يعرض 1 - 20 نتائج من 121 نتيجة بحث عن '"metilación de ADN"', وقت الاستعلام: 1.24s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
    Dissertation/ Thesis

    المساهمون: Hernández Hincapié, Hernán Guillermo, Naranjo Galvis, Carlos Andrés

    جغرافية الموضوع: CRAI-USTA Bucaramanga

    وصف الملف: application/pdf

    Relation: Acha, B., Corroza, J., Sanchez-Ruiz de Gordoa, J., Cabello, C., Robles, M., Mendez-Lopez, I., . . . i, B. S. G. (2023). Association of Blood-Based DNA Methylation Markers With Late- Onset Alzheimer Disease: A Potential Diagnostic Approach. Neurology, 101(23), e2434- e2447. https://doi.org/10.1212/WNL.0000000000207865; Acharjee, S., Chauhan, S., Pal, R., & Tomar, R. S. (2023). Mechanisms of DNA methylation and histone modifications. Prog Mol Biol Transl Sci, 197, 51-92. https://doi.org/10.1016/bs.pmbts.2023.01.001; Acharya, S., Lumley, A. I., Zhang, L., Vausort, M., Devaux, Y., & On Behalf Of The Ncer-Pd, C. (2023). GATA3 as a Blood-Based RNA Biomarker for Idiopathic Parkinson's Disease. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms241210040; Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., . . . Wyss-Coray, T. (2000). Inflammation and Alzheimer's disease. Neurobiol Aging, 21(3), 383-421. https://doi.org/10.1016/s0197-4580(00)00124-x; Alcolea, D., Beeri, M. S., Rojas, J. C., Gardner, R. C., & Lleo, A. (2023). Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology, 101(4), 172-180. https://doi.org/10.1212/WNL.0000000000207193; Allam, Duan, Y., Heinemann, F., Winter, J., Gotz, W., Deschner, J., . . . Novak, N. (2011). IL- 23-producing CD68(+) macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol, 38(10), 879-886. https://doi.org/10.1111/j.1600-051X.2011.01752.x; Andrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., & Londrigan, L. (2019). Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci, 20(14). https://doi.org/10.3390/ijms20143537; Andrews, S. J., Fulton-Howard, B., O'Reilly, P., Marcora, E., & Goate, A. M. (2021). Causal Associations Between Modifiable Risk Factors and the Alzheimer's Phenome. Ann Neurol, 89(1), 54-65. https://doi.org/10.1002/ana.25918; Angarica, V. E., & Del Sol, A. (2017). Bioinformatics Tools for Genome-Wide Epigenetic Research. Adv Exp Med Biol, 978, 489-512. https://doi.org/10.1007/978-3-319-53889- 1_25; Ara, T., Kurata, K., Hirai, K., Uchihashi, T., Uematsu, T., Imamura, Y., . . . Wang, P. L. (2009). Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res, 44(1), 21-27. https://doi.org/10.1111/j.1600-0765.2007.01041.x; Aronson, J. K., & Ferner, R. E. (2017). Biomarkers-A General Review. Curr Protoc Pharmacol, 76, 9.23.21-29.23.17. https://doi.org/10.1002/cpph.19; Arumugam, K., Shin, W., Schiavone, V., Vlahos, L., Tu, X., Carnevali, D., . . . Cosma, M. P. (2020). The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep, 33(10), 108474. https://doi.org/10.1016/j.celrep.2020.108474; Ashraf, G. M., Tarasov, V. V., Makhmutovа, A., Chubarev, V. N., Avila-Rodriguez, M., Bachurin, S. O., & Aliev, G. (2019). The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol, 56(6), 4479-4491. https://doi.org/10.1007/s12035- 018-1388-y; Ashton, N. J., Hye, A., Rajkumar, A. P., Leuzy, A., Snowden, S., Suárez-Calvet, M., . . . Aarsland, D. (2020). An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol, 16(5), 265-284. https://doi.org/10.1038/s41582-020-0348-0; Assfaw, Schindler, S. E., & Morris, J. C. (2024). Advances in blood biomarkers for Alzheimer disease (AD): A review. Kaohsiung J Med Sci, 40(8), 692-698. https://doi.org/10.1002/kjm2.12870; Azevedo, A. M., Carvalho Rocha, L. P., de Faria Amormino, S. A., Cavalieri Gomes, C., Ornelas Dutra, W., Santiago Gomez, R., . . . Rocha Moreira, P. (2020). DNA methylation profile of genes related to immune response in generalized periodontitis. Journal of periodontal research, 55(3), 426-431. https://doi.org/10.1111/jre.12726; Babitha, G., Nagpal, D., Shripad, S. J., Yadav, S. C., & Prakash, S. (2016). Interleukins in periodontal health and disease. Indian J Dent Adv, 8(1), 18-32. https://doi.org/10.5866/2016.8.10018; Baciu, S. F., Mesaroș, A., & Kacso, I. M. (2023). Chronic Kidney Disease and Periodontitis Interplay-A Narrative Review. Int J Environ Res Public Health, 20(2). https://doi.org/10.3390/ijerph20021298; Baeza, M., Morales, A., Cisterna, C., Cavalla, F., Jara, G., Isamitt, Y., . . . Gamonal, J. (2020). Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci, 28, e20190248. https://doi.org/10.1590/1678- 7757-2019-0248; Bahado-Singh, R. O., Radhakrishna, U., Gordevičius, J., Aydas, B., Yilmaz, A., Jafar, F., . . . Vishweswaraiah, S. (2022). Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells, 11(11). https://doi.org/10.3390/cells11111744; Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Yilmaz, A., Metpally, R. P., Carey, D. J., . . . Radhakrishna, U. (2021). Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer's disease. PLoS One, 16(3), e0248375. https://doi.org/10.1371/journal.pone.0248375; Bai, J., Li, Y., Shao, T., Zhao, Z., Wang, Y., Wu, A., . . . Li, X. (2014). Integrating analysis reveals microRNA-mediated pathway crosstalk among Crohn's disease, ulcerative colitis and colorectal cancer. Mol Biosyst, 10(9), 2317-2328. https://doi.org/10.1039/c4mb00169a; Bakulski, K. M., Dolinoy, D. C., Sartor, M. A., Paulson, H. L., Konen, J. R., Lieberman, A. P., . . . Rozek, L. S. (2012). Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis, 29(3), 571-588. https://doi.org/10.3233/jad-2012-111223 Bale, B. F., Doneen, A. L., & Vigerust, D. J. (2017). High-risk periodontal pathogens; Barros-Silva, D., Marques, C. J., Henrique, R., & Jerónimo, C. (2018). Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel), 9(9). https://doi.org/10.3390/genes9090429; Barros, & Offenbacher, S. (2014). Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000, 64(1), 95- 110. https://doi.org/10.1111/prd.12000; Barros, S., Fahimipour, F., Tarran, R., Kim, S., Scarel‐Caminaga, R., Justice, A., & North, K. (2020). Epigenetic reprogramming in periodontal disease: dynamic crosstalk with potential impact in oncogenesis. Periodontology 2000, 82(1), 157-172.; Barthet, G., & Mulle, C. (2020). Presynaptic failure in Alzheimer's disease. Prog Neurobiol, 194, 101801. https://doi.org/10.1016/j.pneurobio.2020.101801; Bartold. (2018). Lifestyle and periodontitis: The emergence of personalized periodontics. Periodontol 2000, 78(1), 7-11. https://doi.org/10.1111/prd.12237; Bartold, P. M., & Van Dyke, T. E. (2017). Host modulation: controlling the inflammation to control the infection. Periodontol 2000, 75(1), 317-329. https://doi.org/10.1111/prd.12169; Bartold, P. M., & Van Dyke, T. E. (2019). An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis. J Clin Periodontol, 46(1), 6-11. https://doi.org/10.1111/jcpe.13046; Baruah, A., Singla, K., Chapadgaonkar, S. S., & Rameshwari, R. (2020). In–Silico Visualization of Gene-Gene Interactions in Autism Spectrum Disorder Genes. Biosciences Biotechnology Research Asia, 17(3), 485-498. https://doi.org/http://dx.doi.org/10.13005/bbra/2852; Batchelor, P. (2014). Is periodontal disease a public health problem? Br Dent J, 217(8), 405-409. https://doi.org/10.1038/sj.bdj.2014.912; Bediaga, Elcoroaristizabal, Calvo, Inza, Pérez, Acha-Sagredo, . . . Pancorb., d. (2017). Blood samples as a surrogate for brain samples in methylation studies. EC Neurology, 5, 74-90.; Benakanakere, M., Abdolhosseini, M., Hosur, K., Finoti, L. S., & Kinane, D. F. (2015). TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res, 94(1), 183-191. https://doi.org/10.1177/0022034514557545; Benakanakere, M. R., Finoti, L., Palioto, D. B., Teixeira, H. S., & Kinane, D. F. (2019). Epigenetics, Inflammation, and Periodontal Disease. Current Oral Health Reports, 6(1), 37-46. https://doi.org/10.1007/s40496-019-0208-4; Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x; Bernstein, A. I., Lin, Y., Street, R. C., Lin, L., Dai, Q., Yu, L., . . . Jin, P. (2016). 5- Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Hum Mol Genet, 25(12), 2437-2450. https://doi.org/10.1093/hmg/ddw109; Bevill, S. M., Olivares-Quintero, J. F., Sciaky, N., Golitz, B. T., Singh, D., Beltran, A. S., . . . Johnson, G. L. (2019). GSK2801, a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Mol Cancer Res, 17(7), 1503-1518. https://doi.org/10.1158/1541-7786.Mcr-18-1121; Bhore, N., Wang, B. J., Chen, Y. W., & Liao, Y. F. (2017). Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci, 18(9). https://doi.org/10.3390/ijms18091963; Bhuyan, R., Bhuyan, S. K., Mohanty, J. N., Das, S., Juliana, N., & Juliana, I. F. (2022). Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A; Boccardi, M., Dodich, A., Albanese, E., Gayet-Ageron, A., Festari, C., Ashton, N. J., . . . Garibotto, V. (2021). The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update. Eur J Nucl Med Mol Imaging, 48(7), 2070-2085. https://doi.org/10.1007/s00259-020-05120-2; Bolós, M., Perea, J. R., & Avila, J. (2017). Alzheimer's disease as an inflammatory disease. Biomol Concepts, 8(1), 37-43. https://doi.org/10.1515/bmc-2016-0029; Bondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer's Disease: Past, Present, and Future. J Int Neuropsychol Soc, 23(9-10), 818-831. https://doi.org/10.1017/s135561771700100x; Borsa, L., Dubois, M., Sacco, G., & Lupi, L. (2021). Analysis the Link between Periodontal Diseases and Alzheimer's Disease: A Systematic Review. Int J Environ Res Public Health, 18(17). https://doi.org/10.3390/ijerph18179312; Bouziane, A., Lattaf, S., & Abdallaoui Maan, L. (2023). Effect of Periodontal Disease on Alzheimer's Disease: A Systematic Review. Cureus, 15(10), e46311. https://doi.org/10.7759/cureus.46311; Braun., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., . . . Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry, 9(1), 47. https://doi.org/10.1038/s41398- 019-0376-y; Breivik, T. J., Gjermo, P., Gundersen, Y., Opstad, P. K., Murison, R., Hugoson, A., . . . Fristad, I. (2024). Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000. https://doi.org/10.1111/prd.12610; Breza, M., Bourinaris, T., Efthymiou, S., Maroofian, R., Athanasiou-Fragkouli, A., Tzartos, J., . . . Houlden, H. (2020). A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia. Brain, 143(6), e49. https://doi.org/10.1093/brain/awaa120; Brookes, & Shi. (2014). Diverse epigenetic mechanisms of human disease. Annu Rev Genet, 48, 237-268. https://doi.org/10.1146/annurev-genet-120213-092518; Bryzgalov, L. O., Korbolina, E. E., & Merkulova, T. I. (2023). Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci, 24(9). https://doi.org/10.3390/ijms24097955; Buduneli, N. (2019). Biomarkers in periodontal health and disease: Rationale, benefits, and future directions. Springer Nature.; Cahyanur, R., Irawan, C., Lisnawati, L., Adham, M., Kamal, A. F., Utomo, A. R. H., . . . Salamah, T. (2023). CXCL8, MMP1, MMP2, and FN1 Gene Expression and Tumor Extension in Nasopharyngeal Cancer Patients: A Cross-sectional Study. Acta Medica Indonesiana, 55(3), 261.; Cai, C., Langfelder, P., Fuller, T. F., Oldham, M. C., Luo, R., van den Berg, L. H., . . . Horvath, S. (2010). Is human blood a good surrogate for brain tissue in transcriptional studies? BMC genomics, 11, 589. https://doi.org/10.1186/1471-2164-11-589; Califf, R. M. (2018). Biomarker definitions and their applications. Exp Biol Med (Maywood), 243(3), 213-221. https://doi.org/10.1177/1535370217750088; Calle-Fabregat, C. d. l., Morante-Palacios, O., & Ballestar, E. (2020). Understanding the relevance of DNA methylation changes in immune differentiation and disease. Genes, 11(1), 110. https://doi.org/10.3390/genes11010110; Calsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement, 12(6), 719-732. https://doi.org/10.1016/j.jalz.2016.02.010; Cardenas, A. M., Ardila, L. J., Vernal, R., Melgar-Rodriguez, S., & Hernandez, H. G. (2022). Biomarkers of Periodontitis and Its Differential DNA Methylation and Gene Expression in Immune Cells: A Systematic Review. Int J Mol Sci, 23(19). https://doi.org/10.3390/ijms231912042; Cardona, K., Medina, J., Orrego-Cardozo, M., Restrepo de Mejía, F., Elcoroaristizabal, X., & Naranjo Galvis, C. A. (2021). Inflammatory gene expression profiling in peripheral blood from patients with Alzheimer's disease reveals key pathways and hub genes with potential diagnostic utility: a preliminary study. PeerJ, 9, e12016. https://doi.org/10.7717/peerj.12016; Cardoso, J. M., Ribeiro, A. C., Proença, L., Noronha, S., & Castro Alves, R. (2024). Analysis of the Association of IL-1A, IL-1B, and IL-1RN Genetic Polymorphisms with Periimplantitis in a Portuguese Population. Int J Oral Maxillofac Implants, 39(4), 103-111. https://doi.org/10.11607/jomi.10615; Carnielli, C. M., Macedo, C. C. S., De Rossi, T., Granato, D. C., Rivera, C., Domingues, R. R., . . . Paes Leme, A. F. (2018). Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun, 9(1), 3598. https://doi.org/10.1038/s41467-018-05696-2; Carter, C. J., France, J., Crean, S., & Singhrao, S. K. (2017). The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci, 9, 408. https://doi.org/10.3389/fnagi.2017.00408; Carvajal, P., Vernal, R., Reinero, D., Malheiros, Z., Stewart, B., Pannuti, C. M., & Romito, G. A. (2020). Periodontal disease and its impact on general health in Latin America. Section II: Introduction part II. Braz Oral Res, 34(supp1 1), e023. https://doi.org/10.1590/1807- 3107bor-2020.vol34.0023; Caton, J. G., Armitage, G., Berglundh, T., Chapple, I. L., Jepsen, S., Kornman, K. S., . . . Tonetti, M. S. (2018). A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. https://doi.org/10.1002/JPER.18-0157; Cecoro, G., Annunziata, M., Iuorio, M. T., Nastri, L., & Guida, L. (2020). Periodontitis, Low- Grade Inflammation and Systemic Health: A Scoping Review. Medicina (Kaunas), 56(6). https://doi.org/10.3390/medicina56060272; Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000, 64(1), 57-80. https://doi.org/10.1111/prd.12002; Celarain, N., Sánchez-Ruiz de Gordoa, J., Zelaya, M. V., Roldán, M., Larumbe, R., Pulido, L., . . . Mendioroz, M. (2016). TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clinical Epigenetics, 8, 1-10. https://doi.org/10.1186/s13148-016-0202-9; Chapple, I. L. C., Mealey, B. L., Van Dyke, T. E., Bartold, P. M., Dommisch, H., Eickholz, P., . . . Yoshie, H. (2018). Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol, 89 Suppl 1, S74-s84. https://doi.org/10.1002/jper.17-0719; Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014; Chen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021a). Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J Clin Periodontol, 48(9), 1165-1188. https://doi.org/10.1111/jcpe.13506; Chen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021b). Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the Global Burden of Disease Study 2019. Journal of clinical periodontology, 48(9), 1165-1188.; Chen, M. H., Cheng, C. M., Tsai, S. J., Tsai, C. F., Su, T. P., Li, C. T., . . . Bai, Y. M. (2021). Obsessive-Compulsive Disorder and Dementia Risk: A Nationwide Longitudinal Study. J Clin Psychiatry, 82(3). https://doi.org/10.4088/JCP.20m13644; Chen, X., Lei, H., Cheng, Y., Fang, S., Sun, W., Zhang, X., & Jin, Z. (2024). CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis, 30(2), 390-407. https://doi.org/10.1111/odi.14419; Cheng, Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol, 41(6), 541-549. https://doi.org/10.1111/jcpe.12238; Cheng, Q., Wang, J., Li, M., Fang, J., Ding, H., Meng, J., . . . Zhang, W. (2022). CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. Redox Biol, 56, 102430. https://doi.org/10.1016/j.redox.2022.102430; Cheng, W. C., Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL‐ 17 and Th17 cells in periodontitis. Journal of clinical periodontology, 41(6), 541-549.; Chikamatsu, K., Aono, A., Hata, H., Igarashi, Y., Takaki, A., Yamada, H., . . . Mitarai, S. (2018). Evaluation of PyroMark Q24 pyrosequencing as a method for the identification of; Cholewa-Waclaw, J., Bird, A., von Schimmelmann, M., Schaefer, A., Yu, H., Song, H., . . . Tsai, L. H. (2016). The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neurosci, 36(45), 11427-11434. https://doi.org/10.1523/jneurosci.2492-16.2016; Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P. R., . . . van den Hove, D. L. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging, 34(9), 2091-2099. https://doi.org/10.1016/j.neurobiolaging.2013.02.021; Chung, S. J., Lee, J. H., Kim, S. Y., You, S., Kim, M. J., Lee, J. Y., & Koh, J. (2013). Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord, 27(3), 250-257. https://doi.org/10.1097/WAD.0b013e31826d7281; Ciceri, F., Rotllant, D., & Maes, T. (2017). Understanding epigenetic alterations in Alzheimer's and Parkinson's disease: Towards targeted biomarkers and therapies. Current Pharmaceutical Design, 23(5), 839-857. https://doi.org/10.2174/1381612823666170124121140; Cichońska, D., Mazuś, M., & Kusiak, A. (2024). Recent aspects of periodontitis and Alzheimer’s disease—a narrative review. International journal of molecular sciences, 25(5), 2612. https://doi.org/10.3390/ijms25052612; Connor, S. A., Ammendrup-Johnsen, I., Kishimoto, Y., Tari, P. K., Cvetkovska, V., Harada, T., . . . Craig, A. M. (2017). Loss of synapse repressor MDGA1 enhances perisomatic inhibition, confers resistance to network excitation, and impairs cognitive function. Cell reports, 21(13), 3637-3645. https://doi.org/10.1016/j.celrep.2017.11.109; Conole, E. L., Stevenson, A. J., Muñoz Maniega, S., Harris, S. E., Green, C., Valdés Hernández, M. d. C., . . . Deary, I. J. (2021). DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology, 97(23), e2340-e2352. https://doi.org/10.1212/WNL.00000000000129; Consortium, G.-T. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 369(6509), 1318-1330. https://doi.org/10.1126/science.aaz1776; Coppedè, F. (2021). Epigenetic regulation in Alzheimer’s disease: is it a potential therapeutic target? Expert Opinion on Therapeutic Targets, 25(4), 283-298. https://doi.org/10.1080/14728222.2021.1916469; Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet, 19(R1), R12-20. https://doi.org/10.1093/hmg/ddq160; Custodio, Wheelock, A., Thumala, D., & Slachevsky, A. (2017). Dementia in Latin America: epidemiological evidence and implications for public policy. Frontiers in aging neuroscience, 9, 221. https://doi.org/10.3389/fnagi.2017.00221; d'Abramo, C., D'Adamio, L., & Giliberto, L. (2020). Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med, 10(3). https://doi.org/10.3390/jpm10030116; da Silva, M. K., de Carvalho, A. C. G., Alves, E. H. P., da Silva, F. R. P., Pessoa, L. d. S., & Vasconcelos, D. F. P. (2017). Genetic factors and the risk of periodontitis development: Findings from a systematic review composed of 13 studies of meta‐analysis with 71,531 participants. International journal of dentistry, 2017(1), 1914073. https://doi.org/10.1155/2017/1914073; Dahlqvist, J., Fulco, C. P., Ray, J. P., Liechti, T., de Boer, C. G., Lieb, D. J., . . . Hacohen, N. (2022). Systematic identification of genomic elements that regulate FCGR2A expression and harbor variants linked with autoimmune disease. Human molecular genetics, 31(12), 1946-1961. https://doi.org/10.1093/hmg/ddab372; Dantzer, R. (2018). Neuroimmune interactions: from the brain to the immune system and vice versa. Physiological Reviews, 98(1), 477-504. https://doi.org/10.1152/physrev.00039.2016; Dato, S., De Rango, F., Crocco, P., Pallotti, S., Belloy, M. E., Le Guen, Y., . . . Napolioni, V. (2023). Sex- and APOE-specific genetic risk factors for late-onset Alzheimer's disease: Evidence from gene-gene interaction of longevity-related loci. Aging Cell, 22(9), e13938. https://doi.org/10.1111/acel.13938; Davis, S., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847. https://doi.org/10.1093/bioinformatics/btm254; de Camargo Pereira, G., Guimaraes, G. N., Planello, A. C., Santamaria, M. P., de Souza, A. P., Line, S. R., & Marques, M. R. (2013). Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. Clin Oral Investig, 17(4), 1279-1285. https://doi.org/10.1007/s00784-012- 0816-z; De Oliveira, N. F., Andia, D. C., Planello, A. C., Pasetto, S., Marques, M. R., Nociti, F. H., Jr., . . . De Souza, A. P. (2011). TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol, 38(11), 975-983. https://doi.org/10.1111/j.1600-051X.2011.01765.x; Delbove, T., Gueyffier, F., Juillard, L., Kalbacher, E., Maucort-Boulch, D., Nony, P., . . . Gritsch, K. (2021). Effect of periodontal treatment on the glomerular filtration rate, reduction of inflammatory markers and mortality in patients with chronic kidney disease: A systematic review. PLoS One, 16(1), e0245619. https://doi.org/10.1371/journal.pone.0245619; Deng, K.-G., Zhao, H., & Zuo, P.-X. (2019). Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. Journal of Genetics, 98(2), 62. https://doi.org/https://doi.org/10.1007/s12041-019-1103-4; Desta, N. (2021). Pathophysiological association between periodontal disease and Alzheimer's disease: Importance of periodontal health in the elderly. Journal of Oral Biosciences, 63(4), 351-359. https://doi.org/10.1016/j.job.2021.08.007; Dhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. The Nucleus, 64(3), 259-270. https://doi.org/10.1007/s13237-021-00367-y; Dharshini, S. A. P., Jemimah, S., Taguchi, Y., & Gromiha, M. M. (2021). Exploring common therapeutic targets for neurodegenerative disorders using transcriptome study. Frontiers in Genetics, 12, 639160. https://doi.org/10.3389/fgene.2021.639160; Dhingra, R., Kwee, L. C., Diaz-Sanchez, D., Devlin, R. B., Cascio, W., Hauser, E. R., . . . Olden, K. (2019). Evaluating DNA methylation age on the illumina MethylationEPIC bead chip. PLoS One, 14(4), e0207834. https://doi.org/10.1371/journal.pone.0207834; Di Francesco, A., Arosio, B., Falconi, A., Di Bonaventura, M. V. M., Karimi, M., Mari, D., . . . D’Addario, C. (2015). Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain, behavior, and immunity, 45, 139-144. https://doi.org/10.1016/j.bbi.2014.11.002; Dioguardi, M., Crincoli, V., Laino, L., Alovisi, M., Sovereto, D., Mastrangelo, F., . . . Muzio, L. L. (2020). The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer's Disease: A Systematic Review. Journal of clinical medicine, 9(2), 495. https://doi.org/10.3390/jcm9020495; Diomede, F., Thangavelu, S. R., Merciaro, I., D’Orazio, M., Bramanti, P., Mazzon, E., & Trubiani, O. (2017). Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. European journal of histochemistry: EJH, 61(3). https://doi.org/10.4081/ejh.2017.2826; Diop-Bove, N. K., Wu, J., Zhao, R., Locker, J., & Goldman, I. D. (2009). Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal trancriptional regulatory region in an antifolate-resistant HeLa cell line. Molecular cancer therapeutics, 8(8), 2424-2431. https://doi.org/10.1158/1535-7163.MCT-08-0938; Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., . . . Griffin, C. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science advances, 5(1), eaau3333. https://doi.org/10.1126/sciadv.aau3333; Dutzan, N., Konkel, J. E., Greenwell-Wild, T., & Moutsopoulos, N. M. (2016). Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol, 9(5), 1163- 1172. https://doi.org/10.1038/mi.2015.136; Ecker, S., Pancaldi, V., Valencia, A., Beck, S., & Paul, D. S. (2018). Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity. BioEssays, 40(2). https://doi.org/10.1002/bies.201700148; Eidhof, I., Baets, J., Kamsteeg, E.-J., Deconinck, T., van Ninhuijs, L., Martin, J.-J., . . . Schenck, A. (2018). GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Brain, 141(9), 2592-2604. https://doi.org/10.1093/brain/awy198; Ek, W. E., Karlsson, T., Höglund, J., Rask-Andersen, M., & Johansson, Å. (2021). Causal effects of inflammatory protein biomarkers on inflammatory diseases. Sci Adv, 7(50), eabl4359. https://doi.org/10.1126/sciadv.abl4359; Eke, P. I., Dye, B. A., Wei, L., Slade, G. D., Thornton‐Evans, G. O., Borgnakke, W. S., . . . Genco, R. J. (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. Journal of periodontology, 86(5), 611-622. https://doi.org/10.1902/jop.2015.140520; El Hajj, N., Dittrich, M., & Haaf, T. (2017). Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol, 69, 172-182. https://doi.org/10.1016/j.semcdb.2017.07.007; Elliott, P., Cowie, M. R., Franke, J., Ziegler, A., Antoniades, C., Bax, J., . . . Jensen, M. T. (2021). Development, validation, and implementation of biomarker testing in cardiovascular medicine state-of-the-art: proceedings of the European Society of Cardiology—Cardiovascular Round Table. Cardiovascular research, 117(5), 1248-1256. https://doi.org/10.1093/cvr/cvaa272; Ellison, E. M., Bradley-Whitman, M. A., & Lovell, M. A. (2017). Single-Base Resolution Mapping of 5-Hydroxymethylcytosine Modifications in Hippocampus of Alzheimer's Disease Subjects. J Mol Neurosci, 63(2), 185-197. https://doi.org/10.1007/s12031-017- 0969-y; Emery, D. C., Shoemark, D. K., Batstone, T. E., Waterfall, C. M., Coghill, J. A., Cerajewska, T. L., . . . Allen, S. J. (2017). 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci, 9, 195. https://doi.org/10.3389/fnagi.2017.00195; Eskan, M. A., Hajishengallis, G., & Kinane, D. F. (2007). Differential activation of human gingival epithelial cells and monocytes by Porphyromonas gingivalis fimbriae. Infection and immunity, 75(2), 892-898. https://doi.org/10.1128/iai.01604-06; Fabris, F., Palmer, D., de Magalhães, J. P., & Freitas, A. A. (2020). Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes. Brief Bioinform, 21(3), 803-814. https://doi.org/10.1093/bib/bbz028; Fan, R., Zhou, Y., Chen, X., Zhong, X., He, F., Peng, W., . . . Xu, Y. (2023). Porphyromonas gingivalis outer membrane vesicles promote apoptosis via msRNA-regulated DNA methylation in periodontitis. Microbiology Spectrum, 11(1), e03288-03222. https://doi.org/10.1128/spectrum.03288-22; Fatmi, M. K., Wang, H., Slotabec, L., Wen, C., Seale, B., Zhao, B., & Li, J. (2024). Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer’s disease by activated protein C. Aging (Albany NY), 16(4), 3137. https://doi.org/10.18632/aging.205624; Faulkner, E., Mensah, A., Rodgers, A. M., McMullan, L. R., & Courtenay, A. J. (2022). The Role of Epigenetic and Biological Biomarkers in the Diagnosis of Periodontal Disease: A Systematic Review Approach. Diagnostics (Basel), 12(4). https://doi.org/10.3390/diagnostics12040919; Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., . . . Huang, Y. (2005). Global prevalence of dementia: a Delphi consensus study. The lancet, 366(9503), 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0; Fischer, S., Schlotthauer, I., Kizner, V., Macartney, T., Dorner-Ciossek, C., & Gillardon, F. (2020). Loss-of-function mutations of CUL3, a high confidence gene for psychiatric disorders, Lead to aberrant neurodevelopment in human induced pluripotent stem cells. Neuroscience, 448, 234-254. https://doi.org/10.1016/j.neuroscience.2020.08.028; Foster, E., Wildner, H., Tudeau, L., Haueter, S., Ralvenius, W. T., Jegen, M., . . . Ghanem, A. (2015). Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron, 85(6), 1289-1304. https://doi.org/10.1016/j.neuron.2015.02.028; Fransquet, P. D., & Ryan, J. (2019). The current status of blood epigenetic biomarkers for dementia. Crit Rev Clin Lab Sci, 56(7), 435-457. https://doi.org/10.1080/10408363.2019.1639129; Fujihashi, K., Kono, Y., Beagley, K., Yamamoto, M., McGhee, J., Mestecky, J., & Kiyono, H. (1993). Cytokines and periodontal disease: immunopathological role of interleukins for B cell responses in chronic inflamed gingival tissues. Journal of periodontology, 64(5 Suppl), 400-406.; Fukuura, K., Inoue, Y., Miyajima, C., Watanabe, S., Tokugawa, M., Morishita, D., . . . Hayashi, H. (2019). The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem, 294(44), 16429-16439. https://doi.org/10.1074/jbc.RA119.009006; Garlet, G. (2010). Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. Journal of dental research, 89(12), 1349-1363. https://doi.org/10.1177/0022034510376; Gasparoni, G., Bultmann, S., Lutsik, P., Kraus, T. F. J., Sordon, S., Vlcek, J., . . . Walter, J. (2018). DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin, 11(1), 41. https://doi.org/10.1186/s13072-018-0211-3; Geng, Q.-S., Huang, T., Li, L.-F., Shen, Z.-B., Xue, W.-H., & Zhao, J. (2022). Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Frontiers in Medicine, 8, 812278. https://doi.org/10.3389/fmed.2021.812278; George, D. R., Whitehouse, P. J., & Ballenger, J. (2011). The evolving classification of dementia: placing the DSM-V in a meaningful historical and cultural context and pondering the future of "Alzheimer's". Cult Med Psychiatry, 35(3), 417-435. https://doi.org/10.1007/s11013-011-9219-x; Gerring, Z. F., Lupton, M. K., Edey, D., Gamazon, E. R., & Derks, E. M. (2020). An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer’s disease. Alzheimer's Research & Therapy, 12, 1-10. https://doi.org/10.1186/s13195-020-00611-8; Glasner, A., Levi, A., Enk, J., Isaacson, B., Viukov, S., Orlanski, S., . . . Hanna, J. H. (2018). NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity, 48(1), 107-119. e104. https://doi.org/10.1016/j.immuni.2017.12.007; Glossop, J. R., Nixon, N. B., Emes, R. D., Sim, J., Packham, J. C., Mattey, D. L., . . . Fryer, A. A. (2017). DNA methylation at diagnosis is associated with response to diseasemodifying drugs in early rheumatoid arthritis. Epigenomics, 9(4), 419-428. https://doi.org/10.2217/epi-2016-0042; Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell, 128(4), 635-638. https://doi.org/10.1016/j.cell.2007.02.006; Gong, L., Feng, X., Ye, D., Li, H., Wu, R., Tao, J., . . . Cui, P. (2020). OptMatch: Optimized Matchmaking via Modeling the High-Order Interactions on the Arena Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA. https://doi.org/10.1145/3394486.3403279; Gonzalez-Mundo, I., Perez-Vielma, N. M., Gomez-Lopez, M., Fleury, A., Correa-Basurto, J., Rosales-Hernandez, M. C., . . . Miliar-Garcia, A. (2020). DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. Exp Gerontol, 136, 110951. https://doi.org/10.1016/j.exger.2020.110951; Grønkjær, L., Holmstrup, P., Schou, S., Jepsen, P., & Vilstrup, H. (2018). Severe periodontitis and higher cirrhosis mortality. United European Gastroenterol J, 6(1), 73-80. https://doi.org/10.1177/2050640617715846; Guarino, A., Favieri, F., Boncompagni, I., Agostini, F., Cantone, M., & Casagrande, M. (2019). Executive functions in Alzheimer disease: a systematic review. Frontiers in aging neuroscience, 10, 437. https://doi.org/https://doi.org/10.3389/fnagi.2018.00437; Guo, H., Urban, A. E., & Wong, W. H. (2024). Prioritizing disease-related rare variants by integrating gene expression data. bioRxiv, 2024.2003. 2019.585836. https://doi.org/10.21203/rs.3.rs-4355589/v1; Hajishengallis. (2015). Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol, 15(1), 30-44. https://doi.org/10.1038/nri3785; Hajishengallis, & Chavakis. (2021). Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol, 21(7), 426-440. https://doi.org/10.1038/s41577-020-00488-6; Hajishengallis, G., & Korostoff, J. M. (2017b). Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000, 75(1), 116-151. https://doi.org/10.1111/prd.12181; Hansson, O., Blennow, K., Zetterberg, H., & Dage, J. (2023). Blood biomarkers for Alzheimer's disease in clinical practice and trials. Nat Aging, 3(5), 506-519. https://doi.org/10.1038/s43587-023-00403-3; Hashioka, S., Wu, Z., & Klegeris, A. (2021). Glia-driven neuroinflammation and systemic inflammation in Alzheimer’s disease. Current neuropharmacology, 19(7), 908-924. https://doi.org/https://doi.org/10.2174/1570159X18666201111104509; Hatcher, C., Relton, C. L., Gaunt, T. R., & Richardson, T. G. (2019). Leveraging brain cortexderived molecular data to elucidate epigenetic and transcriptomic drivers of complex traits and disease. Translational psychiatry, 9(1), 105. https://doi.org/10.1038/s41398- 019-0437-2; Hernández, H. (2015). Estudio de patrones genómicos de metilación de ADN en enfermedad de Alzheimer orientado hacia neuronas piramidales corticales y su concordancia con leucocitos de sangre periférica. Instituto de Investigaciones Biomédicas; Hernández, H. G., López-Cepeda, M. L., Contreras-García, G. A., Vargas-Porras, C., & Arboleda, H. (2019). Bisulphite conversion DNA visualiser for designing DNA methylation primers. Trends in Bioinformatics, 12, 1-6. https://doi.org/10.3923/tb.2019.1.6; Hernández, H. G., Mahecha, M. F., Mejía, A., Arboleda, H., & Forero, D. A. (2014). Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer’s disease. American Journal of Alzheimer's Disease & Other Dementias®, 29(1), 50-53. https://doi.org/10.1177/1533317513505132; Hernandez, H. G., Sandoval-Hernandez, A. G., Garrido-Gil, P., Labandeira-Garcia, J. L., Zelaya, M. V., Bayon, G. F., . . . Arboleda, H. (2018). Alzheimer's disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics, 10(11), 1365-1382. https://doi.org/10.2217/epi-2017-0160; Hickey, N. A., Shalamanova, L., Whitehead, K. A., Dempsey-Hibbert, N., van der Gast, C., & Taylor, R. L. (2020). Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit Rev Microbiol, 46(1), 61-77. https://doi.org/10.1080/1040841x.2020.1724872; Hill, M. A., & Gammie, S. C. (2022). Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Scientific reports, 12(1), 17189. https://doi.org/10.1038/s41598-022-22179-z; Hoang. (2004a). The origin of hematopoietic cell type diversity. Oncogene, 23(43), 7188-7198. https://doi.org/10.1038/sj.onc.1207937; Holtfreter, B., Albandar, J. M., Dietrich, T., Dye, B. A., Eaton, K. A., Eke, P. I., . . . Kocher, T. (2015). Standards for reporting chronic periodontitis prevalence and severity in epidemiologic studies: Proposed standards from the Joint EU/USA Periodontal Epidemiology Working Group. Journal of clinical periodontology, 42(5), 407-412. https://doi.org/10.1111/jcpe.12392; Hu, D., Guo, Y., Wu, M., Ma, Y., & Jing, W. (2022). GDAP2 overexpression affects the development of neurons and dysregulates neuronal excitatory synaptic transmission. Neuroscience, 488, 32-43. https://doi.org/https://doi.org/10.1016/j.neuroscience.2022.02.005; Hu, Y. W., Kang, C. M., Zhao, J. J., Nie, Y., Zheng, L., Li, H. X., . . . Qiu, Y. R. (2018). Lnc RNA PLAC 2 down‐regulates RPL 36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT 1. Journal of cellular and molecular medicine, 22(1), 497-510. https://doi.org/ https://doi.org/10.1111/jcmm.13338; Huang, S., Huang, P., Wu, H., Wang, S., & Liu, G. (2022). LINC02381 aggravates breast cancer through the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway. Mol Carcinog, 61(3), 346-358. https://doi.org/10.1002/mc.23375; Huntington, N. D., Carpentier, S., Vivier, E., & Belz, G. T. (2016). Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Curr Opin Immunol, 38, 86- 93. https://doi.org/10.1016/j.coi.2015.11.008; Ide, M., Harris, M., Stevens, A., Sussams, R., Hopkins, V., Culliford, D., . . . Thomas, R. (2016). Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One, 11(3), e0151081. https://doi.org/https://doi.org/10.1371/journal.pone.0151081; Ishida, K., Kobayashi, T., Ito, S., Komatsu, Y., Yokoyama, T., Okada, M., . . . Yoshie, H. (2012). Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J Periodontol, 83(7), 917-925. https://doi.org/10.1902/jop.2011.110356; Itoh, T., Fairall, L., Muskett, F. W., Milano, C. P., Watson, P. J., Arnaudo, N., . . . Schwabe, J. W. (2015). Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting. Nucleic Acids Res, 43(4), 2033-2044. https://doi.org/10.1093/nar/gkv068; Ivanova, D., Dirks, A., Montenegro‐Venegas, C., Schöne, C., Altrock, W. D., Marini, C., . . . Gundelfinger, E. D. (2015). Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. The EMBO journal, 34(8), 1056-1077. https://doi.org/https://doi.org/10.15252/embj.201488796; Jayaswamy, P. K., Gollapalli, P., Vijaykrishnaraj, M., Alexander, L. M., Patil, P., & Shetty, P. (2023). Identification of network-based differential gene expression signatures and their transcriptional factors to develop progressive blood biomarkers for Alzheimer's disease. Human Gene, 37, 201202. https://doi.org/10.1016/j.humgen.2023.201202; Ji, S., & Choi, Y. (2013). Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci, 43(1), 3-11. https://doi.org/10.5051/jpis.2013.43.1.3; Jiang, Z., Shi, Y., Zhao, W., Zhou, L., Zhang, B., Xie, Y., . . . Wang, Z. (2021). Association between chronic periodontitis and the risk of Alzheimer’s disease: combination of text mining and GEO dataset. BMC Oral Health, 21(1), 1-11. https://doi.org/https://doi.org/10.1186/s12903-021-01827-2; Johanson, C. E., Stopa, E. G., & McMillan, P. N. (2011). The blood–cerebrospinal fluid barrier: structure and functional significance. The Blood-Brain and Other Neural Barriers: Reviews and Protocols, 101-131. https://doi.org/10.1007/978-1-60761-938-3_4; Joustra, V., Hageman, I., Li Yim, A., Gecse, K., Lowenberg, M., te Velde, A., . . . D’Haens, G. (2020). P823 DNA methylation profiles accurately predict vedolizumab response and remain stable during induction and maintenance treatment in Crohn’s disease. Journal of Crohn's and Colitis, 14(Supplement_1), S639-S640. https://doi.org/10.1093/eccojcc/ jjz203.951; Kähler, A. K., Djurovic, S., Kulle, B., Jönsson, E. G., Agartz, I., Hall, H., . . . Melle, I. (2008). Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147(7), 1089-1100. https://doi.org/10.1002/ajmg.b.30726; Kamer, A. R., Pirraglia, E., Tsui, W., Rusinek, H., Vallabhajosula, S., Mosconi, L., . . . de Leon, M. J. (2015). Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging, 36(2), 627-633. https://doi.org/10.1016/j.neurobiolaging.2014.10.038; Kanagasingam, S., Chukkapalli, S. S., Welbury, R., & Singhrao, S. K. (2020). Porphyromonas gingivalis is a strong risk factor for Alzheimer’s disease. Journal of Alzheimer's Disease Reports, 4(1), 501-511. https://doi.org/10.3233/ADR-200250; Katkoori, V., Jia, X., Callens, T., Kumar, S., Ponnazhagan, S., Messiaen, L., . . . Manne, U. (2007). Rabphillin-3A-Like gene is a candidate tumor suppressor in colorectal adenocarcinoma. Cancer Research, 67(9_Supplement), 3650-3650.; Katoh, M., & Katoh, M. (2004). Identification and characterization of human FOXK1 gene in silico. International journal of molecular medicine, 14(1), 127-132. https://doi.org/10.3892/ijmm.14.1.127; Khouly, I., Braun, R. S., Ordway, M., Aouizerat, B. E., Ghassib, I., Larsson, L., & Asa’ad, F. (2020). The role of DNA methylation and histone modification in periodontal disease: a systematic review. International journal of molecular sciences, 21(17), 6217. https://doi.org/10.3390/ijms21176217; Kobayashi, N., Shinagawa, S., Nagata, T., Shimada, K., Shibata, N., Ohnuma, T., . . . Kondo, K. (2016). Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer's Disease and Amnestic Mild Cognitive Impairment. PLoS One, 11(12), e0168816. https://doi.org/10.1371/journal.pone.0168816; Koestler, D. C., Jones, M. J., Usset, J., Christensen, B. C., Butler, R. A., Kobor, M. S., . . . Kelsey, K. T. (2016). Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC bioinformatics, 17, 120. https://doi.org/10.1186/s12859-016-0943-7; Kouki, M. A., Pritchard, A. B., Alder, J. E., & Crean, S. (2022). Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer’s Disease? Journal of Alzheimer's Disease, 85(3), 957-973. https://doi.org/10.3233/JAD-215103 Kubota, T., Maruyama, S., Abe, D., Tomita, T., Morozumi; Kukułowicz, J., Pietrzak-Lichwa, K., Klimończyk, K., Idlin, N., & Bajda, M. (2024). The SLC6A15–SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacological Reviews, 76(1), 142-193. https://doi.org/10.1124/pharmrev.123.000886; Laberge, Akoum, D., Wlodarczyk, P., Massé, J. D., Fournier, D., & Semlali, A. (2023). The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel), 14(6). https://doi.org/10.3390/genes14061202; Larsson, L. (2017). Current concepts of epigenetics and its role in periodontitis. Current Oral Health Reports, 4(4), 286-293. https://doi.org/10.1007/s40496-017-0156-9; Lavu, V., Venkatesan, V., & Rao, S. R. (2015). The epigenetic paradigm in periodontitis pathogenesis. J Indian Soc Periodontol, 19(2), 142-149. https://doi.org/10.4103/0972- 124X.145784; Lee, W., Aitken, S., Sodek, J., & McCulloch, C. (1995). Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. Journal of periodontal research, 30(1), 23-33. https://doi.org/10.1111/j.1600-0765.1995.tb01249.xC; Leira, Y., Vivancos, J., Diz, P., Martín, Á., Carasol, M., & Frank, A. (2024). Asociación entre periodontitis, enfermedad cerebrovascular y demencia. Informe científico del Grupo de Trabajo de la Sociedad Española de Periodoncia y la Sociedad Española de Neurología. Neurología. https://doi.org/10.1016/j.nrl.2023.11.003; Lesurf, R., Cotto, K. C., Wang, G., Griffith, M., Kasaian, K., Jones, S. J., . . . Open Regulatory Annotation, C. (2016). ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res, 44(D1), D126-132. https://doi.org/10.1093/nar/gkv1203; Lewin, J., Schmitt, A. O., Adorján, P., Hildmann, T., & Piepenbrock, C. (2004). Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics, 20(17), 3005-3012. https://doi.org/10.1093/bioinformatics/bth346; Li, Kiprowska, M., Kansara, T., Kansara, P., & Li, P. (2022). Neuroinflammation: A distal consequence of periodontitis. Journal of dental research, 101(12), 1441-1449. https://doi.org/10.1177/00220345221102; Li, J., Liu, J., Feng, G., Li, T., Zhao, Q., Li, Y., . . . He, L. (2011). The MDGA1 gene confers risk to schizophrenia and bipolar disorder. Schizophrenia research, 125(2-3), 194-200. https://doi.org/10.1186/s13148-021-01179-2; Liccardo, D., Marzano, F., Carraturo, F., Guida, M., Femminella, G. D., Bencivenga, L., . . . Valletta, A. (2020). Potential bidirectional relationship between periodontitis and Alzheimer’s disease. Frontiers in physiology, 11, 683. https://doi.org/10.3389/fphys.2020.00683; Lima, A., Bernardes, M., Azevedo, R., Monteiro, J., Sousa, H., Medeiros, R., & Seabra, V. (2014). SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients. Toxicological Sciences, 142(1), 196-209. https://doi.org/10.1093/toxsci/kfu162; Liu, Y., Wu, Z., Zhang, X., Ni, J., Yu, W., Zhou, Y., & Nakanishi, H. (2013). Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators of inflammation, 2013. https://doi.org/10.1155/2013/407562; Loos, B. G., & Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodontology 2000, 83(1), 26-39. https://doi.org/10.1111/prd.12297; Lozupone, M., Dibello, V., Sardone, R., Castellana, F., Zupo, R., Lampignano, L., . . . Solfrizzi, V. (2023). The impact of apolipoprotein E (APOE) epigenetics on aging and sporadic Alzheimer’s disease. Biology, 12(12), 1529. https://doi.org/10.3390/biology12121529; Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., . . . Macdonald, R. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature neuroscience, 17(9), 1164-1170. https://doi.org/10.1038/nn.3782; Madianos, P. N., Bobetsis, Y. A., & Kinane, D. F. (2005). Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol, 32 Suppl 6, 57-71. https://doi.org/10.1111/j.1600-051X.2005.00821.x; Mahoney, R., Bendl, J., Kozlenkov, A., Micallef, C., Shao, Z., Edelstien, J., . . . Haroutunian, V. (2023). F93. Cell-type specific transcriptomic profiling in schizophrenia identifies changes in gabaergic neurons and oligodendrocytes at transcript level. European Neuropsychopharmacology, 75, S270. https://doi.org/10.1016/j.euroneuro.2023.08.474; Marioni, R. E., Harris, S. E., Zhang, Q., McRae, A. F., Hagenaars, S. P., Hill, W. D., . . . Visscher, P. M. (2018). GWAS on family history of Alzheimer's disease. Transl Psychiatry, 8(1), 99. https://doi.org/10.1038/s41398-018-0150-6; Martínez-Iglesias, O., Naidoo, V., Cacabelos, N., & Cacabelos, R. (2021). Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci, 23(1). https://doi.org/10.3390/ijms23010013; Masumoto, R., Kitagaki, J., Fujihara, C., Matsumoto, M., Miyauchi, S., Asano, Y., . . . Murakami, S. (2019). Identification of genetic risk factors of aggressive periodontitis using genomewide association studies in association with those of chronic periodontitis. J Periodontal Res, 54(3), 199-206. https://doi.org/10.1111/jre.12620; Matsushita, K., Yamada-Furukawa, M., Kurosawa, M., & Shikama, Y. (2020). Periodontal disease and periodontal disease-related bacteria involved in the pathogenesis of Alzheimer’s disease. Journal of inflammation research, 13, 275. https://doi.org/10.2147/JIR.S255309; Mayadas, T. N., Cullere, X., & Lowell, C. A. (2014). The multifaceted functions of neutrophils. Annu Rev Pathol, 9, 181-218. https://doi.org/10.1146/annurev-pathol-020712-164023; Mendonça, C. F., Kuras, M., Nogueira, F. C. S., Plá, I., Hortobágyi, T., Csiba, L., . . . Marko- Varga, G. (2019). Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease. Neurobiology of disease, 130, 104509. https://doi.org/https://doi.org/10.1016/j.nbd.2019.104509; Mendonca, V., Soares-Lima, S. C., & Moreira, M. A. M. (2024). Exploring cross-tissue DNA methylation patterns: blood-brain CpGs as potential neurodegenerative disease biomarkers. Commun Biol, 7(1), 904. https://doi.org/10.1038/s42003-024-06591-x; Milano, W., Ambrosio, P., Carizzone, F., De Biasio, V., Di Munzio, W., Foia, M. G., & Capasso, A. (2020). Depression and Obesity: Analysis of Common Biomarkers. Diseases, 8(2). https://doi.org/10.3390/diseases8020023; Mishra, V. C., Deshpande, T., Gupta, N., Dorwal, P., Chandra, D., Raina, V., & Sharma, G. (2021). Frequency analysis of HLA-B allele in leukemia patients from a North Indian population: a case-control study. Meta Gene, 27, 100842. https://doi.org/10.1016/j.mgene.2020.100842; Morgan, A. R., Touchard, S., Leckey, C., O'Hagan, C., Nevado‐Holgado, A. J., Consortium, N., . . . Bos, I. (2019). Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimer's & Dementia, 15(6), 776-787.; Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., . . . Wynn, T. A. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41(1), 14-20. https://doi.org/10.1016/j.immuni.2014.06.008; Nibali, L., Di Iorio, A., Tu, Y. K., & Vieira, A. R. (2017). Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol, 44 Suppl 18, S52-S78. https://doi.org/10.1111/jcpe.12639; Offenbacher, S., Jiao, Y., Kim, S. J., Marchesan, J., Moss, K. L., Jing, L., . . . North, K. E. (2018). GWAS for Interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nat Commun, 9(1), 3686. https://doi.org/10.1038/s41467-018-05940-9; Olsen, I., & Singhrao, S. K. (2019). Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. Current Oral Health Reports, 6(2), 120-129. https://doi.org/10.1007/s40496-019-0212-8; Palomba, N. P., Fortunato, G., Pepe, G., Modugno, N., Pietracupa, S., Damiano, I., . . . Ianiro, L. (2023). Common and rare variants in TMEM175 gene concur to the pathogenesis of Parkinson’s disease in Italian patients. Molecular neurobiology, 60(4), 2150-2173. https://doi.org/10.1007/s12035-022-03203-9; Papadopoulos, Weinberg, E. O., Massari, P., Gibson, F. C., 3rd, Wetzler, L. M., Morgan, E. F., & Genco, C. A. (2013). Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol, 190(3), 1148-1157. https://doi.org/10.4049/jimmunol.1202511; Papapanou, P. N., Sedaghatfar, M. H., Demmer, R. T., Wolf, D. L., Yang, J., Roth, G. A., . . . Pavlidis, P. (2007). Periodontal therapy alters gene expression of peripheral blood monocytes. Journal of clinical periodontology, 34(9), 736-747. https://doi.org/10.1111/j.1600-051X.2007.01113.x; Pazos, Leira, Y., Domínguez, C., Pías-Peleteiro, J. M., Blanco, J., & Aldrey, J. M. (2018). Association between periodontal disease and dementia: A literature review. Neurologia; Pillai, J. A., Bena, J., Bebek, G., Bekris, L. M., Bonner‐Jackson, A., Kou, L., . . . Rao, S. M. (2020). Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Annals of Clinical and Translational Neurology, 7(7), 1225- 1239. https://doi.org/10.1002/acn3.51109; Polepalle, T., Moogala, S., Boggarapu, S., Pesala, D. S., & Palagi, F. B. (2015). Acute phase proteins and their role in periodontitis: a review. Journal of clinical and diagnostic research: JCDR, 9(11), ZE01. https://doi.org/10.7860/JCDR/2015/15692.6728; Potashkin, J., Santiago, J., & Quinn, J. (2022). Co-expression network analysis identifies molecular determinants of loneliness associated with neuropsychiatric and neurodegenerative diseases. https://doi.org/10.21203/rs.3.rs-2203829/v1; Prasad, G. R., & Jho, E.-h. (2019). A concise review of human brain methylome during aging and neurodegenerative diseases. BMB reports, 52(10), 577. https://doi.org/10.5483/BMBRep.2019.52.10.215; Qu, L., Lin, B., Zeng, W., Fan, C., Wu, H., Ge, Y., . . . Xin, J. (2022). Lysosomal K+ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO reports, 23(9), e53234. https://doi.org/10.15252/embr.202153234; Rapanelli, M., Tan, T., Wang, W., Wang, X., Wang, Z.-J., Zhong, P., . . . Qu, J. (2021). Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the highrisk autism gene Cul3. Molecular Psychiatry, 26(5), 1491-1504. https://doi.org/10.1038/s41380-019-0498-x; Reitz, C., Pericak-Vance, M. A., Foroud, T., & Mayeux, R. (2023). A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol, 19(5), 261-277. https://doi.org/10.1038/s41582-023-00789-z; Ribeiro, M. S., Pacheco, R. B., Fischer, R. G., & Macedo, J. M. (2016). Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility. Contemp Clin Dent, 7(3), 349-356.; Riviere, G. R., Riviere, K., & Smith, K. (2002). Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral microbiology and immunology, 17(2), 113-118. https://doi.org/10.1046/j.0902- 0055.2001.00100.x; Rocha, J. J., Jayaram, S. A., Stevens, T. J., Muschalik, N., Shah, R. D., Emran, S., . . . Munro, S. (2023). Functional unknomics: Systematic screening of conserved genes of unknown function. PLoS biology, 21(8), e3002222. https://doi.org/10.1371/journal.pbio.3002222; Salcedo-Tacuma, D., Melgarejo, J. D., Mahecha, M. F., Ortega-Rojas, J., Arboleda-Bustos, C. E., Pardo-Turriago, R., & Arboleda, H. (2019). Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease. Alzheimer Dis Assoc Disord, 33(4), 321-326. https://doi.org/10.1097/WAD.0000000000000329; Sánchez, C. Z., Sanabria, M. O. C., Sánchez, M. Z., López, P. A. C., Sanabria, M. S., Hernández, S. H., . . . Valera, A. U. (2019). Prevalencia de demencia en adultos mayores de América Latina: revisión sistemática. Revista Española de Geriatría y Gerontología, 54(6), 346- 355. https://doi.org/10.1016/j.regg.2018.12.007; Sasaki, M., Anast, J., Bassett, W., Kawakami, T., Sakuragi, N., & Dahiya, R. (2003). Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochemical and biophysical research communications, 309(2), 305-309. https://doi.org/10.1016/j.bbrc.2003.08.005; Scelsi, M. A., Khan, R. R., Lorenzi, M., Christopher, L., Greicius, M. D., Schott, J. M., . . . Altmann, A. (2018). Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain, 141(7), 2167-2180. https://doi.org/10.1093/brain/awy141; Semick, S. A., Bharadwaj, R. A., Collado-Torres, L., Tao, R., Shin, J. H., Deep-Soboslay, A., . . . Mattay, V. S. (2019). Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathologica, 137(4), 557-569. https://doi.org/10.1007/s00401-019-01966-5; Sepulveda-Falla, D., Barrera-Ocampo, A., Hagel, C., Korwitz, A., Vinueza-Veloz, M. F., Zhou, K., . . . Glatzel, M. (2014). Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest, 124(4), 1552-1567. https://doi.org/10.1172/JCI66407; Shaddox, L. M., Mullersman, A. F., Huang, H., Wallet, S. M., Langaee, T., & Aukhil, I. (2017). Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics, 9, 94. https://doi.org/10.1186/s13148-017-0385-8; Shinagawa, S., Kobayashi, N., Nagata, T., Kusaka, A., Yamada, H., Kondo, K., & Nakayama, K. (2016). DNA methylation in the NCAPH2/LMF2 promoter region is associated with hippocampal atrophy in Alzheimer's disease and amnesic mild cognitive impairment patients. Neurosci Lett, 629, 33-37. https://doi.org/10.1016/j.neulet.2016.06.055; Singhrao, S. K., Neal, J. W., Rushmere, N. K., Morgan, B. P., & Gasque, P. (2000). Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol, 157(3), 905-918. https://doi.org/10.1016/S0002-9440(10)64604-4; Smith, A. R., Smith, R. G., Pishva, E., Hannon, E., Roubroeks, J. A., Burrage, J., . . . Mill, J. (2019). Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clinical Epigenetics, 11, 1-13. https://doi.org/10.1186/s13148-019-0636-y; Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., . . . Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280-292. https://doi.org/10.1016/j.jalz.2011.03.003; Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9; Tabas, I., & Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science, 339(6116), 166-172. https://doi.org/10.1126/science.1230720; Tammen, S. A., Friso, S., & Choi, S. W. (2013). Epigenetics: the link between nature and nurture. Mol Aspects Med, 34(4), 753-764. https://doi.org/10.1016/j.mam.2012.07.018; Taryma-Leśniak, O., Sokolowska, K. E., & Wojdacz, T. K. (2020). Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clinical Epigenetics, 12(1), 100. https://doi.org/10.1186/s13148-020-00886-6; Therriault, J., Schindler, S. E., Salvadó, G., Pascoal, T. A., Benedet, A. L., Ashton, N. J., . . . Rosa-Neto, P. (2024). Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol, 20(4), 232-244. https://doi.org/10.1038/s41582- 024-00942-2; Toader, C., Dobrin, N., Brehar, F.-M., Popa, C., Covache-Busuioc, R.-A., Glavan, L. A., . . . Popa, A. A. (2023). From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. International journal of molecular sciences, 24(22), 16119. https://doi.org/10.3390/ijms242216119; Tranchevent, L.-C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D., & Moreau, Y. (2016). Candidate gene prioritization with Endeavour. Nucleic acids research, 44(W1), W117-W121. https://doi.org/10.1093/nar/gkw365; Tse, M. Y., Ashbury, J. E., Zwingerman, N., King, W. D., Taylor, S. A., & Pang, S. C. (2011). A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC research notes, 4(1), 565. https://doi.org/10.1186/1756-0500-4-565; UNESCO, U. (1997). Declaración universal sobre el genoma humano y los derechos humanos. Boletín del Consejo Académico de Ética en Medicina, 4(1).; UniProt, C. (2015). UniProt: a hub for protein information. Nucleic Acids Res, 43(Database issue), D204-212. https://doi.org/10.1093/nar/gku989; Vasanthakumar, A., Davis, J. W., Idler, K., Waring, J. F., Asque, E., Riley-Gillis, B., . . . Nho, K. (2020). Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clinical Epigenetics, 12(1), 1-11.; Viglianisi, G., Santonocito, S., Polizzi, A., Troiano, G., Amato, M., Zhurakivska, K., . . . Isola, G. (2023). Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms24129981; Villa, M., Wu, J., Hansen, S., & Pahnke, J. (2024). Emerging role of ABC transporters in glia cells in health and diseases of the central nervous system. Cells, 13(9), 740. https://doi.org/10.3390/cells13090740; Wainberg, M., Andrews, S. J., & Tripathy, S. J. (2023). Shared genetic risk loci between Alzheimer’s disease and related dementias, Parkinson’s disease, and amyotrophic lateral sclerosis. Alzheimer's Research & Therapy, 15(1), 113. https://doi.org/10.1186/s13195- 023-01244-3; Walker, K. A., Ficek, B. N., & Westbrook, R. (2019). Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem Neurosci, 10(8), 3340-3342. https://doi.org/10.1021/acschemneuro.9b00333; Wang, Ho, Leung, Goto, T., & Chang, R. C.-C. (2019). Systemic inflammation linking chronic periodontitis to cognitive decline. Brain, behavior, and immunity, 81, 63-73. https://doi.org/10.1016/j.bbi.2019.07.002; Wang, Wang, Y., Ma, X., Zhou, S., Xu, J., Guo, Y., . . . Yuan, L. (2023). Gender-specific association of SLC19A1 and MTHFR genetic polymorphism with oxidative stress biomarkers and plasma folate levels in older adults. Experimental Gerontology, 178, 112208. https://doi.org/10.1016/j.exger.2023.112208; Wang, P., Wang, B., Zhang, Z., & Wang, Z. (2021). Identification of inflammation-related DNA methylation biomarkers in periodontitis patients based on weighted co-expression analysis. Aging (Albany NY), 13(15), 19678. https://doi.org/10.18632/aging.203378; Watson, C. T., Roussos, P., Garg, P., Ho, D. J., Azam, N., Katsel, P. L., . . . Sharp, A. J. (2016). Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med, 8(1), 5. https://doi.org/10.1186/s13073-015-0258-8; Weinberg, D. N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K. N., . . . Nikbakht, H. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 573(7773), 281-286. https://doi.org/10.1038/s41586-019-1534-3; Wilhelm-Benartzi, C. S., Koestler, D. C., Karagas, M. R., Flanagan, J. M., Christensen, B. C., Kelsey, K. T., . . . Brown, R. (2013). Review of processing and analysis methods for DNA methylation array data. Br J Cancer, 109(6), 1394-1402. https://doi.org/10.1038/bjc.2013.496; Wu, Song, J., Yin, X., Ma, H., & Zhang, J. (2024). An Integrated Proteome and Transcriptome Analysis Identifies Novel Causal Genes in Periodontal Disease. Available at SSRN 4329969. https://doi.org/10.2139/ssrn.4329969; Xiao, X., Liu, X., & Jiao, B. (2020). Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol, 11, 538301. https://doi.org/10.3389/fneur.2020.538301; Xing, X., Que, X., Zheng, S., Wang, S., Song, Q., Yao, Y., & Zhang, P. (2024). Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol, 14, 1376496. https://doi.org/10.3389/fonc.2024.1376496; Yang, X., Han, H., De Carvalho, D. D., Lay, F. D., Jones, P. A., & Liang, G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer cell, 26(4), 577-590. https://doi.org/10.1016/j.ccr.2014.07.028; Yao, Q., Wang, C., Wang, Y., Zhang, X., Jiang, H., & Chen, D. (2022). The integrated comprehension of lncRNA HOXA-AS3 implication on human diseases. Clin Transl Oncol, 24(12), 2342-2350. https://doi.org/10.1007/s12094-022-02920-w; Yong, W.-S., Hsu, F.-M., & Chen, P.-Y. (2016). Profiling genome-wide DNA methylation. Epigenetics & chromatin, 9(1), 26. https://doi.org/DOI 10.1186/s13072-016-0075-3; Yoshioka, M., Matsutani, T., Hara, A., Hirono, S., Hiwasa, T., Takiguchi, M., & Iwadate, Y. (2018). Real-time methylation-specific PCR for the evaluation of methylation status of MGMT gene in glioblastoma. Oncotarget, 9(45), 27728-27735. https://doi.org/10.18632/oncotarget.25543; Zhang, J., Hou, S., You, Z., Li, G., Xu, S., Li, X., . . . Pang, D. (2021). Expression and prognostic values of ARID family members in breast cancer. Aging (Albany NY), 13(4), 5621.; Zhang, S., Barros, S. P., Moretti, A. J., Yu, N., Zhou, J., Preisser, J. S., . . . Offenbacher, S. (2013). Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol, 84(11), 1606-1616. https://doi.org/10.1902/jop.2013.120294; Zhang, S., Crivello, A., Offenbacher, S., Moretti, A., Paquette, D. W., & Barros, S. P. (2010). Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol, 37(11), 953-961. https://doi.org/10.1111/j.1600- 051X.2010.01616.x; Zhao, N., Teles, F., Lu, J., Koestler, D. C., Beck, J., Boerwinkle, E., . . . Michaud, D. S. (2023). Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol, 50(9), 1140-1153. https://doi.org/10.1111/jcpe.13852; Zhou, K., Wang, L., Wu, L., Wu, Q., Zhu, L., & Yang, X. (2022). Key genes associated with Alzheimer's disease and periodontitis. https://doi.org/10.21203/rs.3.rs-2230514/v1; Zhuang, J., Widschwendter, M., & Teschendorff, A. E. (2012). A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC bioinformatics, 13, 59. https://doi.org/10.1186/1471-2105-13-59; Zilka, N., Ferencik, M., & Hulin, I. (2006). Neuroinflammation in Alzheimer's disease: protector or promoter? Bratisl Lek Listy, 107(9-10), 374-383. http://www.ncbi.nlm.nih.gov/pubmed/17262990; Zou, L., Chen, W., Shao, S., Sun, Z., Zhong, R., Shi, J., . . . Song, R. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated metaanalysis. Am J Med Genet B Neuropsychiatr Genet, 159b(8), 970-976. https://doi.org/10.1002/ajmg.b.32102; Chacón Arboleda, P. T. (2024) Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación. [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombia; http://hdl.handle.net/11634/58784; reponame:Repositorio Institucional Universidad Santo Tomás; instname:Universidad Santo Tomás; repourl:https://repository.usta.edu.co

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المساهمون: Gutiérrez-Repiso,C, Linares-Pineda,TM, Aguilar-Lineros,F, Tinahones,FJ, Morcillo,S Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain. Gutiérrez-Repiso,C, Morcillo,S Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain. Gonzalez-Jimenez,A ECAI Bioinformática Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain. Valdés,S, Soriguer,F, Rojo-Martínez,G Departamento de Endocrinología and Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain. Valdés,S, Rojo-Martínez,G Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain. Tinahones,FJ Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain., T.M.L.-P. and C.G.-R. were supported by a grant from the Instituto de Salud Carlos III (FI19/00178 and CP20/00066, respectively). F.A.-L. is supported by a grant from “Programa Estatal de Promoción del Talento y su empleabilidad 2018” (PEJ2018-005156-A). S.M. and G.R.-M. are supported by Nicolas Monardes program of the Consejería de Salud de la Junta de Andalucía (C 0050-2017, C-0060-2012, respectively). This work was supported in part by a grant from the Instituto de Salud Carlos III (PI15-01350). This study has been co-funded by FEDER funds (“A way to make Europe”). CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) are ISCIII projects.

    مصطلحات موضوعية: Metabolically healthy obesity, Epigenetic biomarkers, Metabolic syndrome, DNA methylation, Immune system, Obesidad metabólica benigna, Biomarcadores, Síndrome metabólico, Metilación de ADN, Sistema inmunológico, Medical Subject Headings::Persons::Persons::Age Groups::Adolescent, Medical Subject Headings::Persons::Persons::Age Groups::Adult, Medical Subject Headings::Persons::Persons::Age Groups::Adult::Aged, Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers::Biomarkers, Pharmacological, Medical Subject Headings::Check Tags::Female, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Cohort Studies::Longitudinal Studies::Follow-Up Studies, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Check Tags::Male, Medical Subject Headings::Persons::Persons::Age Groups::Adult::Middle Aged, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Phenotype, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Cohort Studies::Longitudinal Studies::Prospective Studies, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Molecular Structure::Base Sequence::GC Rich Sequence::CpG Islands, Medical Subject Headings::Phenomena and Processes::Metabolic Phenomena::Metabolism::Alkylation::Methylation::DNA Methylation, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression Regulation::Epigenesis, Genetic, Medical Subject Headings::Diseases::Nutritional and Metabolic Diseases::Nutrition Disorders::Overnutrition::Obesity, Medical Subject Headings::Chemicals and Drugs::Enzymes and Coenzymes::Cytochromes::Cytochrome P-450 Enzyme System::Aryl Hydrocarbon Hydroxylases::Cytochrome P-450 CYP2E1, Medical Subject Headings::Chemicals and Drugs::Amino Acids

    وصف الملف: application/pdf

    Relation: https://www.mdpi.com/1422-0067/22/19/10417/htm; Gutiérrez-Repiso C, Linares-Pineda TM, Gonzalez-Jimenez A, Aguilar-Lineros F, Valdés S, Soriguer F, et al. Epigenetic Biomarkers of Transition from Metabolically Healthy Obesity to Metabolically Unhealthy Obesity Phenotype: A Prospective Study. Int J Mol Sci. 2021 Sep 27;22(19):10417.; http://hdl.handle.net/10668/4243; PMC8508854

  8. 8
    Academic Journal

    المساهمون: Villalba-Benito,L, Torroglosa,A, Luzón-Toro,B, Fernández,RM, Antiñolo,G, Dopazo,J, Borrego,S Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. Villalba-Benito,L, Borrego,S Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. López-López,D, Casimiro-Soriguer,CS, Dopazo,J Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, Sevilla, Spain. López-López,D, Dopazo,J Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. Moya-Jiménez,MJ Department of Pediatric Surgery, University Hospital Virgen del Rocío, Seville, Spain., This work was supported by Instituto de Salud Carlos III through the Projects PI16/0142, PI19/01550 (co-funded by the European Regional Development Fund/European Social Fund, "A way to make Europe"/"Investing in your future"), and by the Regional Ministry of Health and Family of the Regional Government of Andalusia PEER-0470–2019 . L.V.-B. was supported by a fellowship associated with the CTS-7447 Project, which has been funded by the Regional Ministry of Innovation, Science and Enterprise of the Regional Government of Andalusia.

    مصطلحات موضوعية: Hirschsprung disease, Whole genome bisulfte sequencing, DNA methylation, Enteric nervous system development, Epigenetic regulation, Neural crest, CpG islands, Genome, Enfermedad de hirschsprung, Secuenciación completa del genoma, Metilación de ADN, Sistema nervioso entérico, Epigenómica, Cresta neural, Islas de CpG, Genoma, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Case-Control Studies, Medical Subject Headings::Persons::Persons::Age Groups::Child::Child, Preschool, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Base Sequence::GC Rich Sequence::CpG Islands, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Methylation, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression Regulation::Epigenesis, Genetic, Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Genetics::Genomics::Epigenomics, Medical Subject Headings::Check Tags::Female, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genotype::Genetic Predisposition to Disease, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Genome, Medical Subject Headings::Diseases::Congenital, Hereditary

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

    Relation: https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-021-01040-6; Villalba-Benito L, López-López D, Torroglosa A, Casimiro-Soriguer CS, Luzón-Toro B, Fernández RM, et al. Genome-wide analysis of DNA methylation in Hirschsprung enteric precursor cells: unraveling the epigenetic landscape of enteric nervous system development. Clin Epigenetics. 2021 Mar 9;13(1):51; http://hdl.handle.net/10668/4394; PMC7942176

  9. 9
    Academic Journal

    المساهمون: González-Borja,I, Goñi,S, Pérez-Sanz,J, Viúdez,A OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain. Alors-Pérez,E, Viyuela-García,C, Sánchez-Frías,ME, Arjona-Sánchez,Á, Castaño,JP Hormones and Cancer Group, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. Alors-Pérez,E, Castaño,JP Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain. Alors-Pérez,E, Castaño,JP Reina Sofia University Hospital, Córdoba, Spain. Alors-Pérez,E, Castaño,JP Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain. Amat,I, Alonso,L, Razquin,S Pathology Department, Complejo Hospitalario de Navarra, Pamplona, Spain. Viyuela-García,C, Arjona-Sánchez,Á Surgery Service, Reina Sofia University Hospital, Córdoba, Spain. Reyes,JC, Ceballos-Chávez,M Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain. Hernández-García,I, Arrazubi,V, Vera,R, Viúdez,A Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona, Spain. Sánchez-Frías,ME Pathology Service, Reina Sofia University Hospital, Córdoba, Spain. Santamaría,E, Fernández-Irigoyen,J Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain. Viúdez,A Medical Affairs Services, ICON plc, North Wales, PA, United States., This work was funded by grants from the Department of Health from the Government of Navarra (Ref. 008-2018), REFBIO II Pyrenees Biomedical Network from Programa INTERREG V-A España-Francia-Andorra (Ref. BMK_PANC) and Sociedad Española de Oncología Médica (SEOM) to AV. IG-B was supported by a predoctoral fellowship from the Department of Economic Development Government of Navarre Ayudas para la contratación de doctorandos y doctorandas por empresas y organismos de investigación y difusión de conocimientos: doctorados industriales 2018–2020. Intensification Programme Navarrabiomed 2017-2021 Obra Social La Caixa Fundación Caja Navarra. This work has also been supported by the Spanish Ministry of Economy MINECO, BFU2016-80360-R (to JC) and the Ministry of Science and Innovation MICINN, PID2019- 105201RB-I00 (to JC) . Instituto de Salud Carlos III, co-funded by European Union (ERDF/ESF, Investing in your future) Predoctoral contract FI17/00282 (to EA-P) . Junta de Andalucía (BIO-0139), GETNE2016 and GETNE2019 Research grants (to JC), and CIBERobn.

    مصطلحات موضوعية: Pancreatic ductal adenocarcinoma (PDAC), DNA methylation, Checkpoint with forkhead and ring finger domains (CHFR), Methylation, Immunohistochemistry (IHC), Carcinoma ductal pancreático, Metilación de ADN, Metilación, Inmunohistoquímica, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Prognosis, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Prognosis::Disease-Free Survival, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Cytological Techniques::Histocytochemistry::Immunohistochemistry, Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Combined Modality Therapy::Neoadjuvant Therapy, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Molecular Structure::Molecular Conformation::Protein Conformation::Protein Structure, Tertiary::Protein Interaction Domains and Motifs::RING Finger Domains, Medical Subject Headings::Diseases::Neoplasms::Neoplasms by Histologic Type::Neoplasms, Glandular and Epithelial::Carcinoma::Adenocarcinoma, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Nucleic Acid Amplification Techniques::Polymerase Chain Reaction, Medical Subject Headings::Chemicals and Drugs::Nucleic Acids, Nucleotides, and Nucleosides::Nucleic Acids::RNA::RNA, Messenger, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Sequence Analysis::High-Throughput Nucleotide Sequencing, Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers::Biomarkers, Pharmacological, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Cytological Techniques::Histocytological Preparation Techniques::Staining and Labeling, Medical Subject Headings::Chemicals and Drugs::Organic Chemicals::Hydrocarbons::Hydrocarbons, Cyclic::Hydrocarbons

    وصف الملف: application/pdf

    Relation: https://www.frontiersin.org/articles/10.3389/fmed.2021.720128/full; González-Borja I, Alors-Pérez E, Amat I, Alonso L, Viyuela-García C, Goñi S, et al. Deciphering CHFR Role in Pancreatic Ductal Adenocarcinoma. Front Med. 2021 Nov 19;8:720128; http://hdl.handle.net/10668/3996; PMC8639583

  10. 10
    Academic Journal

    المساهمون: Flook,M, Escalera-Balsera,A, Gallego-Martinez,A, Espinosa-Sanchez,JM, Lopez-Escamez,JA Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, Granada, Spain. Flook,M, Lopez-Escamez,JA Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain. Flook,M, Lopez-Escamez,JA Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain. Aran,I Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain. Soto-Varela,A Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain. Lopez-Escamez,JA Division of Otolaryngology, Department of Surgery, University of Granada, Granada, Spain., This work was supported by PI17/1644 grant from ISCIII by FEDER Funds from the EU.MF is funded by F18/00228 grant from ISCIII by FEDER Funds from the EU. AEB is funded by the EU’s Horizon 2020 Research and Innovation Programme, Grant Agreement Number 848261.

    مصطلحات موضوعية: Meniere disease, Cytokines, WGBS, Hearing loss, DNA methylation, Enfermedad de Meniere, Citocinas, Secuenciación completa del genoma, Pérdida auditiva, Metilación de ADN, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice, Medical Subject Headings::Organisms::Eukaryota::Animals, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Molecular Structure::Base Sequence::GC Rich Sequence::CpG Islands, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Methylation, Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Amino Acids::Amino Acids, Acidic::Aspartic Acid::N-Methylaspartate, Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Computational Biology, Medical Subject Headings::Diseases::Otorhinolaryngologic Diseases::Ear Diseases::Labyrinth Diseases::Endolymphatic Hydrops::Meniere Disease, Medical Subject Headings::Phenomena and Processes::Musculoskeletal and Neural Physiological Phenomena::Nervous System Physiological Phenomena::Membrane Potentials::Synaptic Potentials::Excitatory Postsynaptic Potentials, Medical Subject Headings::Diseases::Otorhinolaryngologic Diseases::Ear Diseases::Hearing Disorders::Hearing Loss, Acidic::Glutamates, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Phenotype, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Base Sequence::Regulatory Sequences, Nucleic Acid

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet; application/vnd.ms-excel

    Relation: https://www.mdpi.com/2227-9059/9/11/1530/htm; Flook M, Escalera-Balsera A, Gallego-Martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A, et al. DNA Methylation Signature in Mononuclear Cells and Proinflammatory Cytokines May Define Molecular Subtypes in Sporadic Meniere Disease. Biomedicines. 2021 Oct 25;9(11):1530; http://hdl.handle.net/10668/4116; PMC8615058

  11. 11
    Dissertation/ Thesis

    المؤلفون: Iza Rodríguez, Shirley Natali

    المساهمون: Yunis Londoño, Juan José, Ospina Lagos, Sandra Yaneth, Patología Molecular

    جغرافية الموضوع: Colombia

    وصف الملف: 96 páginas; application/pdf

    Relation: Ali, N., Gillespie, S., & Laney, D. (2018). Treatment of Depression in Adults with Fabry Disease. JIMD Reports, 38, 13-21. https://doi.org/10.1007/8904_2017_21; Allen, R. C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M., & Belmont, J. W. (1992). Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. American Journal of Human Genetics, 51(6), 1229-1239.; Al-Obaide, M., Al-Obaidi, I., & Vasylyeva, T. (2020). Unexplored regulatory sequences of divergently paired GLA and HNRNPH2 loci pertinent to Fabry disease in human kidney and skin cells: Presence of an active bidirectional promoter. Experimental and Therapeutic Medicine, 21(2), 154. https://doi.org/10.3892/etm.2020.9586; Alroy, J., Sabnis, S., & Kopp, J. B. (2002). Renal Pathology in Fabry Disease. Journal of the American Society of Nephrology, 13(suppl 2), S134-S138. https://doi.org/10.1097/01.ASN.0000016684.07368.75; Amodio, F., Caiazza, M., Monda, E., Rubino, M., Capodicasa, L., Chiosi, F., Simonelli, V., Dongiglio, F., Fimiani, F., Pepe, N., Chimenti, C., Calabrò, P., & Limongelli, G. (2022). An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules, 12(10), 1460. https://doi.org/10.3390/biom12101460; Amos-Landgraf, J. M., Cottle, A., Plenge, R. M., Friez, M., Schwartz, C. E., Longshore, J., & Willard, H. F. (2006). X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. American Journal of Human Genetics, 79(3), 493-499. https://doi.org/10.1086/507565; Andonian, C., Beckmann, J., Mayer, O., Ewert, P., Freiberger, A., Huber, M., Kaemmerer, H., Kurschat, C., Lagler, F., Nagdyman, N., Pieper, L., Regenbogen, C., & Freilinger, S. (2022). Quality of life in patients with Fabry’s disease: A cross-sectional study of 86 adults. Cardiovascular Diagnosis and Therapy, 12(4), Article 4. https://doi.org/10.21037/cdt-22-215; Arends, M., Hollak, C. E. M., & Biegstraaten, M. (2015). Quality of life in patients with Fabry disease: A systematic review of the literature. Orphanet Journal of Rare Diseases, 10, 77. https://doi.org/10.1186/s13023-015-0296-8; Arends, M., Wanner, C., Hughes, D., Mehta, A., Oder, D., Watkinson, O. T., Elliott, P. M., Linthorst, G. E., Wijburg, F. A., Biegstraaten, M., & Hollak, C. E. (2017). Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. Journal of the American Society of Nephrology : JASN, 28(5), 1631-1641. https://doi.org/10.1681/ASN.2016090964; Ashley, G. A., Shabbeer, J., Yasuda, M., Eng, C. M., & Desnick, R. J. (2001). Fabry disease: Twenty novel α-galactosidase A mutations causing the classical phenotype. Journal of Human Genetics, 46(4), 192-196. https://doi.org/10.1007/s100380170088; Ashton-Prolla, P., Tong, B., Shabbeer, J., Astrin, K. H., Eng, C. M., & Desnick, R. J. (2000). Fabry disease: Twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 48(4), 227-235.; Auray-Blais, C., Lavoie, P., Abaoui, M., Côté, A.-M., Boutin, M., Akbari, A., Levin, A., Mac-Way, F., & TR Clarke, J. (2020). High-risk screening for Fabry disease in a Canadian cohort of chronic kidney disease patients. Clinica Chimica Acta, 501, 234-240. https://doi.org/10.1016/j.cca.2019.10.045; Avner, P., & Heard, E. (2001). X-chromosome inactivation: Counting, choice and initiation. Nature Reviews Genetics, 2(1), 59-67. https://doi.org/10.1038/35047580; Azevedo, O., Cordeiro, F., Gago, M. F., Miltenberger-Miltenyi, G., Ferreira, C., Sousa, N., & Cunha, D. (2021). Fabry Disease and the Heart: A Comprehensive Review. International Journal of Molecular Sciences, 22(9), 4434. https://doi.org/10.3390/ijms22094434; Azofeifa, J., Waldherr, R., & Cremer, M. (1996). X-chromosome methylation ratios as indicators of chromosomal activity: Evidence of intraindividual divergencies among tissues of different embryonal origin. Human Genetics, 97(3), 330-333. https://doi.org/10.1007/BF02185765; Baehner, F., Kampmann, C., Whybra, C., Miebach, E., Wiethoff, C. M., & Beck, M. (2003). Enzyme replacement therapy in heterozygous females with Fabry disease: Results of a phase IIIB study. Journal of Inherited Metabolic Disease, 26(7), 617-627. https://doi.org/10.1023/b:boli.0000005658.14563.77; Balaton, B. P., & Brown, C. J. (2021). Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics & Chromatin, 14(1), 30. https://doi.org/10.1186/s13072-021-00404-9; Balaton, B. P., Cotton, A. M., & Brown, C. J. (2015). Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biology of Sex Differences, 6(1), 35. https://doi.org/10.1186/s13293-015-0053-7; Balaton, B. P., Fornes, O., Wasserman, W. W., & Brown, C. J. (2021). Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics & Chromatin, 14(1), 12. https://doi.org/10.1186/s13072-021-00386-8; Barros de Andrade E Sousa, L., Jonkers, I., Syx, L., Dunkel, I., Chaumeil, J., Picard, C., Foret, B., Chen, C.-J., Lis, J. T., Heard, E., Schulz, E. G., & Marsico, A. (2019). Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Research, 29(7), 1087-1099. https://doi.org/10.1101/gr.245027.118; Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102; Bishop, D. F., & Desnick, R. J. (1981). Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. The Journal of Biological Chemistry, 256(3), 1307-1316.; Bock, C., Walter, J., Paulsen, M., & Lengauer, T. (2007). CpG Island Mapping by Epigenome Prediction. PLoS Computational Biology, 3(6), e110. https://doi.org/10.1371/journal.pcbi.0030110; Bolduc, V., Chagnon, P., Provost, S., Dubé, M.-P., Belisle, C., Gingras, M., Mollica, L., & Busque, L. (2008). No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. Journal of Clinical Investigation, 118(1), 333-341. https://doi.org/10.1172/JCI33166; Cairns, T., & Wanner, C. (2019). Will the FAbry STabilization indEX make its way to everyday clinical practice? Clinical Kidney Journal, 12(1), 61-64. https://doi.org/10.1093/ckj/sfy126; Cammarata, G., Fatuzzo, P., Rodolico, M. S., Colomba, P., Sicurella, L., Iemolo, F., Zizzo, C., Alessandro, R., Bartolotta, C., Duro, G., & Monte, I. (2015). High Variability of Fabry Disease Manifestations in an Extended Italian Family. BioMed Research International, 2015(1), 504784. https://doi.org/10.1155/2015/504784; Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400-404. https://doi.org/10.1038/nature03479; Chen, C.-Y., Shi, W., Balaton, B. P., Matthews, A. M., Li, Y., Arenillas, D. J., Mathelier, A., Itoh, M., Kawaji, H., Lassmann, T., Hayashizaki, Y., Carninci, P., Forrest, A. R. R., Brown, C. J., & Wasserman, W. W. (2016). YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Scientific Reports, 6, 37324. https://doi.org/10.1038/srep37324; Chen, S., Francioli, L. C., Goodrich, J. K., Collins, R. L., Kanai, M., Wang, Q., Alföldi, J., Watts, N. A., Vittal, C., Gauthier, L. D., Poterba, T., Wilson, M. W., Tarasova, Y., Phu, W., Grant, R., Yohannes, M. T., Koenig, Z., Farjoun, Y., Banks, E., … Genome Aggregation Database Consortium. (2024). A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625(7993), 92-100. https://doi.org/10.1038/s41586-023-06045-0; Chu, C., Zhang, Q. C., da Rocha, S. T., Flynn, R. A., Bharadwaj, M., Calabrese, J. M., Magnuson, T., Heard, E., & Chang, H. Y. (2015). Systematic discovery of Xist RNA binding proteins. Cell, 161(2), 404-416. https://doi.org/10.1016/j.cell.2015.03.025; Cotton, A. M., Lam, L., Affleck, J. G., Wilson, I. M., Peñaherrera, M. S., McFadden, D. E., Kobor, M. S., Lam, W. L., Robinson, W. P., & Brown, C. J. (2011). Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Human Genetics, 130(2), 187-201. https://doi.org/10.1007/s00439-011-1007-8; Cotton, A. M., Price, E. M., Jones, M. J., Balaton, B. P., Kobor, M. S., & Brown, C. J. (2015). Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Human Molecular Genetics, 24(6), 1528-1539. https://doi.org/10.1093/hmg/ddu564; da Paz, O. T., Lacerda, R. C. T., & de Andrade, L. G. M. (2023). Genetic and phenotypic profile of Fabry disease in the population of Vale do Paraiba and Eastern São Paulo. Jornal Brasileiro de Nefrologia, 45(4), 424-439. https://doi.org/10.1590/2175-8239-JBN-2022-0107en; De Riso, G., Cuomo, M., Di Risi, T., Della Monica, R., Buonaiuto, M., Costabile, D., Pisani, A., Cocozza, S., & Chiariotti, L. (2020). Ultra-Deep DNA Methylation Analysis of X-Linked Genes: GLA and AR as Model Genes. Genes, 11(6), 620.; Deegan, P. B., Bähner, F., Barba, M., Hughes, D. A., & Beck, M. (2006). Fabry disease in females: Clinical characteristics and effects of enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11591/; Denoulet, M., Brulé, M., Anquez, F., Vincent, A., Schnipper, J., Adriaenssens, E., Toillon, R.-A., Le Bourhis, X., & Lagadec, C. (2023). ABSP: An automated R tool to efficiently analyze region-specific CpG methylation from bisulfite sequencing PCR. Bioinformatics (Oxford, England), 39(1), btad008. https://doi.org/10.1093/bioinformatics/btad008; Desnick, R. J. (2020). Chapter 42 - Fabry disease: α-galactosidase A deficiency. En R. N. Rosenberg & J. M. Pascual (Eds.), Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Sixth Edition) (pp. 575-587). Academic Press. https://doi.org/10.1016/B978-0-12-813955-4.00042-8; Desnick, R. J., Ioannou, Y. A., & Eng, C. M. (2019). α-Galactosidase A Deficiency: Fabry Disease. En D. L. Valle, S. Antonarakis, A. Ballabio, A. L. Beaudet, & G. A. Mitchell (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease (1-Book, Section). McGraw-Hill Education. ommbid.mhmedical.com/content.aspx?aid=1181466273; Di Risi, T., Vinciguerra, R., Cuomo, M., Della Monica, R., Riccio, E., Cocozza, S., Imbriaco, M., Duro, G., Pisani, A., & Chiariotti, L. (2021). DNA methylation impact on Fabry disease. Clinical Epigenetics, 13(1), 24. https://doi.org/10.1186/s13148-021-01019-3; Dossin, F., & Heard, E. (2021). The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harbor Perspectives in Biology, a040196. https://doi.org/10.1101/cshperspect.a040196; Duncan, E. J., Gluckman, P. D., & Dearden, P. K. (2014). Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 322(4), 208-220. https://doi.org/10.1002/jez.b.22571; Echevarria, L., Benistan, K., Toussaint, A., Dubourg, O., Hagege, A. A., Eladari, D., Jabbour, F., Beldjord, C., De Mazancourt, P., & Germain, D. P. (2016). X-chromosome inactivation in female patients with Fabry disease. Clinical Genetics, 89(1), 44-54. https://doi.org/10.1111/cge.12613; Effraimidis, G., Rasmussen, Å. K., Dunoe, M., Hasholt, L. F., Wibrand, F., Sorensen, S. S., Lund, A. M., Kober, L., Bundgaard, H., Yazdanfard, P. D. W., Oturai, P., Larsen, V. A., Fraga de Abreu, V. H., Enevoldsen, L. H., Kristensen, T., Svenstrup, K., Bille, M. B., Arif, F., Mogensen, M., … Feldt-Rasmussen, U. (2022). Systematic cascade screening in the Danish Fabry Disease Centre: 20 years of a national single-centre experience. PloS One, 17(11), e0277767. https://doi.org/10.1371/journal.pone.0277767; El Dib, R., Gomaa, H., Carvalho, R. P., Camargo, S. E., Bazan, R., Barretti, P., & Barreto, F. C. (2016). Enzyme replacement therapy for Anderson‐Fabry disease. The Cochrane Database of Systematic Reviews, 2016(7), CD006663. https://doi.org/10.1002/14651858.CD006663.pub4; Elliott, P. M., Kindler, H., Shah, J. S., Sachdev, B., Rimoldi, O. E., Thaman, R., Tome, M. T., McKenna, W. J., Lee, P., & Camici, P. G. (2006). Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart (British Cardiac Society), 92(3), 357-360. https://doi.org/10.1136/hrt.2004.054015; Eng, C. M., Fletcher, J., Wilcox, W. R., Waldek, S., Scott, C. R., Sillence, D. O., Breunig, F., Charrow, J., Germain, D. P., Nicholls, K., & Banikazemi, M. (2007). Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. Journal of Inherited Metabolic Disease, 30(2), 184-192. https://doi.org/10.1007/s10545-007-0521-2; Eng, C. M., Germain, D. P., Banikazemi, M., Warnock, D. G., Wanner, C., Hopkin, R. J., Bultas, J., Lee, P., Sims, K., Brodie, S. E., Pastores, G. M., Strotmann, J. M., & Wilcox, W. R. (2006). Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genetics in Medicine, 8(9), 539-548. https://doi.org/10.1097/01.gim.0000237866.70357.c6; Ezgu, F., Alpsoy, E., Bicik Bahcebasi, Z., Kasapcopur, O., Palamar, M., Onay, H., Ozdemir, B. H., Topcuoglu, M. A., & Tufekcioglu, O. (2022). Expert opinion on the recognition, diagnosis and management of children and adults with Fabry disease: A multidisciplinary Turkey perspective. Orphanet Journal of Rare Diseases, 17(1), 90. https://doi.org/10.1186/s13023-022-02215-x; Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C. A.-K., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., … Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics: MCP, 13(2), 397-406. https://doi.org/10.1074/mcp.M113.035600; Fall, B., Scott, C. R., Mauer, M., Shankland, S., Pippin, J., Jefferson, J. A., Wallace, E., Warnock, D., & Najafian, B. (2016). Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLOS ONE, 11(12), e0168346. https://doi.org/10.1371/journal.pone.0168346; Felis, A., Whitlow, M., Kraus, A., Warnock, D. G., & Wallace, E. (2020). Current and Investigational Therapeutics for Fabry Disease. Kidney International Reports, 5(4), 407-413. https://doi.org/10.1016/j.ekir.2019.11.013; Fellgiebel, A., Müller, M. J., & Ginsberg, L. (2006). CNS manifestations of Fabry’s disease. The Lancet Neurology, 5(9), 791-795. https://doi.org/10.1016/S1474-4422(06)70548-8; Ferreira, S., Reguenga, C., & Oliveira, J. P. (2015). The Modulatory Effects of the Polymorphisms in GLA 5′-Untranslated Region Upon Gene Expression Are Cell-Type Specific. JIMD Reports, 23, 27-34. https://doi.org/10.1007/8904_2015_424; Ferri, L., Guido, C., la Marca, G., Malvagia, S., Cavicchi, C., Fiumara, A., Barone, R., Parini, R., Antuzzi, D., Feliciani, C., Zampetti, A., Manna, R., Giglio, S., Della Valle, C. M., Wu, X., Valenzano, K. J., Benjamin, R., Donati, M. A., Guerrini, R., … Morrone, A. (2012). Fabry disease: Polymorphic haplotypes and a novel missense mutation in the GLA gene. Clinical Genetics, 81(3), 224-233. https://doi.org/10.1111/j.1399-0004.2011.01689.x; Fitzmaurice, T. F., Desnick, R. J., & Bishop, D. F. (1997). Human alpha-galactosidase A: High plasma activity expressed by the -30G-->A allele. Journal of Inherited Metabolic Disease, 20(5), 643-657. https://doi.org/10.1023/a:1005366224351; Fuller, M., Mellett, N., Hein, L. K., Brooks, D. A., & Meikle, P. J. (2015). Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts. Molecular Genetics and Metabolism, 114(2), 268-273. https://doi.org/10.1016/j.ymgme.2014.11.005; Gal, A. (2010). Molecular Genetics of Fabry Disease and Genotype–Phenotype Correlation. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 3-19). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_1; Galupa, R., & Heard, E. (2015). X-chromosome inactivation: New insights into cis and trans regulation. Current Opinion in Genetics & Development, 31, 57-66. https://doi.org/10.1016/j.gde.2015.04.002; Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196(2), 261-282. https://doi.org/10.1016/0022-2836(87)90689-9; Garieri, M., Stamoulis, G., Blanc, X., Falconnet, E., Ribaux, P., Borel, C., Santoni, F., & Antonarakis, S. E. (2018). Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proceedings of the National Academy of Sciences, 115(51), 13015-13020. https://doi.org/10.1073/pnas.1806811115; Germain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5(1), 30. https://doi.org/10.1186/1750-1172-5-30; Germain, D. P., Altarescu, G., Barriales-Villa, R., Mignani, R., Pawlaczyk, K., Pieruzzi, F., Terryn, W., Vujkovac, B., & Ortiz, A. (2022). An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Molecular Genetics and Metabolism, 137(1-2), 49-61. https://doi.org/10.1016/j.ymgme.2022.07.010; Giannini, E. H., Mehta, A. B., Hilz, M. J., Beck, M., Bichet, D. G., Brady, R. O., West, M., Germain, D. P., Wanner, C., Waldek, S., Clarke, J. T. R., Mengel, E., Strotmann, J. M., Warnock, D. G., & Linhart, A. (2010). A validated disease severity scoring system for Fabry disease. Molecular Genetics and Metabolism, 99(3), 283-290. https://doi.org/10.1016/j.ymgme.2009.10.178; Gibas, A. L., Klatt, R., Johnson, J., Clarke, J. T. R., & Katz, J. (2006). A survey of the pain experienced by males and females with Fabry disease. Pain Research & Management, 11(3), 185-192. https://doi.org/10.1155/2006/828964; Gubler, M.-C., Lenoir, G., Grünfeld, J.-P., Ulmann, A., Droz, D., Habib, R., Naizot, C., Adafer, E., & Grandhomme, C. (1978). Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney International, 13(3), 223-235.; Hegemann, S., Hajioff, D., Conti, G., Beck, M., Sunder-Plassmann, G., Widmer, U., Mehta, A., & Keilmann, A. (2006). Hearing loss in Fabry disease: Data from the Fabry Outcome Survey. European Journal of Clinical Investigation, 36(9), 654-662. https://doi.org/10.1111/j.1365-2362.2006.01702.x; Hossain, M. A., Yanagisawa, H., Miyajima, T., Wu, C., Takamura, A., Akiyama, K., Itagaki, R., Eto, K., Iwamoto, T., Yokoi, T., Kurosawa, K., Numabe, H., & Eto, Y. (2017). The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome. Molecular Genetics and Metabolism, 120(3), 173-179. https://doi.org/10.1016/j.ymgme.2017.01.002; Hřebíček, M., & Ledvinová, J. (2010). Biochemistry of Fabry Disease. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 81-104). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_4; Huang, Y., Pastor, W. A., Shen, Y., Tahiliani, M., Liu, D. R., & Rao, A. (2010). The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE, 5(1), e8888. https://doi.org/10.1371/journal.pone.0008888; Hübner, A., Metz, T., Schanzer, A., Greber-Platzer, S., & Item, C. B. (2015). Aberrant DNA methylation of calcitonin receptor in Fabry patients treated with enzyme replacement therapy. Molecular Genetics and Metabolism Reports, 5, 1-2. https://doi.org/10.1016/j.ymgmr.2015.08.002; Hughes, D. A., Ramaswami, U., Barba Romero, M.-Á., Deegan, P., & FOS Investigators. (2010). Age adjusting severity scores for Anderson-Fabry disease. Molecular Genetics and Metabolism, 101(2-3), 219-227. https://doi.org/10.1016/j.ymgme.2010.06.002; Izhar, R., Borriello, M., La Russa, A., Di Paola, R., De, A., Capasso, G., Ingrosso, D., Perna, A. F., & Simeoni, M. (2023). Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations. Genes, 15(1), 37. https://doi.org/10.3390/genes15010037; Joo, J. E., Novakovic, B., Cruickshank, M., Doyle, L. W., Craig, J. M., & Saffery, R. (2014). Human active X-specific DNA methylation events showing stability across time and tissues. European Journal of Human Genetics, 22(12), 1376-1381. https://doi.org/10.1038/ejhg.2014.34; Juchniewicz, P., Piotrowska, E., Kloska, A., Podlacha, M., Mantej, J., Węgrzyn, G., Tukaj, S., & Jakóbkiewicz-Banecka, J. (2021). Dosage Compensation in Females with X-Linked Metabolic Disorders. International Journal of Molecular Sciences, 22(9), 4514. https://doi.org/10.3390/ijms22094514; Kampmann, C., Wiethoff, C. M., Perrot, A., Beck, M., Dietz, R., & Osterziel, K. J. (2002). The heart in Anderson Fabry disease. Zeitschrift Für Kardiologie, 91(10), 786-795. https://doi.org/10.1007/s00392-002-0848-5; Kampmann, C., Wiethoff, C. M., Whybra, C., Baehner, F. A., Mengel, E., & Beck, M. (2008). Cardiac manifestations of Anderson-Fabry disease in children and adolescents. Acta Paediatrica, 97(4), 463-469. https://doi.org/10.1111/j.1651-2227.2008.00700.x; Ke, X., & Collins, A. (2003). CpG Islands in Human X-Inactivation. Annals of Human Genetics, 67(3), 242-249. https://doi.org/10.1046/j.1469-1809.2003.00038.x; Keilmann, A., Hajioff, D., Ramaswami, U., & Investigators, on behalf of the F. (2009). Ear symptoms in children with Fabry disease: Data from the Fabry Outcome Survey. Journal of Inherited Metabolic Disease, 32(6), 739. https://doi.org/10.1007/s10545-009-1290-x; Keilmann, A., Hegemann, S., Conti, G., & Hajioff, D. (2006). Fabry disease and the ear. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11606/; Keshav, S. (2006). Gastrointestinal manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11570/; Khan, S. A., & Theunissen, T. W. (2023). Modeling X-chromosome inactivation and reactivation during human development. Current Opinion in Genetics & Development, 82, 102096. https://doi.org/10.1016/j.gde.2023.102096; Kobayashi, M., Ohashi, T., Sakuma, M., Ida, H., & Eto, Y. (2008). Clinical manifestations and natural history of Japanese heterozygous females with Fabry disease. Journal of Inherited Metabolic Disease, 31(S3), 483-487. https://doi.org/10.1007/s10545-007-0740-6; Kok, K., Zwiers, K. C., Boot, R. G., Overkleeft, H. S., Aerts, J. M. F. G., & Artola, M. (2021). Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules, 11(2), 271. https://doi.org/10.3390/biom11020271; Kolter, T., & Sandhoff, K. (2006). Sphingolipid metabolism diseases. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(12), 2057-2079. https://doi.org/10.1016/j.bbamem.2006.05.027; Körver, S., Geurtsen, G. J., Hollak, C. E. M., van Schaik, I. N., Longo, M. G. F., Lima, M. R., Vedolin, L., Dijkgraaf, M. G. W., & Langeveld, M. (2020). Depressive symptoms in Fabry disease: The importance of coping, subjective health perception and pain. Orphanet Journal of Rare Diseases, 15(1), 28. https://doi.org/10.1186/s13023-020-1307-y; Kristensen, L. S., Mikeska, T., Krypuy, M., & Dobrovic, A. (2008). Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): High-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Research, 36(7), e42. https://doi.org/10.1093/nar/gkn113; Kwan, D., Rudelli, M. D., Germain, D., Garman, S. C., Grace, M. E., Nazarenko, I., Dobrovolny, R., Yasuda, M., & Desnick, R. J. (2007). Fabry Disease: Identification and Structural Analysis of 34 Novel -Galactosidase A Mutations Causing Fabry Disease. Am Soc Hum Genet. https://www.ashg.org/wp-content/uploads/2020/07/2007-allabstracts.pdf; Laney, D. A., Peck, D. S., Atherton, A. M., Manwaring, L. P., Christensen, K. M., Shankar, S. P., Grange, D. K., Wilcox, W. R., & Hopkin, R. J. (2015). Fabry disease in infancy and early childhood: A systematic literature review. Genetics in Medicine, 17(5), 323-330. https://doi.org/10.1038/gim.2014.120; Larralde, M., Boggio, P., Amartino, H., & Chamoles, N. (2004). Fabry Disease: A Study of 6 Hemizygous Men and 5 Heterozygous Women With Emphasis on Dermatologic Manifestations. Archives of Dermatology, 140(12). https://doi.org/10.1001/archderm.140.12.1440; Lenders, M., & Brand, E. (2020). FAbry STabilization indEX (FASTEX): Clinical evaluation of disease progression in Fabry patients. Molecular Genetics and Metabolism, 129(2), 142-149. https://doi.org/10.1016/j.ymgme.2019.12.010; Li, L.-C., & Dahiya, R. (2002). MethPrimer: Designing primers for methylation PCRs. Bioinformatics (Oxford, England), 18(11), 1427-1431. https://doi.org/10.1093/bioinformatics/18.11.1427; Li, Y., & Tollefsbol, T. O. (2011). DNA methylation detection: Bisulfite genomic sequencing analysis. Methods in molecular biology (Clifton, N.J.), 791, 11-21. https://doi.org/10.1007/978-1-61779-316-5_2; Lidove, O., Jaussaud, R., & Aractingi, S. (2006). Dermatological and soft-tissue manifestations of Fabry disease: Characteristics and response to enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11605/; Lidove, O., Kaminsky, P., Hachulla, E., Leguy-Seguin, V., Lavigne, C., Marie, I., Maillot, F., Serratrice, C., Masseau, A., Chérin, P., Cabane, J., Noel, E., & Investigators, on behalf of the Fim. (2012). Fabry disease ‘The New Great Imposter’: Results of the French Observatoire in Internal Medicine Departments (FIMeD). Clinical Genetics, 81(6), 571-577. https://doi.org/10.1111/j.1399-0004.2011.01718.x; Linhart, A. (2006). The heart in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11576/; Linhart, A., Germain, D. P., Olivotto, I., Akhtar, M. M., Anastasakis, A., Hughes, D., Namdar, M., Pieroni, M., Hagège, A., Cecchi, F., Gimeno, J. R., Limongelli, G., & Elliott, P. (2020). An expert consensus document on the management of cardiovascular manifestations of Fabry disease. European Journal of Heart Failure, 22(7), 1076-1096. https://doi.org/10.1002/ejhf.1960; Luciano, C. A., Russell, J. W., Banerjee, T. K., Quirk, J. M., Scott, L. J. C., Dambrosia, J. M., Barton, N. W., & Schiffmann, R. (2002). Physiological characterization of neuropathy in Fabry’s disease. Muscle & Nerve, 26(5), 622-629. https://doi.org/10.1002/mus.10236; MacDermot, K. D. (2001). Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. Journal of Medical Genetics, 38(11), 750-760. https://doi.org/10.1136/jmg.38.11.750; Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276-W279. https://doi.org/10.1093/nar/gkac240; Maier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2006). Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatrica (Oslo, Norway: 1992). Supplement, 95(451), 30-38. https://doi.org/10.1080/08035320600618809; Maier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2007). Disease manifestations and X inactivation in heterozygous females with Fabry disease: X inactivation in heterozygous females with Fabry disease. Acta Paediatrica, 95, 30-38. https://doi.org/10.1111/j.1651-2227.2006.tb02386.x; McCafferty, E. H., & Scott, L. J. (2019). Migalastat: A review in Fabry disease. Drugs, 79(5), 543-554.; Mehta, A., Clarke, J. T., Giugliani, R., Elliott, P., Linhart, A., Beck, M., & Sunder-Plassmann, G. (2009). Natural course of Fabry disease: Changing pattern of causes of death in FOS–Fabry Outcome Survey. Journal of medical genetics, 46(8), 548-552.; Mehta, A., Ricci, R., Widmer, U., Dehout, F., Garcia de Lorenzo, A., Kampmann, C., Linhart, A., Sunder-Plassmann, G., Ries, M., & Beck, M. (2004). Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. European Journal of Clinical Investigation, 34(3), 236-242. https://doi.org/10.1111/j.1365-2362.2004.01309.x; Mehta, A., West, M. L., Pintos-Morell, G., Reisin, R., Nicholls, K., Figuera, L. E., Parini, R., Carvalho, L. R., Kampmann, C., Pastores, G. M., & Lidove, O. (2010). Therapeutic goals in the treatment of Fabry disease. Genetics in Medicine, 12(11), 713-720. https://doi.org/10.1097/GIM.0b013e3181f6e676; Mehta, A., & Widmer, U. (2006). Natural history of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11572/; Mendizabal, I., & Yi, S. V. (2017). Diversity of Human CpG Islands. En V. Patel & V. Preedy (Eds.), Handbook of Nutrition, Diet, and Epigenetics (pp. 1-16). Springer International Publishing. https://doi.org/10.1007/978-3-319-31143-2_67-1; Mignani, R., Pieruzzi, F., Berri, F., Burlina, A., Chinea, B., Gallieni, M., Pieroni, M., Salviati, A., & Spada, M. (2016). FAbry STabilization indEX (FASTEX): An innovative tool for the assessment of clinical stabilization in Fabry disease. Clinical Kidney Journal, 9(5), 739-747. https://doi.org/10.1093/ckj/sfw082; Miller, A. P., & Willard, H. F. (1998). Chromosomal basis of X chromosome inactivation: Identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8709-8714.; Minks, J., Robinson, W. P., & Brown, C. J. (2008). A skewed view of X chromosome inactivation. Journal of Clinical Investigation, 118(1), 20-23. https://doi.org/10.1172/JCI34470; Möhrenschlager, M., Braun-Falco, M., Ring, J., & Abeck, D. (2003). Fabry Disease: Recognition and Management of Cutaneous Manifestations. American Journal of Clinical Dermatology, 4(3), 189-196. https://doi.org/10.2165/00128071-200304030-00005; Moindrot, B., & Brockdorff, N. (2016). RNA binding proteins implicated in Xist-mediated chromosome silencing. Seminars in Cell & Developmental Biology, 56, 58-70. https://doi.org/10.1016/j.semcdb.2016.01.029; Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), Article 1. https://doi.org/10.1038/npp.2012.112; Morris, D. A., Blaschke, D., Canaan-Kühl, S., Krebs, A., Knobloch, G., Walter, T. C., & Haverkamp, W. (2015). Global cardiac alterations detected by speckle-tracking echocardiography in Fabry disease: Left ventricular, right ventricular, and left atrial dysfunction are common and linked to worse symptomatic status. The International Journal of Cardiovascular Imaging, 31(2), 301-313. https://doi.org/10.1007/s10554-014-0551-4; Muhr, J., Arbor, T. C., & Ackerman, K. M. (2024). Embryology, Gastrulation. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554394/; Müller, M. J. (2006). Neuropsychiatric and psychosocial aspects of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11618/; Nassar, L. R., Barber, G. P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J. N., Hinrichs, A. S., Lee, B. T., Lee, C. M., Muthuraman, P., Nguy, B., Pereira, T., Nejad, P., Perez, G., Raney, B. J., Schmelter, D., Speir, M. L., … Kent, W. J. (2023). The UCSC Genome Browser database: 2023 update. Nucleic Acids Research, 51(D1), D1188-D1195. https://doi.org/10.1093/nar/gkac1072; Navarro-Cobos, M. J., Balaton, B. P., & Brown, C. J. (2020). Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 184(2), 226-238. https://doi.org/10.1002/ajmg.c.31800; Okamoto, T., Okada, M., Wada, H., Kanamaru, A., Kakishita, E., Hashimoto, T., & Furuyama, J. (1998). Clonal analysis of hematopoietic cells using a novel polymorphic site of the X chromosome. American Journal of Hematology, 58(4), 263-266. https://doi.org/10.1002/(SICI)1096-8652(199808)58:43.0.CO;2-O; Oliveira, J. P., Ferreira, S., Barceló, J., Gaspar, P., Carvalho, F., Sá Miranda, M. C., & Månsson, J.-E. (2008). Effect of single-nucleotide polymorphisms of the 5’ untranslated region of the human α-galactosidase gene on enzyme activity, and their frequencies in Portuguese caucasians. Journal of Inherited Metabolic Disease, 31 Suppl 2, S247-253. https://doi.org/10.1007/s10545-008-0818-9; Oliveira, J. P., Ferreira, S., Reguenga, C., Carvalho, F., & Månsson, J.-E. (2008). The g.1170C>T polymorphism of the 5’ untranslated region of the human alpha-galactosidase gene is associated with decreased enzyme expression—Evidence from a family study. Journal of Inherited Metabolic Disease, 31 Suppl 2, S405-413. https://doi.org/10.1007/s10545-008-0972-0; Ortiz, A., Germain, D. P., Desnick, R. J., Politei, J., Mauer, M., Burlina, A., Eng, C., Hopkin, R. J., Laney, D., Linhart, A., Waldek, S., Wallace, E., Weidemann, F., & Wilcox, W. R. (2018). Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 123(4), 416-427. https://doi.org/10.1016/j.ymgme.2018.02.014; Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(Web Server issue), W163-W169. https://doi.org/10.1093/nar/gkn198; Peeters, S., Leung, T., Fornes, O., Farkas, R. A., Wasserman, W. W., & Brown, C. J. (2023). Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genomics and Bioinformatics, 5(2), lqad052. https://doi.org/10.1093/nargab/lqad052; Pieroni, M., Moon, J. C., Arbustini, E., Barriales-Villa, R., Camporeale, A., Vujkovac, A. C., Elliott, P. M., Hagege, A., Kuusisto, J., Linhart, A., Nordbeck, P., Olivotto, I., Pietilä-Effati, P., & Namdar, M. (2021). Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology, 77(7), 922-936. https://doi.org/10.1016/j.jacc.2020.12.024; Pintacuda, G., Young, A. N., & Cerase, A. (2017). Function by Structure: Spotlights on Xist Long Non-coding RNA. Frontiers in Molecular Biosciences, 4. https://doi.org/10.3389/fmolb.2017.00090; Polistena, B., Rigante, D., Sicignano, L. L., Verrecchia, E., Manna, R., d’Angela, D., & Spandonaro, F. (2021). Survey about the Quality of Life of Italian Patients with Fabry Disease. Diseases (Basel, Switzerland), 9(4), 72. https://doi.org/10.3390/diseases9040072; Politei, J. M., Durand, C., & Schenone, A. B. (2016). Small Fiber Neuropathy in Fabry Disease: A Review of Pathophysiology and Treatment. Journal of Inborn Errors of Metabolism and Screening, 4, e160002. https://doi.org/10.1177/2326409816661351; Posynick, B. J., & Brown, C. J. (2019). Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 7. https://doi.org/10.3389/fcell.2019.00241; Poveda Gutiérrez, A. G., García Robles, R., & Ayala Ramírez, P. A. (2020). Hallazgos moleculares en mujeres colombianas con sospecha de enfermedad de Fabry entre enero del 2016 y diciembre del 2018 [Pontificia Universidad Javeriana]. https://doi.org/10.11144/Javeriana.10554.45055; Qi, L., & Teschendorff, A. E. (2022). Cell-type heterogeneity: Why we should adjust for it in epigenome and biomarker studies. Clinical Epigenetics, 14(1), 31. https://doi.org/10.1186/s13148-022-01253-3; Ramaswami, U. (2008). Fabry disease during childhood: Clinical manifestations and treatment with agalsidase alfa. Acta Paediatrica, 97(s457), 38-40. https://doi.org/10.1111/j.1651-2227.2008.00658.x; Ramaswami, U., Parini, R., & Pintos-Morell, G. (2006). Natural history and effects of enzyme replacement therapy in children and adolescents with Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11575/; Ramaswami, U., Whybra, C., Parini, R., Pintos-Morell, G., Mehta, A., Sunder-Plassmann, G., Widmer, U., Beck, M., & Behalf Of The Fos European Investig, O. (2006). Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatrica, 95(1), 86-92. https://doi.org/10.1080/08035250500275022; Řeboun, M., Sikora, J., Magner, M., Wiederlechnerová, H., Černá, A., Poupětová, H., Štorkánova, G., Mušálková, D., Dostálová, G., Goláň, L., Linhart, A., & Dvořáková, L. (2022). Pitfalls of X-chromosome inactivation testing in females with Fabry disease. American Journal of Medical Genetics. Part A, 188(7), 1979-1989. https://doi.org/10.1002/ajmg.a.62728; Redonnet-Vernhet, I., Ploos van Amstel, J. K., Jansen, R. P., Wevers, R. A., Salvayre, R., & Levade, T. (1996). Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase A gene. Journal of Medical Genetics, 33(8), 682-688. https://doi.org/10.1136/jmg.33.8.682; Reisin, R., Perrin, A., & García-Pavía, P. (2017). Time delays in the diagnosis and treatment of Fabry disease. International Journal of Clinical Practice, 71(1). https://doi.org/10.1111/ijcp.12914; Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30; Ries, M., Ramaswami, U., Parini, R., Lindblad, B., Whybra, C., Willers, I., Gal, A., & Beck, M. (2003). The early clinical phenotype of Fabry disease: A study on 35 European children and adolescents. European Journal of Pediatrics, 162(11), 767-772. https://doi.org/10.1007/s00431-003-1299-3; Rigoldi, M., Concolino, D., Morrone, A., Pieruzzi, F., Ravaglia, R., Furlan, F., Santus, F., Strisciuglio, P., Torti, G., & Parini, R. (2014). Intrafamilial phenotypic variability in four families with Anderson-Fabry disease. Clinical Genetics, 86(3), 258-263. https://doi.org/10.1111/cge.12261; Rosa Neto, N. S., Bento, J. C. de B., & Pereira, R. M. R. (2020). Depression, sleep disturbances, pain, disability and quality of LIFE in Brazilian Fabry disease patients. Molecular Genetics and Metabolism Reports, 22, 100547. https://doi.org/10.1016/j.ymgmr.2019.100547; Rossanti, R., Nozu, K., Fukunaga, A., Nagano, C., Horinouchi, T., Yamamura, T., Sakakibara, N., Minamikawa, S., Ishiko, S., Aoto, Y., Okada, E., Ninchoji, T., Kato, N., Maruyama, S., Kono, K., Nishi, S., Iijima, K., & Fujii, H. (2021). X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clinical and Experimental Nephrology, 25(11), 1224-1230. https://doi.org/10.1007/s10157-021-02099-4; Rozenfeld, P. A. (2009). Fabry Disease: Treatment and diagnosis. IUBMB Life, 61(11), 1043-1050. https://doi.org/10.1002/iub.257; Sadek, J., Shellhaas, R., Camfield, C. S., Camfield, P. R., & Burley, J. (2004). Psychiatric findings in four female carriers of Fabry disease. Psychiatric Genetics, 14(4), 199-201. https://doi.org/10.1097/00041444-200412000-00006; Saifudeen, Z., Desnick, R. J., & Ehrlich, M. (1995). A mutation in the 5’ untranslated region of the human alpha-galactosidase A gene in high-activity variants inhibits specific protein binding. FEBS Letters, 371(2), 181-184. https://doi.org/10.1016/0014-5793(95)00891-c; Samie, M. A., & Xu, H. (2014). Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 55(6), 995-1009. https://doi.org/10.1194/jlr.R046896; Sayin, B. Y., & Oto, A. (2022). Left Ventricular Hypertrophy: Etiology-Based Therapeutic Options. Cardiology and Therapy, 11(2), 203-230. https://doi.org/10.1007/s40119-022-00260-y; Schaefer, E., Mehta, A., & Gal, A. (2005). Genotype and phenotype in Fabry disease: Analysis of the Fabry Outcome Survey: Genotype and phenotype in Fabry disease. Acta Paediatrica, 94, 87-92. https://doi.org/10.1111/j.1651-2227.2005.tb02119.x; Schiffmann, R., Hughes, D. A., Linthorst, G. E., Ortiz, A., Svarstad, E., Warnock, D. G., West, M. L., Wanner, C., Bichet, D. G., Christensen, E. I., Correa-Rotter, R., Elliott, P. M., Feriozzi, S., Fogo, A. B., Germain, D. P., Hollak, C. E. M., Hopkin, R. J., Johnson, J., Kantola, I., … Walter, J. (2017). Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney International, 91(2), 284-293. https://doi.org/10.1016/j.kint.2016.10.004; Schiffmann, R., & Moore, D. F. (2006). Neurological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11602/; Schiffmann, R., Warnock, D. G., Banikazemi, M., Bultas, J., Linthorst, G. E., Packman, S., Sorensen, S. A., Wilcox, W. R., & Desnick, R. J. (2009). Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrology Dialysis Transplantation, 24(7), 2102-2111. https://doi.org/10.1093/ndt/gfp031; Seroussi, E. (2021). Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing. Genes, 12(2), 283. https://doi.org/10.3390/genes12020283; Shvetsova, E., Sofronova, A., Monajemi, R., Gagalova, K., Draisma, H. H. M., White, S. J., Santen, G. W. E., Chuva de Sousa Lopes, S. M., Heijmans, B. T., van Meurs, J., Jansen, R., Franke, L., Kiełbasa, S. M., den Dunnen, J. T., & ‘t Hoen, P. A. C. (2019). Skewed X-inactivation is common in the general female population. European Journal of Human Genetics, 27(3), Article 3. https://doi.org/10.1038/s41431-018-0291-3; Shyamala, N., Kongettira, C. L., Puranam, K., Kupsal, K., Kummari, R., Padala, C., & Hanumanth, S. R. (2022). In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Scientific Reports, 12, 3574. https://doi.org/10.1038/s41598-022-05198-8; Silva, C. A. B., Moura-Neto, J. A., dos Reis, M. A., Vieira Neto, O. M., & Barreto, F. C. (2021). Renal Manifestations of Fabry Disease: A Narrative Review. Canadian Journal of Kidney Health and Disease, 8, 205435812098562. https://doi.org/10.1177/2054358120985627; Sims, K., Politei, J., Banikazemi, M., & Lee, P. (2009). Stroke in Fabry Disease Frequently Occurs Before Diagnosis and in the Absence of Other Clinical Events: Natural History Data From the Fabry Registry. Stroke, 40(3), 788-794. https://doi.org/10.1161/STROKEAHA.108.526293; Sodi, A., Ioannidis, A., & Pitz, S. (2006). Ophthalmological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11599/; Spada, M., Pagliardini, S., Yasuda, M., Tukel, T., Thiagarajan, G., Sakuraba, H., Ponzone, A., & Desnick, R. J. (2006). High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. The American Journal of Human Genetics, 79(1), 31-40. https://doi.org/10.1086/504601; Street, N. J., Yi, M. S., Bailey, L. A., & Hopkin, R. J. (2006). Comparison of health-related quality of life between heterozygous women with Fabry disease, a healthy control population, and patients with other chronic disease. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 8(6), 346-353. https://doi.org/10.1097/01.gim.0000223545.63012.5a; Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America, 99(6). https://doi.org/10.1073/pnas.052410099; Theda, C., Hwang, S. H., Czajko, A., Loke, Y. J., Leong, P., & Craig, J. M. (2018). Quantitation of the cellular content of saliva and buccal swab samples. Scientific Reports, 8(1), 6944. https://doi.org/10.1038/s41598-018-25311-0; Thurberg, B. L., Fallon, J. T., Mitchell, R., Aretz, T., Gordon, R. E., & O’Callaghan, M. W. (2009). Cardiac microvascular pathology in Fabry disease: Evaluation of endomyocardial biopsies before and after enzyme replacement therapy. Circulation, 119(19), 2561-2567. https://doi.org/10.1161/CIRCULATIONAHA.108.841494; Trimarchi, H., Karl, A., Raña, M. S., Forrester, M., Pomeranz, V., Lombi, F., & Iotti, A. (2013). Initially Nondiagnosed Fabry’s Disease when Electron Microscopy Is Lacking: The Continuing Story of Focal and Segmental Glomerulosclerosis. Case Reports in Nephrology and Urology, 3(1), 51-57. https://doi.org/10.1159/000351516; Tukiainen, T., Villani, A.-C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Lappalainen, T., Aviv Regev, Ardlie, K. G., Hacohen, N., & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550(7675), Article 7675. https://doi.org/10.1038/nature24265; Tusnády, G. E., Simon, I., Váradi, A., & Arányi, T. (2005). BiSearch: Primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research, 33(1), e9. https://doi.org/10.1093/nar/gni012; van den Berg, I. M., Laven, J. S. E., Stevens, M., Jonkers, I., Galjaard, R.-J., Gribnau, J., & van Doorninck, J. H. (2009). X chromosome inactivation is initiated in human preimplantation embryos. American Journal of Human Genetics, 84(6), 771-779. https://doi.org/10.1016/j.ajhg.2009.05.003; Vavouri, T., & Lehner, B. (2012). Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biology, 13(11), R110. https://doi.org/10.1186/gb-2012-13-11-r110; Vieitez, I., Souto-Rodriguez, O., Fernandez-Mosquera, L., San Millan, B., Teijeira, S., Fernandez-Martin, J., Martinez-Sanchez, F., Aldamiz-Echevarria, L. J., Lopez-Rodriguez, M., Navarro, C., & Ortolano, S. (2018). Fabry disease in the Spanish population: Observational study with detection of 77 patients. Orphanet Journal of Rare Diseases, 13(1), 52. https://doi.org/10.1186/s13023-018-0792-8; Viggiano, E., & Politano, L. (2021). X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. International Journal of Molecular Sciences, 22(14), Article 14. https://doi.org/10.3390/ijms22147663; von der Lippe, C., Frich, J. C., Harris, A., & Solbrække, K. N. (2016). Experiences of Being Heterozygous for Fabry Disease: A Qualitative Study. Journal of Genetic Counseling, 25(5), 1085-1092. https://doi.org/10.1007/s10897-016-9941-1; Wainer Katsir, K., & Linial, M. (2019). Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics, 20(1), 201. https://doi.org/10.1186/s12864-019-5507-6; Waldek, S., Patel, M. R., Banikazemi, M., Lemay, R., & Lee, P. (2009). Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 11(11), 790-796. https://doi.org/10.1097/GIM.0b013e3181bb05bb; Wang, R. Y., Lelis, A., Mirocha, J., & Wilcox, W. R. (2007). Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genetics in Medicine, 9(1), 34-45. https://doi.org/10.1097/GIM.0b013e31802d8321; Wang, Z., Willard, H. F., Mukherjee, S., & Furey, T. S. (2006). Evidence of Influence of Genomic DNA Sequence on Human X Chromosome Inactivation. PLOS Computational Biology, 2(9), e113. https://doi.org/10.1371/journal.pcbi.0020113; Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., & Clark, S. J. (2002). Identification and resolution of artifacts in bisulfite sequencing. Methods (San Diego, Calif.), 27(2), 101-107. https://doi.org/10.1016/s1046-2023(02)00060-9; Welford, R. W. D., Mühlemann, A., Garzotti, M., Rickert, V., Groenen, P. M. A., Morand, O., Üçeyler, N., & Probst, M. R. (2018). Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Human Molecular Genetics, 27(19), 3392-3403. https://doi.org/10.1093/hmg/ddy248; Whybra, C., Bähner, F., & Baron, K. (2006). Measurement of disease severity and progression in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11612/; Whybra, C., Kampmann, C., Krummenauer, F., Ries, M., Mengel, E., Miebach, E., Baehner, F., Kim, K., Bajbouj, M., Schwarting, A., Gal, A., & Beck, M. (2004). The Mainz Severity Score Index: A new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clinical Genetics, 65(4), 299-307. https://doi.org/10.1111/j.1399-0004.2004.00219.x; Whybra, C., Kampmann, Chr., Willers, I., Davies, J., Winchester, B., Kriegsmann, J., Brühl, K., Gal, A., Bunge, S., & Beck, M. (2001). Anderson-Fabry disease: Clinical manifestations of disease in female heterozygotes. Journal of Inherited Metabolic Disease, 24(7), 715-724. https://doi.org/10.1023/A:1012993305223; Whybra, C., Miebach, E., Mengel, E., Gal, A., Baron, K., Beck, M., & Kampmann, C. (2009). A 4-year study of the efficacy and tolerability of enzyme replacement therapy with agalsidase alfa in 36 women with Fabry disease. Genetics in Medicine, 11(6), 441-449. https://doi.org/10.1097/GIM.0b013e3181a23bec; Wilkinson, A. L., Zorzan, I., & Rugg-Gunn, P. J. (2023). Epigenetic regulation of early human embryo development. Cell Stem Cell, 30(12), 1569-1584. https://doi.org/10.1016/j.stem.2023.09.010; Wu, J. C., Ho, C. Y., Skali, H., Abichandani, R., Wilcox, W. R., Banikazemi, M., Packman, S., Sims, K., & Solomon, S. D. (2010). Cardiovascular manifestations of Fabry disease: Relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity. European Heart Journal, 31(9), 1088-1097. https://doi.org/10.1093/eurheartj/ehp588; Zar-Kessler, C., Karaa, A., Sims, K. B., Clarke, V., & Kuo, B. (2016). Understanding the gastrointestinal manifestations of Fabry disease: Promoting prompt diagnosis. Therapeutic Advances in Gastroenterology, 9(4), 626-634. https://doi.org/10.1177/1756283X16642936; Zhu, J., He, F., Hu, S., & Yu, J. (2008). On the nature of human housekeeping genes. Trends in Genetics, 24(10), 481-484. https://doi.org/10.1016/j.tig.2008.08.004; https://repositorio.unal.edu.co/handle/unal/87148; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  12. 12
    Dissertation/ Thesis

    المؤلفون: Barrera-Torres, Herman Fredy

    المساهمون: Arboleda Bustos, Gonzalo Humberto, Muerte Celular

    وصف الملف: 88 páginas; application/pdf

    Relation: Anton, L., Brown, A. G., Bartolomei, M. S., & Elovitz, M. A. (2014). Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas. PLOS ONE, 9(6), 100148. https://doi.org/10.1371/journal.pone.0100148; Aquino, E. M., Benton, M. C., Haupt, L. M., Sutherland, H. G., riffiths, L. R. G., & Lea, R. A. (2018). Current Understanding of DNA Methylation and Age-related Disease. OBM Genetics, 2(2), 1–1. https://doi.org/10.21926/obm.genet.1802016; Arboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): Report of three affected sibs. American Journal of Medical Genetics, Part A, 155(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019; Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020a). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of Ageing and Development, 192. https://doi.org/10.1016/j.mad.2020.111360; Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020b). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms Http://Www.Bases.Unal.Edu.Co/Subjects/Databases.Php?Letter=Allof Ageing and Development, 192(September). https://doi.org/10.1016/j.mad.2020.111360; Bergsma, T., & Rogaeva, E. (2020). DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 15, 263310552094222. https://doi.org/10.1177/2633105520942221; Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2), 297–309. https://doi.org/10.1042/BST20110766; Bezprozvanny, I. (2019). Calcium hypothesis of neurodegeneration – an update. Biochemical and Biophysical Research Communications, 520(4), 667. https://doi.org/10.1016/J.BBRC.2019.10.016; Borsig, L., & Läubli, H. (2019). Cell Adhesion During Tumorigenesis and Metastasis. Encyclopedia of Cancer, 307–314. https://doi.org/10.1016/B978-0-12-801238-3.64991-7; Calvanese, V., Lara, E., Kahn, A., & Fraga, M. F. (2009). The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 8(4), 268–276. https://doi.org/10.1016/j.arr.2009.03.004; Carvalho, T. S., & Lussi, A. (2017). Age‐related morphological, histological and functional changes in teeth. Journal of Oral Rehabilitation, 44(4), 291–298. https://doi.org/10.1111/joor.12474; Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P.-C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging, 8(9), 1844–1865. https://doi.org/10.18632/aging.101020; Chen, M., Fang, Y., Liang, M., Zhang, N., Zhang, X., Xu, L., Ren, X., Zhang, Q., Zhou, Y., Peng, S., Yu, J., Zeng, J., & Li, X. (2023). The activation of mTOR signalling modulates DNA methylation by enhancing DNMT1 translation in hepatocellular carcinoma. Journal of Translational Medicine, 21(1), 1–17. https://doi.org/10.1186/S12967-023-04103-9/FIGURES/8; Choukrallah, M. A., & Matthias, P. (2014). The interplay between chromatin and transcription factor networks during B cell development: Who pulls the trigger first? Frontiers in Immunology, 5(APR), 1–11. https://doi.org/10.3389/fimmu.2014.00156; Daniel, F. I., Cherubini, K., Yurgel, L. S., De Figueiredo, M. A. Z., & Salum, F. G. (2011). The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer, 117(4), 677–687. https://doi.org/10.1002/cncr.25482; Dutta, S., Goodrich, J. M., Dolinoy, D. C., & Ruden, D. M. (2023). Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes 2024, Vol. 15, Page 16, 15(1), 16. https://doi.org/10.3390/GENES15010016; Fennell, L., Dumenil, T., Wockner, L., Hartel, G., Nones, K., Bond, C., Borowsky, J., Liu, C., McKeone, D., Bowdler, L., Montgomery, G., Klein, K., Hoffmann, I., Patch, A. M., Kazakoff, S., Pearson, J., Waddell, N., Wirapati, P., Lochhead, P., … Whitehall, V. (2019). Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cmgh, 8(2), 269–290. https://doi.org/10.1016/j.jcmgh.2019.04.002; Funes, S. C., Fernández-Fierro, A., Rebolledo-Zelada, D., Mackern-Oberti, J. P., & Kalergis, A. M. (2021). Contribution of Dysregulated DNA Methylation to Autoimmunity. International Journal of Molecular Sciences, 22(21), 11892. https://doi.org/10.3390/ijms222111892; Gilbert, H. T. J., & Swift, J. (2019). The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Experimental Cell Research, 378(1), 98–103. https://doi.org/10.1016/j.yexcr.2019.03.002; Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: a premature aging disease caused by LMNA gene mutations. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.arr.2016.06.007.Hutchinson-Gilford; Guastafierro, T., Bacalini, M. G., Marcoccia, A., Gentilini, D., Pisoni, S., Di Blasio, A. M., Corsi, A., Franceschi, C., Raimondo, D., Spanò, A., Garagnani, P., & Bondanini, F. (2017). Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clinical Epigenetics, 9(1), 1–10. https://doi.org/10.1186/s13148-017-0389-4; Han, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell Discovery, 4(1), 40. https://doi.org/10.1038/s41421-018-0044-z; Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016; Hennekam, R. C. M. (2020). Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. European Journal of Medical Genetics, 63(11), 104028. https://doi.org/10.1016/j.ejmg.2020.104028; Hiraide, T., Nakashima, M., Ikeda, T., Tanaka, D., Osaka, H., & Saitsu, H. (2020). Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. Journal of Human Genetics, 65(10), 921–925. https://doi.org/10.1038/s10038-020-0786-y; Hodjat, M., Khan, F., & Saadat, K. A. S. M. (2020). Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Research Reviews, 63(July), 101140. https://doi.org/10.1016/j.arr.2020.101140; Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115; Hu, S., Wu, J., Chen, L., & Shan, G. (2012). Signals from noncoding RNAs: Unconventional roles for conventional pol III transcripts. International Journal of Biochemistry and Cell Biology, 44(11), 1847–1851. https://doi.org/10.1016/j.biocel.2012.07.013; Huidobro, C., Fernandez, A. F., & Fraga, M. F. (2013). Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 34(4), 765–781. https://doi.org/10.1016/j.mam.2012.06.006; Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., & Webster, M. (2009). Genome-wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178. https://doi.org/10.1038/ng.298.Genome-wide; Illumina. (2021). MethylationEPIC v1.0 LIMS Product Descriptor File (p. 50).; Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133. https://doi.org/10.1038/nature09303; Ito, T., Kubiura-Ichimaru, M., Murakami, Y., Bogutz, A. B., Lefebvre, L., Suetake, I., Tajima, S., & Tada, M. (2022). DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLOS ONE, 17(1), e0262277. https://doi.org/10.1371/journal.pone.0262277; Jay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American Journal of Medical Genetics, Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960; Jeltsch, A., Ehrenhofer-Murray, A., Jurkowski, T. P., Lyko, F., Reuter, G., Ankri, S., Nellen, W., Schaefer, M., & Helm, M. (2017). Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biology, 14(9), 1108–1123. https://doi.org/10.1080/15476286.2016.1191737; Ji, Y., Xie, Y., Zhang, M., Zhou, J., Peng, L., Zheng, Y., & Shu, S. (2023). Role of SATB2 5’ Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, 7(2), 165–173. https://doi.org/10.14744/ejmo.2023.41377; Jin, B., & Robertson, K. D. (2013). DNA methyltransferases, DNA damage repair, and cancer. Advances in Experimental Medicine and Biology, 754, 3–29. https://doi.org/10.1007/978-1-4419-9967-2_1; Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., Corsi, S., Cohen, H., Felton, S., Bali, R., Horvath, S., & Raj, K. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nature Aging, 2(6), 484–493. https://doi.org/10.1038/s43587-022-00220-0; Kipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. A. (2004). What Can Progeroid Syndromes Tell Us About Human Aging? Science, 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587; Kling, T., & Carén, H. (2019). Methylation Analysis Using Microarrays: Analysis and Interpretation. In Methods in Molecular Biology (Vol. 1908, Issue July, pp. 205–217). Humana Press. https://doi.org/10.1007/978-1-4939-9004-7_14; Koval, A. P., Veniaminova, N. A., & Kramerov, D. A. (2011). Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene, 487(2), 113–117. https://doi.org/10.1016/j.gene.2011.08.001; Kuzmina, N. S., Lapteva, N. S., & Rubanovich, A. V. (2016). Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. Environmental Research, 146, 10–17. https://doi.org/10.1016/j.envres.2015.12.008; Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., Levine, R., McEwan, P., … Chen, Y. J. (2001). Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium (Nature (2001) 409 (860-921)). Nature, 412(6846), 565–566. https://doi.org/10.1038/35087627; Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A., & Robbins, P. D. (2022). Immune Senescence, Immunosenescence and Aging. Frontiers in Aging, 3. https://doi.org/10.3389/fragi.2022.900028; Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. AGING, 10(4). www.aging-us.com; Liu, N., Yang, R., Shi, Y., Chen, L., Liu, Y., Wang, Z., Liu, S., Ouyang, L., Wang, H., Lai, W., Mao, C., Wang, M., Cheng, Y., Liu, S., Wang, X., Zhou, H., Cao, Y., Xiao, D., & Tao, Y. (2020). The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduction and Targeted Therapy 2020 5:1, 5(1), 1–14. https://doi.org/10.1038/s41392-020-00249-w; Liu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell, 19(10). https://doi.org/10.1111/acel.13229; Loaeza-Loaeza, J., Beltran, A. S., & Hernández-Sotelo, D. (2020). Dnmts and impact of cpg content, transcription factors, consensus motifs, lncrnas, and histone marks on dna methylation. In Genes (Vol. 11, Issue 11, pp. 1–19). MDPI AG. https://doi.org/10.3390/genes11111336; López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039; Luo, R., Bai, C., Yang, L., Zheng, Z., Su, G., Gao, G., Wei, Z., Zuo, Y., & Li, G. (2018). Correction to: DNA methylation subpatterns at distinct regulatory regions in human early embryos (Open Biology (2018) 8 (180131) DOI:10.1098/rsob.180131). Open Biology, 8(12), 1–9. https://doi.org/10.1098/rsob.180215; Magalingam, K. B., Somanath, S. D., & Radhakrishnan, A. K. (2023). A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson’s Disease. Experimental Neurobiology, 32(3), 119–132. https://doi.org/10.5607/en22035; Melo dos Santos, L. S., Trombetta-Lima, M., Eggen, B. J. L., & Demaria, M. (2024). Cellular senescence in brain aging and neurodegeneration. In Ageing Research Reviews (Vol. 93). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2023.102141; Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380; Minnerop, M., Kurzwelly, D., Wagner, H., Soehn, A. S., Reichbauer, J., Tao, F., Rattay, T. W., Peitz, M., Rehbach, K., Giorgetti, A., Pyle, A., Thiele, H., Altmüller, J., Timmann, D., Karaca, I., Lennarz, M., Baets, J., Hengel, H., Synofzik, M., … Schüle, R. (2017). Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 140(6), 1561–1578. https://doi.org/10.1093/brain/awx095; Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112; Morris, T., Stirling, L., Feber, A., & Teschendorff, A. (2024). Package ‘ ChAMP .’; Muse, M. E., Titus, A. J., Salas, L. A., Wilkins, O. M., Mullen, C., Gregory, K. J., Schneider, S. S., Crisi, G. M., Jawale, R. M., Otis, C. N., Christensen, B. C., & Arcaro, K. F. (2020). Enrichment of CpG island shore region hypermethylation in epigenetic breast field cancerization. Epigenetics, 15(10), 1093–1106. https://doi.org/10.1080/15592294.2020.1747748; Nelson, R. (2019). POLR3A Identified as Major Locus for Autosomal Recessive Wiedemann-Rautenstrauch Syndrome: New findings show “compelling evidence” that POLR3A mutations underlie the etiology of autosomal-recessive WRS. American Journal of Medical Genetics, Part A, 179(2), 146–147. https://doi.org/10.1002/ajmg.a.61040; Panja, S., Hayati, S., Epsi, N. J., Parrott, J. S., & Mitrofanova, A. (2018). Integrative (epi) Genomic Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate Cancer. EBioMedicine, 31, 110–121. https://doi.org/10.1016/j.ebiom.2018.04.007; Paolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann–Rautenstrauch syndrome: A phenotype analysis. American Journal of Medical Genetics, Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246; Paolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmuller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Muller, C., Novelli, A., … Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of Medical Genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528; Park, J. L., Lee, Y. S., Kunkeaw, N., Kim, S. Y., Kim, I. H., & Lee, Y. S. (2017). Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics, 9(2), 171–187. https://doi.org/10.2217/epi-2016-0108; Proud, C. G. (2019). Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harbor Perspectives in Biology, 11(7). https://doi.org/10.1101/CSHPERSPECT.A033050; Puig, N., & Agrelo, R. (2012). From aging to cancer: a DNA methylation journey. Ageing Research, 3(1), 4. https://doi.org/10.4081/ar.2012.e4; Rautenstrauch, T., Snigula, F., Krieg, T., Gay, S., & Müller, P. K. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101–111. https://doi.org/10.1007/BF00477545; Reale, A., Tagliatesta, S., Zardo, G., & Zampieri, M. (2022). Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mechanisms of Ageing and Development, 206(June), 111695. https://doi.org/10.1016/j.mad.2022.111695; Sakaki, M., Ebihara, Y., Okamura, K., Nakabayashi, K., Igarashi, A., Matsumoto, K., Hata, K., Kobayashi, Y., & Maehara, K. (2017). Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171431; Saneyasu, T., Fukuzo, S., Kitashiro, A., Nagata, K., Honda, K., & Kamisoyama, H. (2019). Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiology and Behavior, 210(August), 112644. https://doi.org/10.1016/j.physbeh.2019.112644; Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H. B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M. B., Li, Z., Shiloh, Y., Opresko, P. L., Egly, J. M., Kirkwood, T., Verdin, E., Bohr, V. A., Cox, L. S., Stevnsner, T., … Fang, E. F. (2022). New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 14(16), 6829–6839. https://doi.org/10.18632/AGING.204248; Silver, B. B., & Nelson, C. M. (2018). The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, 6. https://doi.org/10.3389/fcell.2018.00021; Spangle, J. M., Roberts, T. M., & Zhao, J. J. (2017). The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochimica et Biophysica Acta, 1868(1), 123. https://doi.org/10.1016/J.BBCAN.2017.03.002; Stasenko, D. V., Tatosyan, K. A., Borodulina, O. R., & Kramerov, D. A. (2023). Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes, 14(4), 802. https://doi.org/10.3390/genes14040802; Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 324(5929), 930–935. https://doi.org/10.1126/science.1170116; Temel, S. G., Ergoren, M. C., Manara, E., Paolacci, S., Tuncel, G., Gul, S., & Bertelli, M. (2020). Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann–Rautenstrauch syndrome. European Journal of Human Genetics, 28(12), 1675–1680. https://doi.org/10.1038/s41431-020-0673-1; Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019a). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153; Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019b). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153; Wambach, J. A., Wegner, D. J., Patni, N., Kircher, M., Willing, M. C., Baldridge, D., Xing, C., Agarwal, A. K., Vergano, S. A. S., Patel, C., Grange, D. K., Kenney, A., Najaf, T., Nickerson, D. A., Bamshad, M. J., Cole, F. S., & Garg, A. (2018). Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. American Journal of Human Genetics, 103(6), 968–975. https://doi.org/10.1016/j.ajhg.2018.10.010; Wan, R., Srikaram, P., Guntupalli, V., Hu, C., Chen, Q., & Gao, P. (2023). Cellular senescence in asthma: from pathogenesis to therapeutic challenges. www.thelancet.com; Wang, Q., Xiong, F., Wu, G., Liu, W., Chen, J., Wang, B., & Chen, Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clinical Epigenetics, 14(1), 1–14. https://doi.org/10.1186/s13148-022-01382-9; Wang, Y., Huang, W., Zheng, S., Wang, L., Zhang, L., & Pei, X. (2024). Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Scientific Reports, 14(1), 1422. https://doi.org/10.1038/s41598-024-52087-3; Weidner, C., Lin, Q., Koch, C., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D., Jöckel, K.-H., Erbel, R., Mühleisen, T., Zenke, M., Brümmendorf, T., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24; Welsh, H., Batalha, C. M. P. F., Li, W., Mpye, K. L., Souza-Pinto, N. C., Naslavsky, M. S., & Parra, E. J. (2023). A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clinical Epigenetics, 15(1), 41. https://doi.org/10.1186/s13148-023-01459-z; Wu, X., Chen, W., Lin, F., Huang, Q., Zhong, J., Gao, H., Song, Y., & Liang, H. (2019). DNA methylation profile is a quantitative measure of biological aging in children. Aging, 11(22), 10031–10051. https://doi.org/10.18632/aging.102399; Xiao, F.-H., Wang, H.-T., & Kong, Q.-P. (2019). Dynamic DNA Methylation During Aging: A “Prophet” of Age-Related Outcomes. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00107; Xie, W., Baylin, S. B., & Easwaran, H. (2019). DNA methylation in senescence, aging and cancer Origin of cancer epigenome from cycling aging cells (Vol. 6, Issue 2). www.impactjournals.com/oncoscience/; Yadav, M. L., & Mohapatra, B. (2018). Intergenic. Encyclopedia of Animal Cognition and Behavior, 1–5. https://doi.org/10.1007/978-3-319-47829-6_64-1; Yen, B. L., Hwa, H. L., Hsu, P. J., Chen, P. M., Wang, L. T., Jiang, S. S., Liu, K. J., Sytwu, H. K., & Yen, M. L. (2020). Hla-g expression in human mesenchymal stem cells (Mscs) is related to unique methylation pattern in the proximal promoter as well as gene body dna. International Journal of Molecular Sciences, 21(14), 1–14. https://doi.org/10.3390/ijms21145075; Yuan, T., Jiao, Y., de Jong, S., Ophoff, R. A., Beck, S., & Teschendorff, A. E. (2015). An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging. PLoS Genetics, 11(2), 1–21. https://doi.org/10.1371/journal.pgen.1004996; Yukawa, Y. (2023). Plant Molecular Biology Lab. https://www.nsc.nagoya-cu.ac.jp/~yyuk/e-index.html; Zane, L., Sharma, V., & Misteli, T. (2014). Common features of chromatin in aging and cancer: cause or coincidence? Trends in Cell Biology, 24(11), 686–694. https://doi.org/10.1016/j.tcb.2014.07.001; Zhang, Y., Wang, Y., Luo, M., Xu, F., Lu, Y., Zhou, X., Cui, W., & Miao, L. (2019). Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides, 114(February), 29–37. https://doi.org/10.1016/j.peptides.2019.04.005; Zouali, M. (2021). DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clinical Immunology, 222, 108622. https://doi.org/10.1016/j.clim.2020.108622; Zuo, S., Shi, G., Fan, J., Fan, B., Zhang, X., Liu, S., Hao, Y., Wei, Z., Zhou, X., & Feng, S. (2021). Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 21(1). https://doi.org/10.3892/ETM.2020.9479; https://repositorio.unal.edu.co/handle/unal/86512; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  13. 13
  14. 14
    Academic Journal

    المساهمون: Alvis Gómez, Karim Martina, Arboleda Granados, Humberto, GRUPO DE NEUROCIENCIAS-UNIVERSIDAD NACIONAL DE COLOMBIA

    وصف الملف: application/pdf

    Relation: 1. Bareño Rodríguez CM. Inclusión educativa: fundamental para el tratamiento integral del trastorno del espectro autista (TEA). Univ Nac Colomb. 2015;1–27.; 2. Silva Costa FC, Pfeifer LI. Intervención De Integración Sensorial En Niños Con Trastorno Del Espectro Autista. Rev Chil Ter Ocup [Internet]. 2016;16(1):99–107. Available from: http://www.revistaterapiaocupacional.uchile.cl/index.php/RTO/article/viewFile/41947/44040; 3. Talero-Gutiérrez C, Mario E-PC, Sánchez-Quiñones P, Morales-Rubio G, Vélez-van-Meerbeke A. Trastorno del espectro autista y función ejecutiva. Acta Neurológica Colomb [Internet]. 2015;31(3):246–52. Available from: http://www.scielo.org.co/pdf/anco/v31n3/v31n3a04.pdf; 4. PROTOCOLO CLÍNICO PARA EL DIAGNÓSTICO, TRATAMIENTO Y RUTA DE ATENCIÓN INTEGRAL DE NIÑOS Y NIÑAS CON TRASTORNOS DEL ESPECTRO AUTISTA. 2015 [cited 2017 Aug 5]; Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Protocolo-TEA-final.pdf; 5. Leigh JP, Du J. Brief Report: Forecasting the Economic Burden of Autism in 2015 and 2025 in the United States. J Autism Dev Disord [Internet]. 2015 Dec 17 [cited 2017 Aug 13];45(12):4135–9. Available from: http://link.springer.com/10.1007/s10803-015-2521-7; 6. Knapp M, Romeo R, Beecham J. Economic cost of autism in the UK. Autism [Internet]. 2009 May [cited 2017 Aug 13];13(3):317–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19369391; 7. Barrett B, Byford S, Sharac J, Hudry K, Leadbitter K, Temple K, et al. Service and wider societal costs of very young children with autism in the UK. J Autism Dev Disord. 2012;42(5):797–804; 8. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genet. 2014;10(9).; 9. Miles JH. Autism spectrum disorders--a genetics review. Genet Med. 2011;13(4):278–94.; 11. Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet. 2014;23(6):1563–78.; 12. Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol [Internet]. 2015 Nov [cited 2017 Aug 5];134:140–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26455789; 13. Bo J, Lee C-M, Colbert A, Shen B. Do children with autism spectrum disorders have motor learning difficulties? Res Autism Spectr Disord [Internet]. 2016;23:50–62. Available from: http://www.sciencedirect.com/science/article/pii/S175094671530012X; 14. Hannant P, Tavassoli T, Cassidy S. The role of sensorimotor difficulties in autism spectrum conditions. Front Neurol. 2016;7(AUG):1–11.; 15. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9(NOV).; 16. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage Clin [Internet]. 2015;7:631–9. Available from: http://dx.doi.org/10.1016/j.nicl.2015.02.007; 17. Allen G, Müller RA, Courchesne E. Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56(4):269–78.; 18. Silver WG, Rapin I. Neurobiological basis of autism. Pediatr Clin North Am [Internet]. 2012;59(1):45–61. Available from: http://dx.doi.org/10.1016/j.pcl.2011.10.010; 19. Dziuk MA, Larson JCG, Apostu A, Mahone EM, Denckla MB, Mostofsky SH. Dyspraxia in autism: association with motor, social, and communicative deficits. Dev Med Child Neurol [Internet]. 2007 Oct [cited 2017 Aug 5];49(10):734–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17880641; 20. Beyer KB, Sage MD, Staines WR, Middleton LE, McIlroy WE. A single aerobic exercise session accelerates movement execution but not central processing. Neuroscience [Internet]. 2017 Mar [cited 2017 Aug 6];346:149–59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S030645221730026X; 21. Davis CL, Tomporowski PD, Boyle CA, Waller JL, Miller PH, Naglieri JA, et al. Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport [Internet]. 2007;78(5):510–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18274222%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2662758; 22. Chuang LY, Tsai YJ, Chang YK, Huang CJ, Hung TM. Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study. J Sport Heal Sci [Internet]. 2015;4(1):82–8. Available from: http://dx.doi.org/10.1016/j.jshs.2014.11.002; 23. Tan, Beron WZ, Pooley, Julie A, Speelman, Craig P. A Meta-Analytic Review of the Efficacy of Physical Exercise Interventions on Cognition in Individuals with Autism Spectrum Disorder and ADHD. J Autism Dev Disord. 2016;46(9):3126–43.; 24. Lang R, Koegel LK, Ashbaugh K, Regester A, Ence W, Smith W. Physical exercise and individuals with autism spectrum disorders: A systematic review. Res Autism Spectr Disord [Internet]. 2010;4(4):565–76. Available from: http://dx.doi.org/10.1016/j.rasd.2010.01.006; 25. King-Himmelreich TS, Schramm S, Wolters MC, Schmetzer J, Möser C V., Knothe C, et al. The impact of endurance exercise on global and AMPK gene-specific DNA methylation. Biochem Biophys Res Commun. 2016;474(2):284–90.; 26. Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol Neurobiol [Internet]. 2016 Dec 14 [cited 2017 Aug 21]; Available from: http://link.springer.com/10.1007/s12035-016-0344-y; 27. Kashimoto RK, Toffoli L V., Manfredo MHF, Volpini VL, Martins-Pinge MC, Pelosi GG, et al. Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress. Behav Brain Res [Internet]. 2016;296:286–9. Available from: http://dx.doi.org/10.1016/j.bbr.2015.08.038; 28. Li D, Karnath H-O, Xu X. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci Bull [Internet]. 2017;33(2):219–37. Available from: http://link.springer.com/10.1007/s12264-017-0118-1; 29. Schmitz C, Martineau J, Barthélémy C, Assaiante C. Motor control and children with autism: Deficit of anticipatory function? Neurosci Lett. 2003;348(1):17–20.; 30. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol [Internet]. 2006 Dec [cited 2017 Aug 5];16(6):645–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17071073; 31. McMorris T, McMorris T. Chapter 22 – Exercise–Cognition Interaction: State of the Art and Future Research. In: Exercise-Cognition Interaction [Internet]. 2016 [cited 2017 Aug 6]. p. 459–81. Available from: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/B9780128007785000220; 32. Audiffren M, Tomporowski PD, Zagrodnik J. Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychol (Amst) [Internet]. 2008 [cited 2017 Aug 6];129:410–9. Available from: http://ac.els-cdn.com.ezproxy.unal.edu.co/S0001691808001224/1-s2.0-S0001691808001224-main.pdf?_tid=0b8a0a60-7b05-11e7-b329-00000aacb35f&acdnat=1502064905_50a9bde123aaab363346be6d2e45497b; 33. Chu C-H, Alderman BL, Wei G-X, Chang Y-K. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. J Sport Heal Sci [Internet]. 2015;4(1):73–81. Available from: http://www.sciencedirect.com/science/article/pii/S2095254614001239; 34. Bremer E, Crozier M, Lloyd M. A systematic review of the behavioural outcomes following exercise interventions for children and youth with autism spectrum disorder. Autism [Internet]. 2016;(January):1–17. Available from: http://aut.sagepub.com/content/early/2016/01/27/1362361315616002.abstract; 35. Brand S, Jossen S, Holsboer-Trachsler E, Pühse U, Gerber M. Impact of aerobic exercise on sleep and motor skills in children with autism spectrum disorders – a pilot study. Neuropsychiatr Dis Treat [Internet]. 2015;11:1911. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4531010&tool=pmcentrez&rendertype=abstract; 36. Garrabé de Lara J. El autísmo. Historia y clasificaciones. Salud Ment [Internet]. 2012;35(3):257–61. Available from: http://www.inprf-cd.gob.mx/pdf/sm3503/sm3503257.pdf; 37. Rubén P, Seldas P. DSM-5: la nueva clasificación de los TEA. [cited 2017 Oct 21]; Available from: http://apacu.info/wp-content/uploads/2014/10/Nueva-clasificación-DSMV.pdf; 38. Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol [Internet]. 2015;24(4):257. Available from: https://synapse.koreamed.org/DOIx.php?id=10.5607/en.2015.24.4.257; 39. Boccuto L, Lauri M, Sarasua SM, Skinner CD, Buccella D, Dwivedi A, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet [Internet]. 2013;21(3):310–6. Available from: http://www.nature.com/doifinder/10.1038/ejhg.2012.175; 40. Kubota T, Mochizuki K. Epigenetic effect of environmental factors on autism spectrum disorders. Int J Environ Res Public Health. 2016;13(5).; 41. Martínez-Sanchis S, Ben Shalom D, Gal E. Neurobiological foundations of multisensory integration in people with autism spectrum disorders: the role of the medial prefrontal cortex. 2014 [cited 2017 Aug 5]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255523/pdf/fnhum-08-00970.pdf; 42. Larson JCG, Mostofsky SH. Evidence That the Pattern of Visuomotor Sequence Learning Is Aotered in Children With Autism. Autism Res. 2008;1(6):341–53.; 43. Guillon Q, Afzali MH, Rogé B, Baduel S, Kruck J, Hadjikhani N. The importance of networking in Autism gaze analysis. PLoS One. 2015;10(10):1–14.; 44. Gidley Larson JC, Bastian AJ, Donchin O, Shadmehr R, Mostofsky SH. Acquisition of internal models of motor tasks in children with autism. Brain. 2008;131(11):2894–903.; 45. Turner KC, Frost L, Linsenbardt D, McIlroy JR, Müller R-A. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct [Internet]. 2006;2(1):34. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1635430&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/17042953; 46. Horlin C, Albrecht MA, Falkmer M, Leung D, Ordqvist A, Tan T, et al. Visual search strategies of children with and without autism spectrum disorders during an embedded figures task. Res Autism Spectr Disord [Internet]. 2014;8(5):463–71. Available from: http://dx.doi.org/10.1016/j.rasd.2014.01.006; 48. Belmonte MK, Cook EH, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener a, et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry [Internet]. 2004;9(7):646–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15037868; 49. Tsai PT. Autism and cerebellar dysfunction: Evidence from animal models. Semin Fetal Neonatal Med [Internet]. 2016;21(5):349–55. Available from: http://dx.doi.org/10.1016/j.siny.2016.04.009; 50. Fautrelle L, Pichat C, Ricolfi F, Peyrin C, Bonnetblanc F. Catching falling objects: The role of the cerebellum in processing sensory-motor errors that may influence updating of feedforward commands. An fMRI study. Neuroscience [Internet]. 2011;190:135–44. Available from: http://dx.doi.org/10.1016/j.neuroscience.2011.06.034; 51. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(9):2413–25.; 52. Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci. 2015;9(SEP):1–24.; 53. Glazebrook C, Gonzalez D, Hansen S, Elliott D. The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism [Internet]. 2009 Jul 17 [cited 2017 Aug 5];13(4):411–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19535469; 54. Campione GC, Piazza C, Villa L, Molteni M. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment. J Autism Dev Disord. 2016;46(6):1985–99.; 55. Rinehart NJ, Bradshaw JL, Brereton A V., Tonge BJ. Movement preparation in high-functioning autism and\rAsperger Disorder: A serial choice reaction time task\rinvolving motor reprogramming. J Autism Dev Disord. 2001;31(1):79–88.; 56. Tamorri S. Neurociencias y deporte : psicología deportiva, procesos mentales del atleta. Editorial Paidotribo; 2004. 128 p.; 57. Landa RJ, Haworth JL, Nebel MB. Ready, set, go! Low anticipatory response during a dyadic task in infants at high familial risk for autism. Front Psychol. 2016;7(MAY):1–12.; 58. Martín D, Klaus Carl, Lehnertz K. Manual de metodología del entrenamiento deportivo. Editorial Paidotribo; 2001. 184 p.; 59. Debrabant J, Gheysen F, Vingerhoets G, Van Waelvelde H. Age-related differences in predictive response timing in children: Evidence from regularly relative to irregularly paced reaction time performance. Hum Mov Sci [Internet]. 2012;31(4):801–10. Available from: http://dx.doi.org/10.1016/j.humov.2011.09.006; 60. Arons MH, Lee XK, Thynne CJ, Kim XSA, Schob C, Kindler S, et al. Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. 2016;36(35):9124–34.; 61. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am J Hum Genet [Internet]. 2007;81(6):1289–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000292970763777X; 62. Wang X, Xu Q, Bey AL, Lee Y, Jiang Y. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism [Internet]. 2014;5(1):30. Available from: http://molecularautism.biomedcentral.com/articles/10.1186/2040-2392-5-30; 63. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci [Internet]. 2017;18(3):147–57. Available from: http://www.nature.com/doifinder/10.1038/nrn.2016.183; 64. Waga C, Asano H, Sanagi H, Suzuki E, Nakamura S, Tsuchiya A, et al. Identification of two novel Shank3 transcripts in the developing mouse neocortex. Neurochemistry JOF. 2014;280–93.; 65. Jiang Y, Ehlers MD. Review Modeling Autism by SHANK Gene Mutations in Mice. Neuron [Internet]. 2013;78(1):8–27. Available from: http://dx.doi.org/10.1016/j.neuron.2013.03.016; 66. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev [Internet]. 2013;35(2):106–10. Available from: http://dx.doi.org/10.1016/j.braindev.2012.05.013; 67. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet [Internet]. 2007 Jan [cited 2017 Sep 9];39(1):25–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17173049; 68. Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA Methylation , Its Mediators and Genome Integrity. 2015;11.; 69. Cui X. DNA methylation in spermatogenesis and male infertility ( Review ). 2018;(August 2016).; 70. Ching T-T, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet [Internet]. 2005;37(6):645–51. Available from: http://www.nature.com/doifinder/10.1038/ng1563; 71. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature [Internet]. 2010;466(7303):253–7. Available from: http://www.nature.com/doifinder/10.1038/nature09165; 72. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry [Internet]. 2014;19(8):862–71. Available from: http://www.nature.com/doifinder/10.1038/mp.2013.114; 73. Wong CCY, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry [Internet]. 2014;19(4):495–503. Available from: http://www.nature.com/doifinder/10.1038/mp.2013.41; 74. Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci [Internet]. 2015;4:27–32. Available from: http://dx.doi.org/10.1016/j.cobeha.2015.01.005; 75. Davranche K, Burle B, Audiffren M, Hasbroucq T. Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neurosci Lett. 2006;396(1):54–6.; 76. Schapschröer M, Baker J, Schorer J. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task. Hum Mov Sci [Internet]. 2016 Aug [cited 2017 Aug 6];48:121–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167945716300604; 77. Tomporowski PD. Effects of acute bouts of exercise on cognition. [cited 2017 Aug 6]; Available from: http://ac.els-cdn.com.ezproxy.unal.edu.co/S0001691802001348/1-s2.0-S0001691802001348-main.pdf?_tid=19866548-7ac2-11e7-8357-00000aacb35f&acdnat=1502036153_f45623cef4118da015165aa3a22fdabc; 78. McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn [Internet]. 2012;80(3):338–51. Available from: http://dx.doi.org/10.1016/j.bandc.2012.09.001; 79. McMorris T, Koutsandréou F, Niemann C, Wegner M, Budde H. Chapter 13 – Acute Exercise and Cognition in Children and Adolescents: The Roles of Testosterone and Cortisol. In: Exercise-Cognition Interaction [Internet]. 2016 [cited 2017 Aug 9]. p. 283–94. Available from: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/B978012800778500013X; 80. Tsai CL, Chen FC, Pan CY, Wang CH, Huang TH, Chen TC. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology [Internet]. 2014;41(1):121–31. Available from: http://dx.doi.org/10.1016/j.psyneuen.2013.12.014; 81. Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc [Internet]. 2014 Nov [cited 2017 Aug 13];15(6):627–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1469029214000818; 82. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J Sport Heal Sci [Internet]. 2015;4(1):47–55. Available from: http://dx.doi.org/10.1016/j.jshs.2014.09.003; 83. Chaddock-Heyman L, Erickson KI, Voss MW, Knecht AM, Pontifex MB, Castelli DM, et al. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Front Hum Neurosci [Internet]. 2013;7(March):1–13. Available from: http://journal.frontiersin.org/article/10.3389/fnhum.2013.00072/abstract; 86. Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev [Internet]. 2017 Sep [cited 2017 Aug 13];80:443–56. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0149763417301495; 87. Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol [Internet]. 2017 Apr 19 [cited 2017 Oct 21]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/28371392; 88. Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL. Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sport Med. 2014;44(4):429–36.; 89. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol. 2015;213(1):39–59.; 90. Rodrigues GM, Toffoli L V., Manfredo MH, Francis-Oliveira J, Silva AS, Raquel HA, et al. Acute stress affects the global DNA methylation profile in rat brain: Modulation by physical exercise. Behav Brain Res [Internet]. 2015;279:123–8. Available from: http://dx.doi.org/10.1016/j.bbr.2014.11.023; 91. Types of Physical Activity - NHLBI, NIH [Internet]. [cited 2017 Sep 22]. Available from: https://www.nhlbi.nih.gov/health/health-topics/topics/phys/types; 92. Heyward VH. Evaluación de la aptitud física y prescripción del ejercicio. 2008. 44–45 p.; 93. Frontera WR. Medicina deportiva clínica : tratamiento médico y rehabilitación. 7th ed. Madrid: Elsevier; 2008. 15 p.; 94. Marjerrison AD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81(4):466–71.; 95. Machado FA, Denadai BS. Validity of Maximum Heart Rate Prediction Equations for Children and Adolescents. Arq Bras Cardiol. 2011;97(2):136–40.; 96. Tsang S-Y, Ahmad T, Mat FWK, Zhao C, Xiao S, Xia K, et al. Variation of global DNA methylation levels with age and in autistic children. Hum Genomics [Internet]. 2016;10(1):31. Available from: http://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y%5Cnhttp://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y%5Cnhttp://humgenomics.biomedcentral.com/articles/10.1186/s40246-016-0086-y; 97. Sharkey BJ, Gaskill SE. Fitness & health. 445 p.; 98. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. PROTOCOL DNA methylation : Bisulphite modification and analysis. 2010;1(5):2353–64.; 99. Tusna E. BiSearch : primer-design and search tool for PCR on bisulfite-treated genomes. 2005;33(1):1–6.; 100. Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of. 2004;20(17):3005–12.; 101. Hernández HG, Tse MY, Pang SC, Arboleda H, Forero DA. Review IS IO. 2013; 102. World Health Organization. Recomendaciones Mundiales sobre Actividad Física para la Salud. Geneva WHO Libr Cat [Internet]. 2010;(Completo):1–58. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recomendaciones+Mundiales+sobre+actividad+F?sica+para+la+salud#4%5Cnhttp://whqlibdoc.who.int/publications/2010/9789243599977_spa.pdf; 103. Oliveira B de, Dalmaschio L. Aplicación clínica de la escala de autismo en los niños. Rev Cubana Pediatr [Internet]. 2016;88(4):406–16. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-7531201600040000; 104. Perry A, Condillac RA, Freeman NL, Dunn-Geier J, Belair J. Multi-site study of the Childhood Autism Rating Scale (CARS) in five clinical groups of young children. J Autism Dev Disord. 2005;35(5):625–34.; 105. Brodeur DA, Stewart J, Dawkins T, Burack JA. Utilitarian Attention by Children with Autism Spectrum Disorder on a Filtering Task. J Autism Dev Disord [Internet]. 2018;0(0):0. Available from: http://dx.doi.org/10.1007/s10803-018-3619-5; 106. Bar-haim Y, Shulman C, Lamy D, Reuveni A. Attention to Eyes and Mouth in High-Functioning Children with Autism. 2006;36(1).; 107. Mosconi XMW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder. J Neurosci. 2015;35(5):2015–25.; 108. Ellemberg D, St-louis-desche M. The effect of acute physical exercise on cognitive function during development. Pshychol Sport Ecerc. 2010;11:122–126.; 109. Egger F, Conzelmann A, Schmidt M. Psychology of Sport & Exercise The e ff ect of acute cognitively engaging physical activity breaks on children ’ s executive functions : Too much of a good thing ? Psychol Sport Exerc [Internet]. 2018;36(August 2017):178–86. Available from: https://doi.org/10.1016/j.psychsport.2018.02.014; 110. Ludyga S, Gerber M, Herrmann C, Brand S, Pühse U. Trends in Neuroscience and Education Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci Educ [Internet]. 2018;10(June 2017):1–7. Available from: https://doi.org/10.1016/j.tine.2017.11.001; 111. Correa-Mesa JF, Álvarez-Peña PA. Neurología de la anticipación y sus implicaciones en el deporte Anticipation neurology and its implications in sports. Rev da Faculdad Med. 2016;64(1):99–109.; 112. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP. Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry [Internet]. 2014;4(9):e460. Available from: http://dx.doi.org/10.1038/tp.2014.87; 113. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol [Internet]. 2012;13(6):R43. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2012-13-6-r43; 114. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. 2016;42(2):406–14.; 115. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. 2019; 116. Andrews S V., Sheppard B, Windham GC, Schieve LA, Schendel DE, Croen LA, et al. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol Autism. 2018;9(1):1–11.; 117. Natural D, Cells K, Schweiger MR, Bloch W, Zimmer P. Impact of Acute Aerobic Exercise on Genome-Wide Pilot Study. Genes (Basel). 2019 May 19;10(5):380. doi:10.3390/genes10050380; 118. Boyne DJ, Sullivan DEO, Olij BF, King WD, Friedenreich CM, Brenner DR. Physical Activity , Global DNA Methylation , and Breast Cancer Risk : A Systematic Literature Review and Meta-analysis. 2018;27(November).; https://repositorio.unal.edu.co/handle/unal/77799

  15. 15
    Academic Journal

    المساهمون: Henriksson,P, Löf,M Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden. Lentini,A, Nestor,CE Crown Princess Victoria Children’s Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden. Altmäe,S Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. Altmäe,S Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain. Brodin,D, Müller,P, Löf,M Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. Forsum,E Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden., The study was funded by Formas (data collection) and a grant from Bo and Vera Ax:son Johnsons Foundation (data analysis) (both ML). CEN was supported by grants from the Swedish Research Council (2015–03495) and the Swedish Cancer Society (CAN 2017/625). SA was supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) grants: RYC-2016-21199 and ENDORE SAF2017–87526. The funding body had no role in the design of the study, data collection, analysis and interpretation of data, writing of the manuscript and the decision to publish. Open Access funding provided by Linköping University Library.

    مصطلحات موضوعية: DNA Methylation, Birth weight, Body composition, Body mass index, Obesity, Epigenetic, Metilación de ADN, Peso al nacer, Composición corporal, Índice de masa corporal, Obesidad, Epigenómica, Medical Subject Headings::Anatomy::Tissues::Connective Tissue::Adipose Tissue, Medical Subject Headings::Phenomena and Processes::Physiological Phenomena::Body Constitution::Body Weights and Measures::Body Size::Body Weight::Birth Weight, Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Body Composition, Medical Subject Headings::Phenomena and Processes::Physiological Phenomena::Body Constitution::Body Weights and Measures::Body Mass Index, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Persons::Persons::Age Groups::Infant, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Methylation, Medical Subject Headings::Anatomy::Tissues::Membranes::Mucous Membrane::Mouth Mucosa, Medical Subject Headings::Persons::Persons::Parents, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Plethysmography, Medical Subject Headings::Chemicals and Drugs::Carbohydrates::Monosaccharides::Hexoses::Glucose, Medical Subject Headings::Phenomena and Processes::Physiological Phenomena::Physiological Processes::Growth and Development::Morphogenesis::Embryonic and Fetal Development::Fetal Development, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression Regulation::Epigenesis, Genetic

    وصف الملف: application/pdf

    Relation: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07169-7; Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, et al. DNA methylation in infants with low and high body fatness. BMC Genomics. 2020 Nov 9;21(1):769; http://hdl.handle.net/10668/4146; PMC7654595

  16. 16
  17. 17
    Academic Journal

    المساهمون: Castellano-Castillo,D, Morcillo,S, Sánchez-Alcoholado,L, Clemente-Postigo,M, Tinahones,FJ, Macias-Gonzalez,M Unidad de Gestión Clínica Endocrinología y Nutrición. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria) Málaga (Spain). CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Málaga, Spain. Crujeiras,AB Epigenomics in Endocrinology and Nutrition Group. Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain. Torres,E Unidad de Gestión Clínica de Oncología Intercentros Hospital Universitario Virgen de la Victoria, Málaga, Spain., This study was supported by “Centros de Investigación En Red” (CIBER, CB06/03/0018) of the “Instituto de Salud Carlos III” (ISCIII), and grants from ISCIII (PI11/01661) and from Consejeria de Innovacion, Ciencia y Empresa de la Junta de Andalucia (PI11-CTS-8181). Co financed by the European Regional Development Fund (FEDER).

    مصطلحات موضوعية: Colorectal cancer, Global DNA methylation, Obesity, Epigenetic, Vitamin D, Neoplasias colorrectales, Metilación de ADN, Obesidad, Epigénesis genética, Epigenómica, Vitamina D, Medical Subject Headings::Diseases::Neoplasms::Neoplasms by Site::Digestive System Neoplasms::Gastrointestinal Neoplasms::Intestinal Neoplasms::Colorectal Neoplasms, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Methylation, Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Sequence Analysis::Sequence Analysis, DNA, Medical Subject Headings::Diseases::Nutritional and Metabolic Diseases::Nutrition Disorders::Overnutrition::Obesity, Medical Subject Headings::Chemicals and Drugs::Polycyclic Compounds::Steroids::Secosteroids::Vitamin D, Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Genome::Genome Components::Interspersed Repetitive Sequences::Retroelements::Long Interspersed Nucleotide Elements, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Molecular Probe Techniques::Immunoassay::Immunoenzyme Techniques::Enzyme-Linked Immunosorbent Assay, Medical Subject Headings::Persons::Persons::Age Groups::Adult::Aged, Medical Subject Headings::Check Tags::Male, Medical Subject Headings::Check Tags::Female, Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans, Medical Subject Headings::Anatomy::Tissues::Connective Tissue::Adipose Tissue::Adipose Tissue, White::Abdominal Fat::Intra-Abdominal Fat

    وصف الملف: application/pdf

    Relation: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-5226-4; Castellano-Castillo D, Morcillo S, Crujeiras AB, Sánchez-Alcoholado L, Clemente-Postigo M, Torres E, et al. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer. 2019 Jan 21;19(1):93.; http://hdl.handle.net/10668/3182; PMC6341579

  18. 18
  19. 19
    Dissertation/ Thesis
  20. 20