يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"magnetising layer"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation grant No. 22-19-00808, https://rscf.ru/project/22-19-00808/, Исследование выполнено за счет гранта Российского научного фонда № 22-19-00808

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 1 (2023); 26-35 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 1 (2023); 26-35 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/504/408; Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006; 442: 759-765. https://doi.org/10.1038/nature05023; Vopson M.M. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences. 2015; 40: 223-250. https://doi.org/10.1080/10408436.2014.992584; Nan C.W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics. 2008; 103(3): 031101-031136. https://doi.org/10.1063/1.2836410; Bichurin M., Viehland D., Srinivasan G. Magnetoelectric Interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. Journal of Electroceramics. 2007; 19(4): 243-250. https://doi.org/10.1007/s10832-007-9058-x; Tu C., Chu Z.-Q., Spetzler B., Hayes P., Dong C.-Z., Liang X.-F., Chen H.-H., He Y.-F., Wei Y.-Y., Lisenkov I., Lin H., Lin Y.-H., McCord J., Faupel F., Quandt E., Sun N.-X. mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials (Basel). 2019; 12(14): 22-52. https://doi.org/10.3390/ma12142259; Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics. 2005: 38(8): 123-152. https://doi.org/10.1088/0022-3727/38/8/R01; Palneedi H., Annapureddy V., Priya S., Ryu J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators. 2016; 5(1): 9-40. https://doi.org/10.3390/act5010009; Yang S., Xu J., Zhang X., Fan S., Zhang C., Huang Y., Li Q., Wang X., Cao D., Xu J. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022; 55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5; Jing W.Q., Fang F. Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Applied Physics Letters. 2015; 106(21): 212901-212902. https://doi.org/10.1063/1.4921743; Pourhosseiniasl M., Yu Z., Chu Z., Yang J., Xu J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625; Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B: Condensed Matter and Materials Physics. 2011; 84(1): 011432-014440. https://doi.org/10.1103/PhysRevB.84.014432; Lage E., Kirchhof C., Hrkac V., Kienle L., Jahns R., Knöchel R., Quandt E., Meyners D. Biasing of magnetoelectric composites. Nature Materials. 2012; 11(6): 523-529. https://doi.org/10.1038/nmat3306; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571-616. https://doi.org/10.1134/S1063739721080035; Turutin A.V., Kubasov I.V., Kislyuk A.M., Kuts V.V., Malinkovich M.D., Parkhomenko Y.N., Sobolev N.A. Ultra-sensitive magnetoelectric sensors of magnetic fields for biomedical applications. Nanobiotechnology Reports. 2022; 17: 261-289. https://doi.org/10.1134/S2635167622030223; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Kholkin A.L., Sobolev N.A. Magnetoelectric metglas/bidomain y +140°-cut lithium niobate composite for sensing FT magnetic fields. Applied Physics Letters. 2018; 112(26): 262906-263100. https://doi.org/10.1063/1.5038014; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209-165253. https://doi.org/10.1016/j.jmmm.2019.04.061; Liang X., Matyushov A., Hayes P., Schell V., Dong C., Chen H., He Y., Will-Cole A., Quandt E., Martins P., Mccord J., Medarde M., Lanceros-Méndez S., Van Dijken S., Sun N., Sort J. Roadmap on magnetoelectric materials and devices. IEEE Transactions of Magnetics. 2021; 57(8): 4000157-400400213. https://doi.org/10.1109/TMAG.2021.3086635; Huang D., Lu C., Han B., Wang X., Li C., Xu C., Gui J., Lin C. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Applied Physics Letters. 2014; 105(1): 0263502-0263507. https://doi.org/10.1063/1.4904799; Zhang H., Lu C., Sun Z. Large self-biased magnetoelectric response in four-phase heterostructure with multiple low-frequency peaks. Applied Physics Letters. 2015; 106(3): 033505-0335101. https://doi.org/10.1063/1.4906414; Kumar A., Arockiarajan A. Temperature dependent magnetoelectric (ME) response in press-fit FeNi/PZT/Ni self-biased ring composite. Journal of Applied Physics. 2019; 106(9): 094102-094103. https://doi.org/10.1063/1.5108708; Deka B., Lee Y.W., Yoo I.R., Gwak D.W., Cho J., Song H.C., Choi J.J., Hahn B.D., Ahn C.W., Cho K.H. Designing ferroelectric/ferromagnetic composite with giant self-biased magnetoelectric effect. Applied Physics Letters. 2019; 115(19): 192901-192903. https://doi.org/10.1063/1.5128163; Pourhosseiniasl M.J., Yu Z., Chu Z., Yang J., Xu J.J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625; Jing W.Q., Fang F. A flexible multiferroic composite with high self-biased magnetoelectric coupling. Composites Science and Technology. 2017; 153: 145-150. https://doi.org/10.1016/j.compscitech.2017.10.010; Yang S.C., Park C.S., Cho K.H., Priya S. Self-biased magnetoelectric response in three-phase laminates. Journal of Applied Physics. 2010; 108(9): 093706-6. https://doi.org/10.1063/1.3493154; Huang D., Lu C., Bing H. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure. AIP Advances. 2015; 5(4): 047140-047147. https://doi.org/10.1063/1.4919248; Jovičević K.M., Thormählen L., Röbisch V., Toxværd S.D., Höft M., Knöchel R., Quandt E., Meyners D., McCord J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Applied Physics Letters. 2019; 114(19): 192410-192429. https://doi.org/10.1063/1.5092942; Ma J.N., Xin C.Z., Ma J., Lin Y.H., Nan C.W. A cost-effective self-biased magnetoelectric effect in SrFe12O19/Metglas/Pb(Zr,Ti)O3 laminates. Journal of Physics D: Applied Physics. 2016; 49(40): 405002-405007. http://dx.doi.org/10.1088/0022-3727/49/40/405002; Yang S., Xu J., Zhang X., Fan S., Zhang Ch.-Y., Huang Y.-С., Li Q., Wang X., Cao D., Li Sh. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022;55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5; Chen L., Li P., Wen Y., Zhu Y. Near-flat self-biased magnetoelectric response in three-phase Metglas/Terfenol-D/PZT-laminated composites. IEEE Transactions on Magnetics. 2015; 51(11). https://doi.org/10.1109/TMAG.2015.2451140; Li M., Wang Z., Wang Y., Li J., Viehland D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Applied Physics Letters. 2013; 102(8): 082404-082601. https://doi.org/10.1063/1.4794056; Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Applied Physics Letters. 2010; 96(19): 192502-192503-3. https://doi.org/10.1063/1.3428774; https://met.misis.ru/jour/article/view/504