يعرض 1 - 20 نتائج من 131 نتيجة بحث عن '"métodos híbridos"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: González Rodríguez, Oscar

    Thesis Advisors: Pereda Fernández, José A., Grande Saez, Ana, Universidad de Cantabria. Departamento de Ingeniería de Comunicaciones

    المصدر: TDR (Tesis Doctorales en Red)

    Time: 621.3

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis
  3. 3
    Conference

    المساهمون: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos, Comisión Interministerial de Ciencia y Tecnología (CICYT). España, Junta de Andalucía, Universidad de Jaén

    Relation: ESTYLF 2010: XV Congreso Español sobre Tecnologías y Lógica Fuzzy (2010), pp. 109-114.; TIN2005-08386-C05-03; PC06-TIC-02025; UJA-08-16- 30; http://www.uhu.es/estylf2010/; Huelva, España; https://idus.us.es/handle//11441/132743

  4. 4

    المصدر: Revista de Gestão e Secretariado (Management and Administrative Professional Review); Vol. 14 No. 3 (2023): Revista de Gestão e Secretariado v.14, n.3, 2023; 3199-3211
    Revista de Gestão e Secretariado; v. 14 n. 3 (2023): Revista de Gestão e Secretariado v.14, n.3, 2023; 3199-3211

    وصف الملف: application/pdf

  5. 5
  6. 6
    Academic Journal

    المساهمون: La Universidad Politécnica de Valencia, en la persona del Dr. Rafael Pérez, a la Senescyt (Secretaría de Ciencia y Tecnología de Ecuador), a la Universidad Técnica Particular de Loja

    المصدر: Revista de Investigación Agraria y Ambiental; Vol. 4, Núm. 1 (2013); 49-64 ; 2145-6453 ; 2145-6097

    وصف الملف: application/pdf

    Relation: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/980/970; Alperovits, E. & Shamir, U. (1977). Design of Optimal Water Distribution Systems, Water Resources Research, 13, (6):885-900.; Baños, R. (2006). Meta-heurísticas Híbridas para optimización. Mono-objetivo y Multi-objetivo. Paralelización y Aplicaciones. (Tesis de Doctorado). Universidad de Almería.; Bhave, P.R. (1979). Selecting Pipe Sizes in Network Optimization by Linear Programming. Journal of the Hydraulics Division (ASCE), 105(HY7): 1019-25.; Calhoun, C.A. (1970). Optimization of Pipe Systems by Linear Programming, in: Proc. of the Institute on Control of Flow in Closed Conduits, Ed. J. P. Tullis, Fort Collins: Colorado State Univerity.; Sánchez, R., Laguna, F., Juana L., Losada, A., Castallón, G. Rodríguez, L. & Gil, M. (2009). Organización de turnos para la optimación energética de redes colectivas de riego a presión. (Agua y Energía). Jornadas de Ingeniería del Agua, España. http://oa.upm.es/5718/1/INVE_MEM_2009_70546.pdf Fecha de acceso: 5 de octubre de 2010.; Davies, T.E. & Príncipe, J.C. (1991). A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm. Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, California (USA), pp. 174-181.; De Jong K.A. (1975). An analysis of the behave our of a class of genetic adaptive systems. Tesis doctoral, University of Michigan.; Karmeli, D., Gadish, Y. & Meyers, S. (1968). Design of Optimal Water Distribution Networks, Journal of the Pipeline Division, ASCE, 94( PL1): 1-10.; Labye, Y. (1966). Etude des Procédés de Calcul Ayant PourBut de Rendre Minimal le Cout d’ un Reseau de Distribution d’ Eau Sous Presion, La Houille Blanche, No 5, Mayo, 577-583.; Lamaddalena, N. & Sagardoy, J.A. (2000). Performance Analysis of on-demand pressurized irrigation systems. FAO Irrigation and drainage. Water Resources. Paper. 59. Roma: Developmet and Management Service FAO Land and of Water Developmet Division.; Lara, B. (2007). Diseño de redes colectivas de riego: Estudio de la asignación óptima de caudales mediante algoritmos genéticos. Tesis de Doctorado. Universidad Politécnica de Valencia. España.; Mora, D., Iglesias P., Fuertes V. & Martinez S. (2010). Diseño de redes de agua aplicando técnicas evolutivas. XXIV Congreso Latinoamericano de Hidráulica. Uruguay.; Pérez, R. (1993). Dimensionamiento óptimo de redes de distribución de agua en redes ramificadas considerando los elementos de regulación, Tesis de Doctorado, Universidad Politécnica de Valencia, España.; Villa, F. (2010). Ubicación óptima de hidrantes multiusuario en redes de riego a presión mediante el empleo de modelos de localización-asignación, Tesis de Máster, Universidad Politécnica de Valencia, España.; http://hemeroteca.unad.edu.co/index.php/riaa/article/view/980; https://repository.unad.edu.co/handle/10596/29367

  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Report

    المؤلفون: Briñez de león, Juan Carlos

    المساهمون: Restrepo Martínez, Alejandro, Branch Bedoya, John William, Universidad Nacional de Colombia - Sede Medellín, GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial

    وصف الملف: application/pdf

    Relation: Briñez-de León, J. C., Restrepo-Martínez, A., & Branch-Bedoya, J. W. (2019). Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Optics and Lasers in Engineering, 122, 195-208.; Toro, H. F., Briñez-de León, J. C., Martinez, A. R., & Bedoya, J. W. B. (2018). Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis. Optical Engineering, 57(9), 093105.; Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch, (2018). Computational hybrid phase shifting technique applied to digital photoelasticity, In Optik - International Journal for Light and Electron Optics, Volume 157, Pages 287-297, ISSN 0030-4026; Pérez, U., Camilo, J., Motta, G. C., Briñez-de León, J. C., & Restrepo-Martínez, A. (2017). Validación del uso de fotoelasticidad como herramienta para los cursos de Mecánica de Sólidos. Revista EIA, 14(28), 117-131; Briñez-de León, J. C.; Fandiño Toro, Hermes A; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas; Fandiño Toro, Hermes A; Briñez-de León, J. C.; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas; Briñez-de León, J. C., Alejandro Restrepo, John W. Branch y Carlos Madrigal. Desenvolvimiento de fase RGB aplicado a secuencias de imágenes de fotoelasticidad capturadas de la tracción de películas plásticas. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali - Colombia. 16-20 de Noviembre de 2015; Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Evaluación Temporal de los Ordenes de Franjas de Color Utilizando Análisis de Saturación en Secuencias de Imágenes de Fotoelasticidad. Décimo segundo Congreso Iberoamericano de Ingeniería Mecánica (CIBIM XII- 2015), Guayaquil-Ecuador. Noviembre 10-13 de 2015; Fernando Melendez, Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Identificación de variaciones del efecto de la temperatura en la deformación de películas plásticas analizando el comportamiento temporal de la fotoelasticidad. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali- Colombia. 16-20 de Noviembre de 2015; Briñez-de León, J. C., A. R. Martínez and J. W. B. Bedoya, "High stress concentration analysis using RGB intensity changes in dynamic photoelasticity videos," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7.doi:10.1109/STSIVA.2016.7743324; Briñez-de León, J. C., Alejandro Restrepo M.; John W. Branch; Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 99712P (September 28, 2016); doi:10.1117/12.2237373; Briñez-de León, J. C., Hermes Alexander Fandiño-Toro, Alejandro Restrepo-Martínez, John W. Branch. Evaluación de la pérdida de resolución en imágenes de fotoelasticidad debido al incremento de la carga. VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica y IV de Materiales, Energía y Medioambiente, Medellín, Colombia. 2017/4/26; Briñez-de León, J. C., D. A. Patiño Cortes, A. Restrepo Martínez, and J. W. Branch Bedoya, "Computational Detection of Salient Information to Identify High Stress and Ambiguity Regions in Digital Photoelasticity Images," in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper IM4E.2; Briñez-de León, J. C., Alejandro Restrepo M., John W. Branch, "Computational reduction of the image sets required in conventional phase shifting methods applied to digital photoelasticity" Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950K (24 August 2017); doi:10.1117/12.2273431; Hermes Fandiño Toro, Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch Bedoya, "Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity," Proc. SPIE 10396, Applications of Digital Image Processing XL, 103962D (19 September 2017); doi:10.1117/12.2273258; Juan Camilo Urango Pérez, Guillermo Carmen Motta, Briñez-de León, J. C., Alejandro Restrepo Martinez. Validation of the photoelasticity method as a tool for the enhancement of learning and design processes in solid mechanics. Congreso Internacional de Formación y Modelación en Ciencias Básicas. Universidad de Medellín. 2017. Página 217. ISBN-ebook: 978-958-8992-46-7; Briñez-de León, J. C., H. A. Fandiño Toro, A. Restrepo M, and J. W. Branch, "Bayer and demosaicking effect for imaging the stress field in digital photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper IW2B.3.; Briñez-de León, J. C., Fandiño, H. A., Restrepo, A., & Branch, J. W. (2018, September). Computational analysis of stress map variations by industrial light sources and load additions in digital photoelasticity. In Optics and Photonics for Information Processing XII (Vol. 10751, p. 107510G). International Society for Optics and Photonics; H. F. Toro, Briñez-de León, J. C., A. Restrepo Martínez, and J. W. Branch Bedoya, "Relevance analysis for texture descriptors in studies of dynamic photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper JM4A.37; Briñez-de León, J. C., Martínez, A. R., & Bedoya, J. W. B. (2019, June). Fast Fourier Transform as Color Variation Descriptor for Imaging the Stress Field from Photoelasticity Videos. In Imaging Systems and Applications (pp. JW2A-46). Optical Society of America; Toro, H. F., Briñez-de León, J. C., RestrepoMartínez, A., & Branch, J. W. (2019, June). Texture analysis for evaluating the Bayer and demosaicking effects in photoelasticity images. In Computational Optical Sensing and Imaging (pp. JW2A-50). Optical Society of America; Restrepo-Martinez, A., & Briñez-de León, J. C., (2019, September). Dynamic color descriptor based Frenet-Serret to classify stress zones from pixel variations recorded in photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 111360G). International Society for Optics and Photonics; Briñez-de León, J. C., Mery, D., Restrepo, A., & Branch, J. W. (2019, September). One-dimensional local binary pattern based color descriptor to classify stress values from photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 1113607). International Society for Optics and Photonics.; H. J. Jiménez, “Comportamiento mecánico y microestructural de la aleación AlMgSi para conductores eléctricos,” Rev. UIS Ing., vol. 18, no. 2, pp. 199–211, 2019.; S. Sazesh, A. Ghassemi, R. Ebrahimi, and M. Khodaei, “Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation,” Int. J. Adv. Des. Manuf. Technol., vol. 10, no. 1, pp. 57–74, 2017.; K. Ramesh, “Experimental Stress Analysis,” J. Appl. Mech., vol. 33, no. 1, p. 237, 2011.; M. Akay and N. Aslan, “Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis,” J. Biomed. Mater. Res., vol. 31, no. 2, pp. 167–182, 1996.; J. F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems. 2005.; K. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticity - A comprehensive review,” J. Strain Anal. Eng. Des., vol. 46, no. 4, pp. 245–266, 2011.; J. C. Briñez, A. Restrepo, and F. López, “Métricas de similitud aplicadas para el análisis de imágenes de fotoelasticidad,” Dyna, vol. 80, no. 179, pp. 42–50, 2013.; J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 991–1048, 2018.; K. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. iIage Process., vol. 26, no. 9, pp. 4509–4522, 2017.; R. Montanini, M. Scafidi, G. Staiti, A. Marcianò, L. D’Acquisto, and G. Oteri, “Misfit evaluation of dental implant-supported metal frameworks manufactured with different techniques: Photoelastic and strain gauge measurements,” J. Eng. Med., vol. 230, no. 12, pp. 1106–1116, 2016.; C. C and E. Gabrielli, “Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads,” J. Phys. Conf. Ser., vol. 778, no. 1, pp. 1–14, 2017.; F. C. Li and A. Kishen, “Deciphering dentin tissue biomechanics using digital moiré interferometry: A narrative review,” Opt. Lasers Eng., vol. 107, no. March, pp. 273–280, 2018.; S. Yoneyama and S. Arikawa, “Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array,” Theor. Appl. Mech. Lett., vol. 6, no. 4, pp. 162–166, 2016.; C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, pp. F213–F217, 2017.; R. Subramanyam and K. Ramesh, “Photoelastic study on the effect of flow induced residual stresses on fracture parameters,” Theor. Appl. Fract. Mech., vol. 85, pp. 320–327, 2016.; T. Nikova and E. Stoykova, “Design of a photoelastic measurement of principal stresses by a phase-shifting method,” Phys. Scr., vol. T162, no. January, pp. 1–5, 2014.; S. Alsiya, C. J. Lekshmi, B. P. J. Priya, and R. C. Mehta, “Image processing algorithm for fringe analysis in photoelasticity,” Sch. J. Eng. Technol., vol. 4, no. 7, pp. 325–328, 2016.; J. A. Quiroga and J. A. Gómez-Pedrero, “Application of principal component analysis in phase-shifting photoelasticity,” Opt. Express, vol. 24, no. 6, p. 5984, 2016.; D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng., vol. 30, no. 3–4, pp. 229–249, 1998.; J. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” Opt. Lasers Eng., vol. 21, no. 3, pp. 133–149, 1994.; W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik., vol. 126, no. 19, pp. 1981–1985, 2015.; M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity-Issues, implementation and application,” Opt. Lasers Eng., vol. 46, no. 3, pp. 257–271, 2008.; M. Ramji and K. Ramesh, “A new six-step phase shifting technique using mixed-polariscope in digital photoelasticity,” Key Eng. Mater., vol. 326–328, pp. 35–38, 2009.; A. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J. Strain Anal. Eng. Des., vol. 33, no. 3, pp. 207–216, 2002.; M. Solaguren-Beascoa Fernández, “Data Acquisition Techniques in Photoelasticity,” Exp. Tech., vol. 35, no. 6, pp. 71–79, 2011.; P. Magalhães, F. Vieira, C. Magalhães, J. Ribeiro, and I. Rios, “Numerical method to digital photoelasticity using plane polariscope,” Opt. Express, vol. 24, no. 12, p. 12617, 2016.; A. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Opt. Lasers Eng., vol. 49, no. 5, pp. 652–657, 2011.; J. R. Lesniak, M. J. Zickel, C. S. Welch, and D. F. Johnson, “An innovative polariscope for photoelastic stress analysis,” Proc. Sem Spring Conf. Exp. Mech., pp. 219–224, 1997.; S. Yoneyama and K. Moriwaki, “Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array,” Opt. Eng., vol. 45, no. 8, p. 083604, 2006.; E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum., vol. 69, no. 4, pp. 1574–1580, 1998.; S. Sircar and K. Bhattacharya, “Measurement of birefringence using polarization phase-shifting Mach–Zehnder interferometer,” Opt. Eng., vol. 54, no. 11, p. 113112, 2015.; K. Ashokan and K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2891–2896, 2006.; M. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain, vol. 46, no. 2, pp. 184–194, 2010.; P. Siegmann, F. Díaz-Garrido, and E. A. Patterson, “Robust approach to regularize an isochromatic fringe map,” Appl. Opt., vol. 48, no. 22, p. E24, 2009.; P. Pinit, “Automated Detection of Singularities from Orientation Map of Isoclinics in,” 21st Conf. Mech. Eng. Netw. Thail., no. October, 2007.; K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Opt. Eng., vol. 54, no. 8, p. 081205, 2015.; C. Buckberry and D. Towers, “New approaches to the full-field analysis of photoelastic stress patterns,” Opt. Lasers Eng., vol. 24, no. 5–6, pp. 415–428, 1996.; M.-J. Huang, “Isoclinic ambiguity unwrapping of circular ring under diametric dompression,” ICEM 14 – 14th Int. Conf. Exp. Mech., vol. 6, p. 32002, 2010.; J. Wu and M. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Opt. Eng., vol. 54, no. 8, p. 081207, 2015.; K. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt. Lasers Eng., vol. 33, no. 6, pp. 387–400, 2000.; A. D. Nurse, “Load-stepping photoelasticity: New developments using temporal phase unwrapping,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 57–70, 2002.; V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt. Lasers Eng., vol. 92, pp. 129–140, 2017.; V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light photoelasticity – Part II: Novel fringe resolution guided scanning scheme,” Opt. Lasers Eng., vol. 92, pp. 141–149, 2017.; M. P. Haripras and K. Ramesh, “Analysis of contact zones from whole field isochromatics using reflection photoelasticity,” Opt. Lasers Eng., vol. 105, no. September 2017, pp. 86–92, 2018.; K. Ramesh and A. Pandey, “An improved normalization technique for white light photoelasticity,” Opt. Lasers Eng., vol. 109, no. February, pp. 7–16, 2018.; B. N. Simon, T. Kasimayan, and K. Ramesh, “The influence of ambient illumination on colour adaptation in three fringe photoelasticity,” Opt. Lasers Eng., vol. 49, no. 2, pp. 258–264, 2011.; K. Ramesh, M. P. Hariprasad, and S. Bhuvanewari, “Digital photoelastic analysis applied to implant dentistry,” Opt. Lasers Eng., vol. 87, pp. 204–213, 2016.; A. Pandey and K. Ramesh, “Development of a new normalization technique for twelve fringe photoelasticity (TFP),” Conf. Proc. Soc. Exp. Mech. Ser., vol. 12, pp. 177–180, 2019.; J. A. Quiroga, M. Servin, and J. L. Marroquin, “Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image,” Meas. Sci. Technol., vol. 13, no. 1, pp. 132–140, 2002.; G. S. Grewal and V. N. Dubey, “Inverse problem of photoelastic fringe mapping using neural networks,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1361–1366, 2007.; L. Roy and A. J. Rosakis, “An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography,” Opt. Lasers Eng., vol. 40, no. 4, pp. 263–288, 2003.; W. C. Wang and Y. H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control, vol. 12, no. 8, pp. 927–938, 2006.; A. Asundi, M. R. Sajan, and L. Tong, “Dynamic photoelasticity using TDI imaging,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 3–16, 2002.; F. Huang and A. Sugimoto, Image and Video Technology – PSIVT 2013 Workshops, no. October. 2013.; L. Wang, Y. Ju, H. Xie, G. Ma, L. Mao, and K. He, “The mechanical and photoelastic properties of 3D printable stress-visualized materials,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.; Y. Ju, L. Wang, H. Xie, G. Ma, Z. Zheng, and L. Mao, “Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques,” Rock Mech. Rock Eng., vol. 50, no. 6, pp. 1383–1407, 2017.; A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt. Lasers Eng., vol. 68, pp. 58–73, 2015.; Hung, K-M., and C-C. Ma. "Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions." Experimental mechanics 43.2 (2003): 216-224.; Voloshin, Arkady S., and C. P. Burger. "Half-fringe photoelasticity: a new approach to whole-field stress analysis." Experimental Mechanics 23.3 (1983): 304-313.; Ramesh, K., and D. Sreedhar. "Optically enhanced tiling (OET) in digital fringe pattern analysis." Strain 34.4 (1998): 127-130.; Hecker, F. W., and H. Abeln. "Digital Phase-shifting photoelasticity." Optics and the Information Age. Vol. 813. International Society for Optics and Photonics, 1987.; Asundi, Anand, Liu Tong, and Chai Gin Boay. "Dynamic phase-shifting photoelasticity." Applied Optics 40.22 (2001): 3654-3658.; Su, Xianyu, Anand Krishna Asundi, and M. R. Sajan. "Phase unwrapping in photoelasticity." International Conference on Experimental Mechanics: Advances and Applications. Vol. 2921. International Society for Optics and Photonics, 1997.; Ekman, Matthew J., and Andrew D. Nurse. "Completely automated determination of two-dimensional photoelastic parameters using load stepping." Optical Engineering 37 (1998).; Surendra, Kamadi Vara Naga, and KR Yogendra Simha. "Digital Image Analysis around isotropic points for photoelastic pattern recognition." Optical Engineering 54.8 (2015): 081209.; https://repositorio.unal.edu.co/handle/unal/78194

  14. 14
  15. 15
    Academic Journal

    المساهمون: Universidad de Sevilla. Departamento de Economía Financiera y Dirección de Operaciones, Universidad de Sevilla. Departamento de Economía Aplicada III

    وصف الملف: application/pdf

    Relation: Revista de métodos cuantitativos para la economía y la empresa., 22, 3-18.; https://www.upo.es/revistas/index.php/RevMetCuant/article/download/2336/1911

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20
    Dissertation/ Thesis