يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"mathematical modeling of reaction-diffusion processes"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المساهمون: Національний університет “Львівська політехніка”, Lviv Polytechnic National University

    جغرافية الموضوع: Львів, Lviv

    وصف الملف: 129-136; application/pdf; image/png

    Relation: Mathematical Modeling and Computing, 1 (6), 2019; 1. KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).; 2. ZiffR.M., GulariE., BarshadY. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).; 3. B¨arM., Z¨ulickeC., EiswirthM., ErtlG. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 96 (11), 8595–8604 (1992).; 4. Bzovska I. S., Mryglod I.M. Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).; 5. Qiao L., LiX., Kevrekidis I.G., PuncktC., RotermundH.H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E. 77, 036214 (2008).; 6. CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).; 7. B¨arM., GottschalkN., EiswirthM., ErtlG. Spiral waves in a surfacereaction: model calculations. J. Chem. Phys. 100 (2), 1202–1214 (1994).; 8. PavlenkoN. CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence. Phys. Rev. E. 77, 026203–1–10 (2008).; 9. KostrobijP., Ryzha I., MarkovychB. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018).; 11. ImbihlR., ErtlG. Oscillatory Kinetics in Heterogeneous Catalysis. Chem. Rev. 95 (3), 697–733 (1995).; 12. GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2)−(1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63 (10), 1086–1089 (1989).; 13. Ladas S., ImbihlR., ErtlG. Microfacetting of a Pt(110) surface during catalytic CO oxidation. Surf. Science. 197 (1–2), 153–182 (1988).; 14. Ladas S., ImbihlR., ErtlG. Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110). Surf. Science. 198 (1–2), 42–68 (1988).; 15. von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Science. 311 (3), 322–330 (1994).; 16. van KampenN.G. Stohasticheskie processy v fizike i himii. Vysshaja shkola, Moskva (1990), (in Russian).; 17. Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010).; 18. ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).; 19. KuchlingH. Physik Nachschlageb¨ucher f¨ur Grundlagenf¨acher. VEB Fachbuchverlag, Leipzig (1973), (in German).; 20. PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Science. 454 (1), 341–346 (2000).; 21. KostrobijP., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).; Ryzha I. Mathematical model for carbon monoxide oxidation: influence of diffusion effects / I. Ryzha, O. Gaiduchok // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 129–136.; https://ena.lpnu.ua/handle/ntb/46148

  3. 3
    Academic Journal

    المساهمون: Національний університет “Львівська політехніка”, Lviv Polytechnic National University

    جغرافية الموضوع: Львів, Lviv

    وصف الملف: 158-168; application/pdf; image/png

    Relation: Mathematical Modeling and Computing, 2 (5), 2018; 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah “metal–gaz”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).; 2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002).; 3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995).; 4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986).; 5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989).; 6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006).; 7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).; 8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000).; 9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977).; 11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian).; 12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).; 13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).; 14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).; 15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014).; 16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011).; 17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981).; 18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977).; 19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981).; 20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980).; 21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004).; 22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).; 23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).; 24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).; 25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989).; 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah "metal–gaz". Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).; Kostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168.; https://ena.lpnu.ua/handle/ntb/46137

  4. 4
  5. 5
  6. 6

    المساهمون: Костробій, Петро Петрович, Національний університет “Львівська політехніка”, Власюк, Анатолій Павлович, Гера, Богдан Васильович

    جغرافية الموضوع: UA, Львів

    وصف الملف: application/pdf

    Relation: Рижа І. А. Математичне моделювання процесів оксидації чадного газу на неоднорідних каталізаторах : дисертація на здобуття наукового ступеня кандидата технічних наук : 01.05.02 – математичне моделювання та обчислювальні методи / Ірина Андріївна Рижа; Міністерство освіти і науки України, Національний університет “Львівська політехніка”. – Львів, 2019. – 155 с. – Бібліографія: с. 128–138 (97 назв).; https://ena.lpnu.ua/handle/ntb/44699