Mechanisms in Microgrids. In: Rice, Mason (Hrsg.); Shenoi, Sujeet (Hrsg.): Critical Infrastructure Protection IX. Cham : Springer International Publishing, 2015. – ISBN 978–3–319– 26567–4, S. 229–244; Mohsenian-Rad, A.; Leon-Garcia, A.: Distributed Internet-Based Load Altering Attacks Against Smart Power Grids. In: IEEE Transactions on Smart Grid 2 (2011), Dec, Nr. 4, S. 667–674. – ISSN 1949–3053; Mojica, Eduardo; Toro, Wladimir; Gaona, Eduardo Trujillo, Leonardo: Control de microrredes eléctricas inteligentes. Primera Edición. Editorial Universidad Distrital, April 2017. – ISBN 978–958–5434–31–8; Mwakabuta, N.; Sekar, A.: Comparative Study of the IEEE 34 Node Test Feeder under Practical Simplifications. In: 2007 39th North American Power Symposium, 2007. – ISSN null, S. 484–491; Nagireddy, Vyshnavi; Parwekar, Pritee: Attacks in Wireless Sensor Networks. In: Satapathy, Suresh C. (Hrsg.); Das, Swagatam (Hrsg.): Smart Intelligent Computing and Applications. Singapore : Springer Singapore, 2019. – ISBN 978–981– 13–1927–3, S. 439–447; Nasirian, V.; Shafiee, Q.; Davoudi, A.: Droop-Free Distributed Control for AC Microgrids. In: IEEE Transactions on Power Electronics 31 (2016), Feb, Nr. 2, S. 1600–1617. – ISSN 1941–0107; Nguyen, T. L.; Tran, Q.; Caire, R.; Gavriluta, C.; Nguyen, V. H.: Agent based distributed control of islanded microgrid AC Real-time cyber-physical implementation. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, S. 1–6; Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. In: IEEE Transactions on Automatic Control 49 (2004), Sep., Nr. 9, S. 1520–1533. – ISSN 1558–2523; Palizban, O.; Kauhaniemi, K.: Secondary control in AC microgrids challenges and solutions. In: 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), 2015, S. 1–6; Pasqaletti, F.; Bicchi, A.; Bullo, F.: Consensus Computation in Unreliable Networks: A System Theoretic Approach. In: IEEE Transactions on Automatic Control 57 (2012), Jan, Nr. 1, S. 90–104. – ISSN 0018–9286; Pasqaletti, Fabio; Dörfler, Florian; Bullo, Francesco: Attack detection and identification in cyber-physical systems. In: IEEE transactions on automatic control 58 (2013), Nr. 11, S. 2715–2729; Puentes, Camila: Conferencia Técnica. In: IV Seminario de Actualización en Sistemas Eléctricos Rama Estudiantil de la IEEE Universidad Tecnológica de Pereira, 2019; Ren, W.: Second-order Consensus Algorithm with Extensions to Switching Topologies and Reference Models. In: 2007 American Control Conference, 2007. – ISSN 2378–5861, S. 1431– 1436; Ren, Wei; Atkins, Ella: Second-order Consensus Protocols in Multiple Vehicle Systems with Local Interactions. . 2005. – . S; Moore, Kevin L.; Chen, Yangquan: High-Order and Model Reference Consensus Algorithms in Cooperative Control of MultiVehicle Systems. In: Journal of Dynamic Systems, Measurement, and Control 129 (2006), 12, Nr. 5, S. 678–688. – ISSN 0022–0434; Vasqez, J. C.: Distributed Secondary Control for Islanded Microgrids - A Novel Approach. In: IEEE Transactions on Power Electronics 29 (2014), Feb, Nr. 2, S. 1018–1031. – ISSN 1941–0107; Shi, D.; Guo, Z.; Johansson, K. H.; Shi, L.: Causality Countermeasures for Anomaly Detection in Cyber-Physical Systems. In: IEEE Transactions on Automatic Control 63 (2018), Feb, Nr. 2, S. 386–401. – ISSN 0018–9286; Slay, Jill; Miller, Michael: Lessons learned from the maroochy water breach. In: International Conference on Critical Infrastructure Protection Springer, 2007, S. 73–82; De Souza, A. C. Z.; De Nadai N., B.; Portelinha, F. M.; Marujo, Diogo; Oliveira, D. Q.: Microgrids Operation in Islanded Mode. In: Azzopardi, Brian (Hrsg.): Sustainable Development in Energy Systems. Cham : Springer International Publishing, 2017. – ISBN 978–3–319–54808–1, S. 193–215; Sun, F.; Tuo, M.; Li, Y.; Liu, F.: Finite-time Consensus for First-order Multi-agent Systems with Measurement Noises. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2019, S. 1818–1822; Tran, Van-Thuan; Nguyen, Minh-Khai; Yoo, Myoung-Han; Choi, Youn-Ok; Cho, Geum-Bae: A three-phase cascaded H-bridge quasi switched boost inverter for renewable energy. In: 2017 20th International Conference on Electrical Machines and Systems (ICEMS) IEEE, 2017, S. 1–5; Miret, J.; Castilla, M.; de Vicuna, L. G.: Hierarchical Control of Intelligent Microgrids. In: IEEE Industrial Electronics Magazine 4 (2010), Dec, Nr. 4, S. 23–29. – ISSN 1932–4529; Wu, Bin; Narimani, Mehdi: Cascaded H-bridge multilevel inverters. (2017); Wu, Lizhen; Yang, Xusheng; Zhou, Hu; Hao, Xiaohong: Modeling and Stability Analysis for Networked Hierarchical Control of Islanded Microgrid. In: Deng, Zhidong (Hrsg.); Li, Hongbo (Hrsg.): Proceedings of the 2015 Chinese Intelligent Automation Conference. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. – ISBN 978–3–662–46463–2, S. 91–99; Yamaguchi, Hiroaki; Arai, Tamio; Beni, Gerardo: A distributed control scheme for multiple robotic vehicles to make group formations. In: Robotics and Autonomous Systems 36 (2001), Nr. 4, S. 125 – 147. – ISSN 0921–8890; Yang, Yanping; Zhang, Xian-Ming; He, Wangli; Han, Qing-Long; Peng, Chen: Sampled-position states based consensus of networked multi-agent systems with second-order dynamics subject to communication delays. In: Information Sciences 509 (2020), S. 36 – 46. – ISSN 0020–0255; Yu, W.; Wen, G.; Chen, G.; Cao, J.: Distributed Cooperative Control of Multi-agent Systems. Wiley, 2017. – ISBN 9781119246206; Yu, Wenwu; Zheng, Wei X.; Chen, Guanrong; Cao, Jinde: Second-order consensus in multi-agent dynamical systems with sampled position data. In: Automatica 47 (2011), Nr. 7, S. 1496 – 1503. – ISSN 0005–1098; Das, A.: Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback. In: IEEE Transactions on Automatic Control 56 (2011), Aug, Nr. 8, S. 1948–1952. – ISSN 1558–2523; Osorio Arroyave, E. (2020). Cyber attack resilient control for microgrid [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79031
-
7Academic Journal
المؤلفون: Barón Moreno, Carlos Eduardo
المساهمون: Rivera Rodriguez, Sergio Raul, Grupo de Investigación EMC-UN
مصطلحات موضوعية: 530 - Física::537 - Electricidad y electrónica, Metaheuristic Algorithm, Useful Life, Electric Vehicles, Microgrid, Renewable Energies, Economic Dispatch, DEEPSO, Uncertainty Cost, Energy Storage, Algoritmos Metaheurísticos, Almacenamiento de Energía, Costo de Incertidumbre, Despacho Económico, Energías Renovables, Microred, Vehículos Eléctricos, Vida Útil
وصف الملف: application/pdf
Relation: [1] “The Paris Agreement %7C UNFCCC.” .; [2] M. L. H. y E. M. E. 2016 García Arbeláez, C., G. Vallejo, El acuerdo de parís así actuará Colombia frente al cambio climático. .; [3] “Ministerio de Minas y Energía.” .; [4] “Unidad de Planeación Minero Energética UPME.” .; [5] “Comisión de Regulación de Energía y Gas - CREG.” .; [6] “Superintendencia de Servicios Públicos Domiciliarios.” .; [7] “Superintendencia de Industria y Comercio.” .; [8] “Sistema de Información Eléctrico Colombiano SIMEC.” .; [9] R. C. Siabato Benavides, “Identificación de proyectos con potencial de generación de energía eólica como complemento a otras fuentes de generación eléctrica en el departamento de Boyacá,” p. 156, 2018.; [10] S. Surender Reddy, J. Y. Park, and C. M. Jung, “Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm,” Front. Energy, vol. 10, no. 3, pp. 355–362, 2016.; [11] J. N. Bharothu, M. Sridhar, and R. S. Rao, “Modified adaptive differential evolution based optimal operation and security of AC-DC microgrid systems,” Int. J. Electr. Power Energy Syst., vol. 103, pp. 185–202, Dec. 2018.; [12] T. K. Kristoffersen, K. Capion, and P. Meibom, “Optimal charging of electric drive vehicles in a market environment,” Appl. Energy, 2011.; [13] H. L. Li, X. M. Bai, and W. Tan, “Impacts of plug-in hybrid electric vehicles charging on distribution grid and smart charging,” in 2012 IEEE International Conference on Power System Technology, POWERCON 2012, 2012.; [14] J. Zhao, F. Wen, Z. Yang Dong, S. Member, Y. Xue, and K. Po Wong, “Optimal Dispatch of Electric Vehicles and Wind Power Using Enhanced Particle Swarm Optimization,” IEEE Trans. Ind. INFORMATICS, vol. 8, no. 4, 2012.; [15] H. Kamankesh, V. G. Agelidis, and A. Kavousi-Fard, “Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand,” Energy, 2016.; [16] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized Charging Control of Large Populations of Plug-in Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 21, no. 1, 2013.; [17] A. Sheikhi, S. Bahrami, A. M. Ranjbar, and H. Oraee, “Strategic charging method for plugged in hybrid electric vehicles in smart grids; A game theoretic approach,” Int. J. Electr. Power Energy Syst., 2013.; [18] R. H. Lasseter, “MicroGrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), 2002, vol. 1, pp. 305–308 vol.1.; [19] N. Salvaterra, “Las baterias gigantescas alimentan los planes para las energías eólicas y solar,” p. B 8, 2019.; [20] B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 934–943, 2013.; [21] C. Baron and S. Rivera, “Mono-objective minimization of operation cost for a microgrid with renewable power generation, energy storage and electric vehicles,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 2019.; [22] M. Ross, R. Hidalgo, C. Abbey, and G. Joós, “Energy storage system scheduling for an isolated microgrid,” IET Renew. Power Gener., 2011.; [23] H. Morais, P. Kádár, P. Faria, Z. A. Vale, and H. M. Khodr, “Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming,” Renew. Energy, 2010.; [24] Y. A. Katsigiannis, P. S. Georgilakis, and E. S. Karapidakis, “Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables,” IET Renew. Power Gener., 2010.; [25] R. Dufo-López and J. L. Bernal-Agustín, “Multi-objective design of PV-wind-diesel-hydrogen-battery systems,” Renew. Energy, 2008.; [26] S. X. Chen and H. B. Gooi, “Jump and shift method for multi-objective optimization,” IEEE Trans. Ind. Electron., 2011.; [27] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, “Smart energy management system for optimal microgrid economic operation,” IET Renew. Power Gener., 2011.; [28] J. Li, F. Liu, Z. Wang, S. H. Low, and S. Mei, “Optimal Power Flow in Stand-alone DC Microgrids,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496–5506, 2017.; [29] IEEE PES Working Group on Modern Heuristic Optimization, “Competition on ‘Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems,’” 2014.; [30] J. Arévalo, F. Santos, and S. Rivera, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingeniería, vol. 22, no. 3, pp. 324–346, 2017.; [31] S. Rivera, C. Arevalo, and F. Santos, “Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy Generation, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207, 2018.; [32] D. U. Sauer and H. Wenzl, “Comparison of different approaches for lifetime prediction of electrochemical systems-Using lead-acid batteries as example,” J. Power Sources, 2008.; [33] C. Liu, X. Wang, X. Wu, and J. Guo, “Economic scheduling model of microgrid considering the lifetime of batteries,” IET Gener. Transm. Distrib., vol. 11, no. 3, pp. 759–767, 2017.; [34] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids Management,” IEEE Trans. Smart Grid, no. june, pp. 54–65, 2008.; [35] F. Garcia-torres and C. Bordons, “Optimal Economical Schedule of Hydrogen-Based Microgrids With Hybrid Storage Using Model Predictive Control,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 5195–5207, 2015.; [36] A. Arabali, M. Ghofrani, M. S. Fadali, and Y. Baghzouz, “Genetic-Algorithm-Based Optimization Approach for Energy Management,” IEEE Trans. Power Deliv., vol. 28, no. 1, pp. 162–170, 2013.; [37] S. Bahramirad, W. Reder, and A. Khodaei, “Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2056–2062, 2012.; [38] G. Carpinelli, F. Mottola, D. Proto, and A. Russo, “A Multi-Objective Approach for Microgrid Scheduling,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2109–2118, 2017.; [39] S. Teleke et al., “Control Strategies for Battery Energy Storage for Wind Farm Dispatching,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 725–732, 2009.; [40] P. Mercier, R. Cherkaoui, S. Member, and A. Oudalov, “Optimizing a Battery Energy Storage System for Frequency Control Application in an Isolated Power System,” ieee tra, vol. 24, no. 3, pp. 1469–1477, 2009.; [41] R. A. Gallego Rendon, A. H. Escobar Zuluaga, and E. M. Toro Ocampo, Tecnicas metaheuristicas de optimizacion., Segunda. Pereira: Universidad Tecnológica de Pereira, 2008.; [42] J. L. Acosta, A. E. Alarcon, and S. Rivera, “Reconfiguración de sistemas de distribución para minimizar pérdidas utilizando optimización heurística: Métodos BPSO y DEEPSO,” Entre Cienc. e Ing., vol. 11, no. 22, pp. 110–117, Oct. 2017.; [43] L. Dkul et al., “Unit Commitment With Non-Smooth Generation Cost Function Using Binary Particle Swarm Optimization,” Int. Semin. Intell. technoology its Appl., pp. 5–10, 2016.; [44] C. A. Hernandez-Aramburo, T. C. Green, and N. Mugniot, “Fuel consumption minimization of a microgrid,” IEEE Trans. Ind. Appl., 2005.; [45] M. Alramlawi, E. Mohagheghi, and P. Li, “Predictive active-reactive optimal power dispatch in PV-battery-diesel microgrid considering reactive power and battery lifetime costs,” Sol. Energy, vol. 193, no. September, pp. 529–544, 2019.; [46] D. Soto, “Modeling and measurement of specific fuel consumption in diesel microgrids in Papua, Indonesia,” Energy Sustain. Dev., vol. 45, pp. 180–185, 2018.; [47] M. I. Ennes and A. L. Diniz, “for Economic Dispatch Problems,” Computing, pp. 1–6, 2012.; [48] N. Martinez et al., “Computer model for a wind–diesel hybrid system with compressed air energy storage,” Energies, vol. 12, no. 18, pp. 1–18, 2019.; [49] Q. Zhang, Z. Ren, R. Ma, M. Tang, and Z. He, “Research on Double-Layer Optimized Configuration of Multi-Energy Storage in Regional Integrated Energy System with Connected Distributed Wind Power,” Energies, vol. 12, no. 3964, pp. 1–16, 2019.; [50] “China Renewable Energy Outlook 2018.”; [51] “Ofgem - Making a positive difference for energy consumers.” .; [52] “Microgeneration Certification Scheme (MCS): Small installations %7C Ofgem.” .; [53] “MCS - Tthe Microgeneration certification scheme.” .; [54] Z. Xu, Z. Hu, Y. Song, W. Zhao, and Y. Zhang, “Coordination of PEVs charging across multiple aggregators,” Appl. Energy, 2014.; [55] A. Hussain, V. Bui, J. Baek, and H. Kim, “Stationary Energy Storage System for Fast EV Charging Stations : Simultaneous Sizing of Battery,” Energies, vol. 12, no. 4516, 2019.; [56] A. Serpi and M. Porru, “Modelling and Design of Real-Time Energy Management Systems for Fuel Cell / Battery Electric Vehicles,” Energies, vol. 12, no. 4260, 2019.; [57] S. Z. Frida Berglund and M. K. and K. Uhlen, “Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff,” Energies, vol. 12, no. 4450, 2019.; [58] T. Sikorsk et al., “A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept : Economic Aspects,” Energies, vol. 12, no. 4447, 2019.; [59] A. Castellazzi, E. Gurpinar, Z. Wang, A. S. Hussein, and P. G. Fernandez, “Impact of Wide-Bandgap Technology on Renewable Energy and Smart-Grid Power Conversion Applications Including Storage,” Energies, vol. 12, no. 4462, 2019.; [60] C. Jankowiak, A. Zacharopoulos, C. Brandoni, P. Keatley, P. MacArtain, and N. Hewitt, “The role of domestic integrated battery energy storage systems for electricity network performance enhancement,” Energies, vol. 12, no. 3954, pp. 1–27, 2019.; [61] A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka, “Multiobjective Intelligent Energy Management for a Microgrid _ Aymen Chaouachi - Academia,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1688–1699, 2013.; [62] U.S. Energy Information Administration (EIA), “Annual Energy Outlook 2013 with projections to 2040.” Washington, DC, p. 244, 2013.; [63] Planeamiento Minero-Energético (UPME), “Integración de las energías renovables no convencionales en Colombia,” Minist. Minas y Energía, pp. 23–33, 2015.; [64] “GWEC %7C GLOBAL WIND REPORT 2018,” 2019.; [65] B. K. Sahu, “Wind energy developments and policies in China: A short review,” Renew. Sustain. Energy Rev., vol. 81, pp. 1393–1405, 2018.; [66] J. Garcia-guarin et al., “Smart Microgrids Operation Considering a Variable Neighborhood Search : The Differential Evolutionary Particle Swarm Optimization Algorithm,” Energies, vol. 12, no. 3149, pp. 1–13, 2019.; https://repositorio.unal.edu.co/handle/unal/77650
-
8
المؤلفون: Vicente Merino, David
المساهمون: Martínez Rodrigo, Fernando, Universidad de Valladolid. Escuela de Ingenierías Industriales
مصطلحات موضوعية: Generación distribuida, Microred, Fuentes renovables, Software de simulación, 3307 Tecnología Electrónica, Redes inteligentes
وصف الملف: application/pdf
-
9Dissertation/ Thesis
المساهمون: Tapia Manrique Edgar Robert
المصدر: Universidad Privada de Huancayo Franklin Roosevelt
مصطلحات موضوعية: Automedicación, Microred José Antonio Encinas, Nivel de conocimiento, http://purl.org/pe-repo/ocde/ford#3.01.05
وصف الملف: application/pdf
Relation: Vancouver; http://hdl.handle.net/20.500.14140/1741
-
10Dissertation/ Thesis
المؤلفون: Ortega Ruiz, Sarita Rosario
المساهمون: Sulca Carbajo, Karina Yasmin
مصطلحات موضوعية: Motivación, Acetato de medroxiprogesterona, Planificación familiar, Microred, http://purl.org/pe-repo/ocde/ford#3.02.02
وصف الملف: application/pdf
Relation: 253T20230685; http://hdl.handle.net/20.500.12918/8162
-
11Dissertation/ Thesis
المؤلفون: Nuñez Terrones, Frank Richard
المساهمون: Jony Villalobos Cabrera
مصطلحات موضوعية: Microred Eléctrica, Energía Solar Fotovoltaica, Suministro de Energía Eléctrica, http://purl.org/pe-repo/ocde/ford#2.02.01
وصف الملف: application/pdf
-
12Dissertation/ Thesis
المؤلفون: Monsalve Rueda, Miguel Eduardo
المساهمون: Hoyos Velasco, Fredy Edimer, Candelo Becerra, John Edwin, Grupo de Control y Procesamiento Digital de Señales, Monsalve Rueda, Miguel Eduardo 0000-0003-2401-8822, Candelo Becerra, John Edwin 0000-0002-9784-9494
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica, Redes eléctricas, Electric networks, Análisis de redes eléctricas, Electric network analysis, Sliding mode control, Microgrid, Higher order control, Buck converter, Constant power load, Control deslizante, Microred, Convertidor Buck, Control de alto orden, Cargas de potencia constante
وصف الملف: 102 páginas; application/pdf
Relation: RedCol; LaReferencia; Cabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V.; Santos, V.S. Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability 2022, 14, 1056, doi:10.3390/su14031056.; Tahim, A.P.N.; Pagano, D.J.; Heldwein, M.L.; Ponce, E. Control of Interconnected Power Electronic Converters in Dc Distribution Systems. COBEP 2011 - 11th Brazilian Power Electronics Conference 2011, 269–274, doi:10.1109/COBEP.2011.6085269.; Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a Buck Converter with a Constant Power Load. PESC Record - IEEE Annual Power Electronics Specialists Conference 1998, 1, 72–78, doi:10.1109/PESC.1998.701881.; Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305, doi:10.1109/ACCESS.2018.2849065.; Dong, Y.; Liu, W.; Gao, Z.; Zhang, X. New Simulation Model of Ac Constant Power Load. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica 2009, 30, 115–120, doi:10.1109/TENCON.2008.4766537.; Pagano, D.J.; Ponce, E. On the Robustness of the DC-DC Boost Converter under Washout SMC. 2009 Brazilian Power Electronics Conference, COBEP2009 2009, 110–115, doi:10.1109/COBEP.2009.5347639.; Yue, Z.; Wei, Q. A Third-Order Sliding-Mode Controller for DC/DC Converters with Constant Power Loads. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) 2011, 1–8, doi:10.1109/IAS.2011.6074347.; Bandyopadhyay, B.; Deepak, F.; Kim, K.S. Sliding Mode Control Using Novel Sliding Surfaces; 2009; Vol. 392; ISBN 9783642034473.; Rivetta, C.H.; Emadi, A.; Williamson, G.A.; Jayabalan, R.; Fahimi, B. Analysis and Control of a Buck DC-DC Converter Operating with Constant Power Load in Sea and Undersea Vehicles. IEEE Trans Ind Appl 2006, 42, 559–572, doi:10.1109/TIA.2005.863903.; Kakigano, H.; Nishino, A.; Miura, Y.; Ise, T. Distribution Voltage Control for DC Microgrid by Converters of Energy Storages Considering the Stored Energy. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings 2010, 2851–2856, doi:10.1109/ECCE.2010.5618178.; Utkin, V. Variable Structure Systems with Sliding Modes. IEEE Trans Automat Contr 1977, AC-22, 212–222.; Shtessel, Y.; Edwards, C.; Fridman, L. Sliding Mode Control and Observation, Series: Control Engineering; Birkhauser, 2016; Vol. 10; ISBN 978-0-81764-8923.; Venkataramanan, G.; Marnay, C. A larger role for microgrids. IEEE Power Energy Mag. 2008, 6, 78–82.; Badal, F.R.; Das, P.; Sarker, S.K.; Das, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 8.; García Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854.; Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766.; Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749.; Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549.; Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 31, 4876–4891.; Zinober, A.S.I. An introduction to sliding mode variable structure control. In Variable Structure and Lyapunov Control; Springer: London, UK, 1994; pp. 1–22.; Tahim, A.P.N.; Pagano, D.J.; Ponce, E. Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3068–3073.; Kwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834.; Zhao, Y.; Qiao, W.; Ha, D. A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind. Appl. 2014, 50, 1448–1458.; Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a buck converter with a constant power load. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, 22–22 May 1998; Volume 1, pp. 72–78.; Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305.; AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques. Energies 2017, 10, 1656.; Hoyos, F.E.; Candelo-Becerra, J.E.; Toro, N. Numerical and experimental validation with bifurcation diagrams for a controlled DC–DC converter with quasi-sliding control. TecnoLógicas 2018, 21, 147–167.; Hoyos, F.; Candelo, J.; Silva, J. Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC. INGE CUC 2018, 14, 9–18.; Ponce, E.; Pagano, D.J. Sliding Dynamics Bifurcations in the Control of Boost Converters*. IFAC Proc. Vol. 2011, 44, 13293–13298.; Hoyos, F.E.; Burbano, D.; Angulo, F.; Olivar, G.; Toro, N.; Taborda, J.A. Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter. Int. J. Bifurc. Chaos 2012, 22, 1250245.; Fossas, E.; Griñó, R.; Biel, D. Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm. In Proceedings of the Advances in Variable Structure Systems-6th IEEE International Workshop on Variable Structure Systems, Gold Coast, Australia, 7–9 December 2000; pp. 335–344.; Ashita, S.; Uma, G.; Deivasundari, P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electron. 2014, 7, 289–298.; Hoyos, F.E.; Candelo-Becerra, J.E.; Hoyos Velasco, C.I. Model-Based Quasi-Sliding Mode Control with Loss Estimation Applied to DC–DC Power Converters. Electronics 2019, 8, 1086.; Hoyos, F.E.; Toro, N.; Garcés-Gómez, Y. Numerical and Experimental Comparison of the Control Techniques Quasi-Sliding, Sliding and PID, in a DC-DC Buck Converter. Sci. Tech. 2018, 23, 25–33.; G. Venkataramanan and C. Marnay, A larger role for microgrids, IEEE Power Energy Mag., vol. 6, no. 3, pp. 78–82, May 2008. doi:10.1109/MPE.2008.918720.; Y. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, and D. T. Ton, Microgrids for Service Restoration to Critical Load in a Resilient Distribution System, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 426–437, Jan. 2018. doi:10.1109/TSG.2016.2591531.; S. K. Sahoo, A. K. Sinha, and N. K. Kishore, Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review, IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018. doi:10.1109/JESTPE.2017.2786588.; I. Gadoura, V. Grigore, J. Hatonen, J. Kyyra, P. Vallittu, and T. Suntio, Stabilizing a telecom power supply feeding a constant power load, in INTELEC - Twentieth International Telecommunications Energy Conference (Cat. No.98CH36263), pp. 243–248. doi:10.1109/INTLEC.1998.793506.; R. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, Converter Circuits, in Fundamentals of Power Electronics, Springer US, 2001, pp. 131–184.; Q. Xu, C. Zhang, C. Wen, and P. Wang, A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 752– 761, Jan. 2019. doi:10.1109/TSG.2017.2751755.; M. WU and D. D.-C. LU, Active stabilization methods of electric power systems with constant power loads: a review, J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 233–243, Sep. 2014. doi:10.1007/s40565-014-0066-y.; S. Pang et al., Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load, IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6476–6485, Nov. 2019. doi:10.1109/TIA.2019.2938149.; P. Liutanakul, A.-B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and F. Meibody-Tabar, Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 475–488, Feb. 2010. doi:10.1109/TPEL.2009.2025274.; M. Su, Z. Liu, Y. Sun, H. Han, and X. Hou, Stability analysis and stabilization methods of DC microgrid with multiple parallel- connected DC-DC converters loaded by CPLs, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 132–142, Jan. 2016. doi:10.1109/TSG.2016.2546551.; R. S. Balog, W. W. Weaver, and P. T. Krein, The Load as an Energy Asset in a Distributed DC SmartGrid Architecture, IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 253–260, Mar. 2012. doi:10.1109/TSG.2011.2167722.; A. Kwasinski and C. N. Onwuchekwa, Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant- Power Loads, IEEE Trans. Power Electron., vol. 26, no. 3, pp. 822–834, Mar. 2011. doi:10.1109/TPEL.2010.2091285.; S. Singh and D. Fulwani, Constant power loads: A solution using sliding mode control, in IECON Proceedings (Industrial Electronics Conference), 2014, pp. 1989–1995. doi:10.1109/IECON.2014.7048775.; V. Stramosk and D. J. Pagano, Nonlinear control of a bidirectional dc-dc converter operating with boost-type Constant- Power Loads, in 2013 Brazilian Power Electronics Conference, COBEP 2013 - Proceedings, 2013, pp. 305–310. doi:10.1109/COBEP.2013.6785132.; U. K. Kalla, B. Singh, S. S. Murthy, C. Jain, and K. Kant, Adaptive Sliding Mode Control of Standalone Single-Phase Microgrid Using Hydro, Wind, and Solar PV Array-Based Generation, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6806– 6814, Nov. 2018. doi:10.1109/TSG.2017.2723845.; W. Qi, S. Li, S.-C. Tan, and S. Y. R. Hui, Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 844–854, Jan. 2018. doi:10.1109/TIE.2017.2716859.; B. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid- Pastor, and L. Martinez-Salamero, Sliding-mode control of a boost converter under constant power loading conditions, IET Power Electron., vol. 12, no. 3, pp. 521–529, Mar. 2019. doi:10.1049/iet-pel.2018.5098.; Y. M. Alsmadi et al., Sliding mode control of photovoltaic based power generation systems for microgrid applications, Int. J. Control, pp. 1–12, Jan. 2020. doi:10.1080/00207179.2019.1664762.; C. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, Design and control of a buck- boost charger-discharger for DC-bus regulation in microgrids, Energies, vol. 10, no. 11, 2017. doi:10.3390/en10111847.; M. Monsalve-Rueda, J. E. Candelo-Becerra, and F. E. Hoyos, Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads, Appl. Sci., vol. 9, no. 21, p. 4548, Oct. 2019. doi:10.3390/app9214548.; E. Ponce and D. J. Pagano, Sliding Dynamics Bifurcations in the Control of Boost Converters, IFAC Proc. Vol., vol. 44, no. 1, pp. 13293–13298, Jan. 2011. doi:10.3182/20110828-6-IT-1002.02603.; Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331.; Ouadi, H., Et-taoussi, M., Bouhlal, A., Nonlinear Control of Multilevel Inverter for Grid Connected Photovoltaic System with Power Quality Improvement, (2017) International Review of Electrical Engineering (IREE), 12 (1), pp. 43-59. doi: https://doi.org/10.15866/iree.v12i1.10685.; Di Noia, L., Del Pizzo, A., Meo, S., Reduced-Order Averaged Model and Non-Linear Control of a Dual Active Bridge DC-DC Converter for Aerospace Applications, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 259-266. doi: https://doi.org/10.15866/irease.v10i5.13818.; Rached, B., Elharoussi, M., Abdelmounim, E., DSP in the Loop Implementation of Sliding Mode and Super Twisting Sliding Mode Controllers Combined with an Extended Kalman Observer for Wind Energy System Involving a DFIG, (2020) International Journal on Energy Conversion (IRECON), 8 (1), pp. 26-37. doi: https://doi.org/10.15866/irecon.v8i1.18432.; Merabet, L., Chaker, A., Kouzou, A., Boulouiha, H., Elaguab, M., Investigation on the Control of DFIG Used in Power Generation Based on Sliding Mode Control and SV-PWM, (2019) International Journal on Energy Conversion (IRECON), 7 (4), pp. 148-161. doi: https://doi.org/10.15866/irecon.v7i4.17844.; Tesfahunegn, S., Hajizadeh, A., Undeland, T., Ulleberg, O., Vie, P., Modelling and Control of Grid-Connected PV/Fuel Cell/Battery Hybrid Power System, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 168-177. doi: https://doi.org/10.15866/irecon.v6i5.16652.; Gursoy, M.; Zhuo, G.; Lozowski, A.G.; Wang, X. Photovoltaic Energy Conversion Systems with Sliding Mode Control. Energies 330 2021, 14, 6071.; Ding, S.; Zheng, W.X.; Sun, J.; Wang, J. Second-Order Sliding-Mode Controller Design and Its Implementation for Buck Converters. IEEE Trans. Ind. Inf. 2018, 14, 1990–2000.; RakhtAla, S.M.; Yasoubi, M.; HosseinNia, H. Design of second order sliding mode and sliding mode algorithms: a practical insight to DC-DC buck converter. IEEE/CAA J. Autom. Sin. 2017, 4, 483–497.; Cucuzzella, M.; Incremona, G.P.; Ferrara, A. Design of Robust Higher Order Sliding Mode Control for Microgrids. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2015, 5, 393–401.; Le Nhu Ngoc Thanh, H.; Hong, S.K. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface. IEEE Access 2018, 6, 66850–66860.; Rakhtala, S.M.; Casavola, A. Real-Time Voltage Control Based on a Cascaded Super Twisting Algorithm Structure for DC–DC Converters. IEEE Trans. Ind. Electron. 2022, 69, 633–641.; Du, W.; Zhang, J.; Zhang, Y.; Qian, Z. Stability Criterion for Cascaded System With Constant Power Load. IEEE Trans. Power Electron. 2013, 28, 1843–1851.; Songbin, L.; Zhiyuan, F.; Yang, G.; Hai, K.L.; Peng, W. Second-order sliding-mode control of synchronous buck converter based on sub-optimal algorithm. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2017, pp. 1–6.; Kaplan, O.; Bodur, F. Second-order sliding mode controller design of buck converter with constant power load. Int. J. Control 2023, 96, 1210–1226.; Cucuzzella, M.; Lazzari, R.; Trip, S.; Sandroni, C.; Ferrara, A. Robust voltage regulation of boost converters in DC microgrids. In Proceedings of the 2018 European Control Conference (ECC), 2018, pp. 2350–2355.; Incremona, G.P.; Cucuzzella, M.; Ferrara, A. Adaptive suboptimal second-order sliding mode control for microgrids. Int. J. Control 2016, 89, 1849–1867.; Han, Y.; Ma, R.; Cui, J. Adaptive Higher-Order Sliding Mode Control for Islanding and Grid-Connected Operation of a Microgrid. Energies 2018, 11, 1459.; Wu, J.; Yang, L.; Lu, Z.; Wang, Q. Robust adaptive composite control of DC–DC boost converter with constant power load in DC microgrid. Energy Reports 2023, 9, 855–865. Selected papers from 2022 International Conference on Frontiers of Energy and Environment Engineering, https://doi.org/https://doi.org/10.1016/j.egyr.2023.04.199.; Yi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions 2019, 90, 41–51. https://doi.org/https://doi.org/10.1016/j.isatra.2018.12.046.; Chen, S.Y.; Chiang, H.H.; Liu, T.S.; Chang, C.H. Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics 2019, 24, 741–752. https://doi.org/10.1109/TMECH.2019.2892401.; Khooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Transactions on Power Electronics 2020, 35, 5832–5841. https: //doi.org/10.1109/TPEL.2019.2951183.; Levaggi, L. Sliding modes in Banach spaces. Differential and Integral Equations 2002, 15, 167 – 189. https://doi.org/10.57262/die/ 1356060871.; Triggiani, R. On the stabilizability problem in Banach space. Journal of Mathematical Analysis and Applications 1975, 52, 383–403. https://doi.org/https://doi.org/10.1016/0022-247X(75)90067-0.; https://repositorio.unal.edu.co/handle/unal/84899; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
13Academic Journal
المؤلفون: Peña-Suesca, Rafael Antonio, Trujillo-Rodríguez, César Leonardo, Hernández-Mora, Johann Alexander
المصدر: Visión electrónica; Vol. 1 No. 1 (2018): Special edition; 142-149 ; Visión electrónica; Vol. 1 Núm. 1 (2018): Edición especial; 142-149 ; 2248-4728 ; 1909-9746
مصطلحات موضوعية: Transformer less inverter, Microgrid, Half Bridge topology, Inversor sin transformador, Microred, Topología de medio puente
وصف الملف: application/pdf
Relation: https://revistas.udistrital.edu.co/index.php/visele/article/view/19701/18369; R Burrett, R. Dixon, M. Eckhart, D. Hales y A. Kloke-lesch, “Renewable Energy Policy Network for the 21st Century”, REN21, 2009. [En línea]. Disponible en: http://www.ren21.net/Portals/0/documents/activities/gsr/RE_GSR_2009_Update.pdf [2] C. Trujillo, D. Velasco, G. Garcera, E. Figueres y J. Guacaneme. “Reconfigurable Control Scheme for a PV Microinverter Working in Both Grid-Connected and Island Modes”, IEEE Transactions on Industrial Electronics, vol.60, no.4, 2013, pp.1582-1595. https://doi.org/10.1109/TIE.2011.2177615 [3] I. Erlich y A. El-Naggar, “Control approach of three-phase grid connected PV inverters for voltage unbalance mitigation in low-voltage distribution grids”, IET Renewable Power Generation, vol. 10, no. 10, 2016, pp. 1577-1586. https://doi.org/10.1049/iet-rpg.2016.0200 [4] C. M. Lai y. J. Lin, “Development of a modular single-stage grid-connected fuel-cell inverter system with power management and remote monitoring interface”, IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, 2017, pp. 2094-2099. https://doi.org/10.1109/IFEEC.2017.7992374 [5] M. P. S. Gryning, Q. Wu, M. Blanke, H. H. Niemann y K. P. H. Andersen, “Wind Turbine Inverter Robust Loop-Shaping Control Subject to Grid Interaction Effects”, IEEE Transactions on Sustainable Energy, vol. 7, no. 1, 2016, pp. 41-50. https://doi.org/10.1109/TSTE.2015.2472285 [6] M. Islam, N. Afrin y S. Mekhilef, “Efficient Single Phase Transformerless Inverter for Grid-Tied PVG System with Reactive Power Control”, IEEE Transactions on Sustainable Energy, vol. 7, no. 3, 2016, pp. 1205-1215. https://doi.org/10.1109/TSTE.2016.2537365 [7] Y. W. Cho, W. J. Cha, J. M. Kwon y B. H. Kwon, “Improved single-phase transformerless inverter with high power density and high efficiency for grid-connected photovoltaic systems”, IET Renewable Power Generation, vol. 10, no. 2, 2016, pp. 166-174. https://doi.org/10.1049/iet-rpg.2015.0139 [8] I. Patrao, E. Figueres, F. González-Espín y G. Garcerá, “Tranformerless topologies for grid-connected single-phase photovoltaic inverters”, Renewable and Sustainable Energy Reviews, vol. 15, no. 7, 2011, pp. 3423-3431mber 2011. https://doi.org/10.1016/j.rser.2011.03.034 [9] M. D. Manjrekar, R. Kieferndorf y G. Venkataramanan, “Power electronic transformers for utility applications”, Conference Record of the 2000 IEEE Industry Appliactions Conference, no. 4, pp. 2496-2502, 2000. https://doi.org/10.1109/IAS.2000.883173 [10] M. Calais, V. G. Agelidis y M. Meinhardt, “Multilevel converters for single-phase grid connected photovoltaic systems: an overview”, Solar Energy, vol. 66, no. 5, 1999, pp. 325-335. https://doi.org/10.1016/S0038-092X(99)00035-3 [11] S. V. Araujo, P. Zacharias y B. Sahan, “Novel grid-connected non-isolated converters for photovoltaic systems with grounded generator”, PESC 2008-IEEE Power Electronics Specialists Conference, pp. 58-65, 2008. https://doi.org/10.1109/PESC.2008.4591897 [12] W. Mcmurray, “Inverter Circuits,” U.S. Patent 3207974, Septiembre de 1965. [13] D. M. Baker, V. G. Agelidis y C. V. Nayer, “A comparison of tri-level and bi-level current controlled grid-connected single-phase full-bridge inverters”, ISIE '97-Proceedings of the IEEE International Symposium on Industrial Electronics, no. 2, pp. 463-468, 1997. https://doi.org/10.1109/ISIE.1997.648992 [14] S. Araujo, P. Zacharias y R. Mallwitz, “Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems”, IEEE Transactions on Industrial Electronics, vol. 57, no. 9, 2000, p. 3118-3128. https://doi.org/10.1109/TIE.2009.2037654 [15] B. Burger y D. Kranzer, “Extreme high efficiency PV-power converters”, EPE '09-13th European Conference on Power Electronics and Applications, pp. 1-13, 2009. [16] M. Lin, T. Fen, Z. Fei, J. Xinmin y T. Yibin, “Leakage current analysis of a single-phase transformer-less PV inverter connected to the grid”, ICSET 2008-IEEE International Conference on Sustainable Energy Technologies, pp. 285-289, 2008. https://doi.org/10.1109/ICSET.2008.4747018 [17] Z. Kai, Z. Yunbin, Z. Yonggao y K. Yong, “Reduction of Common Mode EMI in a Full-Bridge Converter through Automatic Tuning of Gating Signals”, IPEMC 2006. CES/IEEE 5th International Power Electronics and Motion Control Conference, no. 1, pp. 1-5, 2006. https://doi.org/10.1109/IPEMC.2006.4778046 [18] H. Hinz y P. Mustcher, “Single phase voltage source inverters without transformer in photovoltaic applications”, PEMC '96. International Power Electronics and Motion Control Conference and Exhibition, no. 3, pp. 161-165, 1996. https://doi.org/10.1109/ICPEICES.2016.7853435 [19] M. Victor, et. al, “Method of Converting a Direct Current Voltage from A Source of Direct Current Voltage, More Specifically from A Photovoltaic Couse of Direct Current Voltage, Into an Alternating Current Voltage”, U.S. Patent Application 2005/0286281 A1, 29 de Diciembre de 2005. [20] X. Guo, “A Novel H5 Current Source Inverter for Single-Phase Transformerless Photovoltaic System Applications”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 10, 2017, pp. 1197 – 1201. https://doi.org/10.1109/TCSII.2017.2672779 [21] H. Schmid, et. al, “DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current”, U.S. Patent 7046534, 16 de Mayo de 2006. [22] P. S. Gotekar, S. P. Muley, D. P. Kothari y B. S. Umre, “Comparison of full bridge bipolar, H5, H6 and HERIC inverter for single phase photovoltaic systems - a review”, Annual IEEE India Conference (INDICON), New Delhi, 2015, pp. 1-6. https://doi.org/10.1109/INDICON.2015.7443837 [23] W. Li, Y. Gu, H. Luo, W. Cui, X. He, Ch. Xia, “Topology Review and Derivation Methodology of Single-Phase Transformerless Photovoltaic Inverters for Leakage Current Suppression”, IEEE Transactions on Industrial Electronics, vol. 62, no. 7, 2015, pp. 4537-4551. https://doi.org/10.1109/TIE.2015.2399278; https://revistas.udistrital.edu.co/index.php/visele/article/view/19701
-
14Academic Journal
المصدر: DYNA; Vol. 85 No. 207 (2018): October - December; 129-134 ; DYNA; Vol. 85 Núm. 207 (2018): Octubre - Diciembre; 129-134 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: microgrid, software, energy, HOMER, renewable sources, microred, energía, fuentes renovables
وصف الملف: application/pdf; text/xml
-
15Academic Journal
المؤلفون: Natalia Bonilla-Gámez
المصدر: Tecnología en Marcha, Vol 30, Iss 5 (2017)
مصطلحات موضوعية: Microred inteligente, paneles fotovoltaicos, radiación global, almacenamiento de energía, microinversor, medidor inteligente, Technology
وصف الملف: electronic resource
-
16Book
المؤلفون: Frechoso Escudero, Fernando, Velez Jaramillo, Jhon Fredy, Díez Rodríguez, David, Urueña Leal, Ana, Chejne Janna, Farid, Ordoñez Loza, Javier Alonso, Macías Naranjo, Robert José, Gómez Gutiérrez, Carlos Andrés, Orrego Restrepo, Estefanía, Mondragón Pérez, Fanor, López López, Diana Patricia, Ramos Casado, Raquel, Pérez López, Virginia, Sánchez Hervás, José María, Murillo Laplaza, José María, Arenales Rivera, Jorge, Pascual Delgado, Alfonso, Ortiz González, Isabel, Tavares Silva, Daniela, Barbosa Monteiro, Ricardo, Moreno Muñoz, Rogelio, Curbelo Alonso, Alfredo, Oliva Merencio, Deny
المساهمون: Fundación CARTIF
مصطلحات موضوعية: THX, Tecnología y fuentes de energía alternativa y renovable, THRB, Generación y distribución de energía, biomasa, fotovoltaica, gasificador, sistema híbrido de generación eléctrica, microred
وصف الملف: application/pdf
Relation: https://uvadoc.uva.es/handle/10324/73705
-
17Conference
المؤلفون: JESUS MANUEL RIVAS MARTINEZ
مصطلحات موضوعية: info:eu-repo/classification/cti/7, Microred, operación óptima, estado estable
وصف الملف: application/pdf
-
18Academic Journal
المساهمون: Castillo Sierra, Rafael, Oliveros Pantoja, Ingrid, Orozco Henao, César
مصطلحات موضوعية: Microred, Fotovoltaico, Microgrid
وصف الملف: application/pdf; image/jpeg
Relation: http://hdl.handle.net/10584/7327
الاتاحة: http://hdl.handle.net/10584/7327
-
19Academic Journal
المصدر: DYNA; Vol. 84 No. 202 (2017): July - September; 230-238 ; DYNA; Vol. 84 Núm. 202 (2017): Julio - Septiembre; 230-238 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: flywheel energy storage system, vanadium redox flow battery, microgrid, wind power generation, power levelling, frequency control, sistema de almacenamiento de energía flywheel, batería de flujo redox de vanadio, microred, generación de potencia eólica, nivelación de potencia, control de frecuencia
وصف الملف: application/pdf; text/xml
-
20Academic Journal
مصطلحات موضوعية: 62 Ingeniería y operaciones afines / Engineering, flywheel energy storage system, vanadium redox flow battery, microgrid, wind power generation, power levelling, frequency control, sistema de almacenamiento de energía flywheel, batería de flujo redox de vanadio, microred, generación de potencia eólica, nivelación de potencia, control de frecuencia
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/64705; Universidad Nacional de Colombia Revistas electrónicas UN Dyna; Dyna; Suvire, Gaston Orlando and Ontiveros, Leonardo Javier and Mercado, Pedro Enrique (2017) Combined control of a flywheel energy storage system and a vanadium redox flow battery for wind energy applications in microgrids. DYNA, 84 (202). pp. 230-238. ISSN 2346-2183; https://repositorio.unal.edu.co/handle/unal/60373; http://bdigital.unal.edu.co/58705/