يعرض 1 - 20 نتائج من 124 نتيجة بحث عن '"miR-144"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Genes ; Volume 15 ; Issue 11 ; Pages: 1454

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Animal Genetics and Genomics; https://dx.doi.org/10.3390/genes15111454

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: The study was supported by state assignment No. 121031100305-9 «Development of a decision support system for predicting the development of long-term outcomes of venous thromboembolic complications», Исследование выполнено при поддержке ГЗ №121031100305-9 «Разработка системы поддержки принятия решений прогноза развития отдаленных исходов венозных тромбоэмболических осложнений».

    المصدر: Pharmacogenetics and Pharmacogenomics; № 1 (2023); 20-32 ; Фармакогенетика и фармакогеномика; № 1 (2023); 20-32 ; 2588-0527 ; 2686-8849

    وصف الملف: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272/262; Pastori D, Cormaci VM, Marucci S, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci. 2023 Feb 5;24(4):3169. DOI:10.3390/ijms24043169.; Валиева З.С., Мартынюк Т.В. Хроническая тромбоэмболическая легочная гипертензия: от патогенеза к выбору тактики лечения. Терапевтический архив. 2022;94(7):791–796. [Valieva ZS, Martynyuk TV. Chronic thromboembolic pulmonary hypertension: from pathogenesis to the choice of treatment tactics. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):791–796. (In Russ.)]. DOI:10.26442/00403660.2022.07.201741.; Антонова О.А., Якушкин В.В., Мазуров А.В. Коагуляционная активность мембранных микрочастиц. Биологические мембраны. 2019;36(3):155–175. [Antonova OA, Yakushkin VV, Mazurov AV. Coagulation activity of membrane microparticles. Biologicheskiye membrany = Biological membranes. 2019;36(3):155–175. (In Russ.)]. DOI:10.1134/S0233475519030034.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43–50. [Zolotova EA, Simakova MA, Zhilenkova YuI et al. The role of miRNAs in the pathogenesis of venous thromboembolic complications. Russian Journal for Personalized Medicine. 2022;2(1):43–50. (In Russ.)]. DOI:10.18705/2782-3806-2022-2-1-43-50.; Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci. 2021;22(15):8163. DOI:10.3390/ijms22158163.; He Y, Wucorresponding Q. The effect of extracellular vesicles on thrombosis. J Cardiovasc Transl Res. 2022 Nov 28:1–16. DOI:10.1007/s12265-022-10342-w.; Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2021;22(1):153. DOI:10.3390/ijms22010153.; Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. DOI:10.1038/35057062.; Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. DOI:10.1007/s11427-020-1676-5.; Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. DOI:10.1093/nar/gkz097.; Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. DOI:10.3390/ijms21010132.; Saliminejad K, Khorram Khorshid HR, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. DOI:10.1002/jcp.27486.; Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5): 841–50. DOI:10.1016/j.yjmcc.2010.08.007.; Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010 Jul 5; 207(7):1351–8. DOI:10.1084/jem.20100458.; Wang X, Hong Y, Wu L et al. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front Neurol. 2021;11:551411. DOI:10.3389/fneur.2020.551411.; He Q, Wang F, Honda T, et al. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep. 2020;10(1):6127. DOI:10.1038/s41598-020-63335-7.; Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–390. DOI:10.1093/cvr/cvs096.; Tao L, Yang L, Huang X, et al. Reconstruction and aof the lncRNAmiRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front Genet. 2019;10:1149. DOI:10.3389/fgene.2019.01149.; Turczyńska KM, Bhattachariya A, Säll J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One. 2013;8(5): e65135. DOI:10.1371/journal.pone.0065135.; Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020;(4):35–40. [Sirotkina OV, Ermakov AI, Gaykovaya LB, et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, gemostazireologija = Thrombosis, hemostasis and rheology. 2020;(4):35–40. (In Russ.)]. DOI:10.25555/THR.2020.4.0943.; Kabanova S, Kleinbongard P, Volkmer J, et al. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156–159. DOI:10.7150/ijms.6.156.; Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics. 2018;11(1):48. DOI:10.1186/s12920-018-0365-7.; Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. DOI:10.1371/journal.pone.0002360.; Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. DOI:10.1186/1756-0500-7-129.; Shen J, Wang Q, Gurvich I, et al. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. Hepatoma Res. 2016;2:305–315. DOI:10.20517/2394-5079.2016.28.; Wagner GM, Chiu DT, Yee MC, Lubin BH. Red cell vesiculation – a common membrane physiologic event. J Lab Clin Med. 1986;108(4):315–24.; Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. doi:10.1111/j.1538-7836.2012.04758.x.; Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 2014;9(8):e104200. DOI:10.1371/journal.pone.0104200.; Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28(2):287–96. DOI:10.1002/stem.257.; Fang X, Shen F, Lechauve C, et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica. 2018 Mar;103(3):406–416. DOI:10.3324/haematol.2017.177394.; Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010; 24(15):1620–1633. DOI:10.1101/gad.1942110.; Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. DOI:10.1186/s12989-019-0300-x.; Oto J, Plana E, Solmoirago MJ, et al. microRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel). 2020;12(6):1536. DOI:10.3390/cancers12061536.; Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci. 2020;21(7):2602. DOI:10.3390/ijms21072602.; He F, Ni N, Wang H et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2022;50(4):e22. DOI:10.1093/nar/gkab1153.; Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019;67(4):192–199. DOI:10.2144/btn-2019-0065.; Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014;15:29. DOI:10.1186/1471-2105-15-29.; D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. DOI:10.1007/s00216-019-01621-8.; Zárybnický T, Matoušková P, Ambrož M, et al. The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel). 2019;10(10):763. DOI:10.3390/genes10100763.; Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. DOI:10.2174/2211536607666180827111633.; Felekkis K, Papaneophytou C. Challenges in using circulating micro- RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. DOI:10.3390/ijms21020561.; Rogula S, Pomirski B, Czyżak N, et al. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med. 2022;9:980718. DOI:10.3389/fcvm.2022.980718; https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20