يعرض 1 - 20 نتائج من 991 نتيجة بحث عن '"localización de fallas"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Book
  6. 6
  7. 7
    Book

    المساهمون: Luis Miguel Vargas Valencia, David Restrepo Suárez

    وصف الملف: 255 páginas; application/pdf

    Relation: Colección Trabajos de investigación; J. Das, Power System Protective Relaying. CRC Press, 2017.; A. Dos Santos and M. C. De Barros, “Stochastic modeling of power system faults,” Electr. Power Syst. Res., vol. 126, pp. 29–37, 2015; G. Morales-España, J. Mora-Flórez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Trans. Power Deliv., vol. 24, no. 3, pp. 1382–1389, Jun. 2009.; G. Kjolle, O. Gjerde, B. Hjartsjo, H. Engen, L. Haarla, L. Koivisto, and P. Lindblad, “Protection system faults–a comparative review of fault statistics,” in 2006 Int. Conf. on Probab. Meth. App. to Power Syst. Stockholm, Sweden: IEEE, 2006, pp. 1–7.; P. Heine and M. Lehtonen, “Voltage sag distributions caused by power system faults,” IEEE Trans. on Power Syst., vol. 18, no. 4, pp. 1367–1373, 2003.; S. Babu, E. Shayesteh, and P. Hilber, “Analysing correlated events in power system using fault statistics,” in 2016 Int. Conf. on Prob. Meth. App. to Power Syst. (PMAPS), Beijing, China, Dec. 2016, pp. 1–6.; J. L. Blackburn and T. J. Domin, Protective relaying: principles and applications. CRC Press, 2015.; T. Gonen, Modern power system analysis. CRC Press, 2013.; P. M. Anderson, Analysis of faulted power systems. IEEE Press New York, 1995, vol. 445.; A. Acosta, Introducción al análisis de circuitos eléctricos: un enfoque generalizado. Pereira: Editorial Universidad Tecnológica de Pereira, 2017.; N. Tleis, Power systems modelling and fault analysis: theory and practice. Elsevier, 2007.; G. Kindermann, Curto-circuito. Saggra Luzzatto, 1997.; C. L. Fortescue, “Method of symmetrical co-ordinates applied to the solution of polyphase networks,” Trans. of the Am. Inst of Elect. Eng., vol. 37, no. 2, pp. 1027–1140, 1918.; R. Le Doeuff and M. E. H. Zaïm, Rotating Electrical Machines. Wiley Online Library, 2010.; J. A. Melkebeek, Electrical Machines and Drives. Springer, 2018.; S. Perez-Londoño and J. López-Quintero, Transformadores eléctricos. Pereira: Editorial Universidad Tecnológica de Pereira, 2018.; J. Winders, Power transformers: principles and applications. CRC Press, 2002.; J. Grainger andW. Stevenson, Análisis de sistemas de potencia. McGraw Hill, 1996.; L. L. J. Muñoz Galeano, N. and F. Villada Duque, “Metodología para la determinación del desplazamiento angular en transformadores trifásicos,” TecnoLógicas, vol. 20, no. 38, pp. 41–53, 2017.; T. Gonen, Electrical power transmission system engineering: analysis and design. CRC Press, 2011.; M. Farzaneh, S. Farokhi, and W. A. Chisholm, Electrical design of overhead power transmission lines. McGraw Hill, 2013.; J. Carson, “Wave propagation in overhead wires with ground return,” Bell Syst. Tech. J., vol. 5, no. 4, pp. 539–554, 1926.; L. Chavarro-Barrera, S. Pérez-Londoño, and J. Mora-Flórez, “An adaptive approach for dynamic load modeling in microgrids,” IEEE Trans. on Smart Grid, Jul. 2021.; W. F. Tinney and C. E. Hart, “Power flow solution by newton’s method,” IEEE Trans. on Power Appar. and Syst., no. 11, pp. 1449–1460, 1967.; N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix. Oxford University Press, 1990.; B. D. Anderson, P.M. and A. Shah, “An indefinite admittance network description for fault computation,” IEEE Trans. on Power Appar. and Syst., vol. 89, no. 6, pp. 1215–1219, 1970.; G. Stagg and A. El-Abiad, Computer methods in power systems analysis. McGraw Hill, 1968.; G.-E. M. Gallego, R.A. and A. Escobar-Zuluaga, Flujo de carga en sistemas de transmisión - Modelamiento y análisis. Pereira: Editorial Universidad Tecnológica de Pereira, 2016.; J. Dagenhart, “The 40-ohm ground fault phenomenon,” in 1999 Rur. Electr. Power Conf. (Cat. No. 99CH36302). IEEE, 1999, pp. C4/1–C4/3.; Y. Zhong, X. Kang, Z. Jiao, Z. Wang, and J. Suonan, “A novel distance protection algorithm for the phase-ground fault,” IEEE Trans. on Power Del., vol. 29, no. 4, pp. 1718–1725, 2013.; J. Monticelli, Fluxo de carga em redes de energia elétrica. Blucher, 1983.; https://doi.org/10.22517/9789587225877; Universidad Tecnológica de Pereira; Repositorio Institucional Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home; https://hdl.handle.net/11059/13968

  8. 8
  9. 9
    Academic Journal

    المصدر: Tekhnê; Vol. 18 No. 2 (2021): Tekhnê Journal; 13-18 ; Tekhnê; Vol. 18 Núm. 2 (2021): Revista Tekhnê; 13-18 ; 1692-8407

    وصف الملف: application/pdf

    Relation: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260/18119; Abubakar, U., Mekhilef, S., Gaeid, K. S., Mokhlis, H., & Mashhadany, Y. I. A. (2020). Induction motor fault detection based on multi-sensory control and wavelet analysis. IET Electric Power Applications, 14(11), 2051–2061. https://doi.org/10.1049/iet -epa.2020.0030; Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., & Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183(1), 106286. https://doi.org/10.1016/j.epsr.2020.106286; Afrasiabi, S., Afrasiabi, M., Mohammadi, M., & Parang, B. (2020). Fault localisation and diagnosis in transmission networks based on robust deep gabor convolutional neural network and PMU measurements. IET Generation, Transmission & Distribution, 14(26), 6484–6492. https://doi.org/10.1049/iet-gtd.2020.0856; Barman, J., & Hazarika, D. (2020). Linear and quadratic time–frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Transactions on Instrumentation and Measurement, 69(11), 8902–8909. https://doi.org/10.1109/TIM.2020.2998888; Cherif, H., Benakcha, A., Laib, I., Chehaidia, S. E., Menacer, A., Soudan, B., & Olabi, A. (2020). Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy, 212(1), 118684. https://doi.org/10.1016/j.energy.2020.118684; Gafoor, S. A., & Rao, P. V. R. Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE international power and energy conference. 2006, 1–6. https://doi.org/10.1109/PECON.2006.346630.; Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791–2799. https://doi.org/10.1109/TPWRD.2020.3011459; Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese Journal of Mechanical Engineering, 33(1), 6. https://doi.org/10.1186/s10033-019-0428-5; Rafique, F., Fu, L., & Mai, R. (2021). End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research, 199(1), 107430. https://doi.org/10.1016/j.epsr.2021.107430; Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., & Etingov, P. (2020). Power system event classification and localization using a convolutional neural network. Frontiers in Energy Research, 8(1), 607826. https://doi.org/10.3389/fenrg.2020.607826; Rivas, A. E. L., & Abrão, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602; Saber, A., Zeineldin, H., El-Fouly, T., & Al-Durra, A. (2020). Current differential relay characteristic for bipolar HVDC transmission line fault detection. IET Generation, Transmission & Distribution, 14(23), 5505–5513. https://doi.org/10.1049/iet-gtd.2020.0556; Torres, V., Guillen, D., Olveres, J., Escalante, B., & Rodriguez, J. (2020). Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques. Computers & Electrical Engineering, 83(1), 106576. https://doi.org/10.1016/j.compeleceng.2020.106576; Wang, S., & Dehghanian, P. (2020). On the use of artificial intelligence for high impedance fault detection and electrical safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698; Yousaf, M. Z., Liu, H., Raza, A., & Baig, M. B. (2020). Primary and backup fault detection techniques for multi-terminal HVdc systems: A review. IET Generation, Transmission & Distribution, 14(22), 5261–5276. https://doi.org/10.1049/iet-gtd.2020.0060; https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260

  10. 10
    Dissertation/ Thesis
  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
    Dissertation/ Thesis
  14. 14
    Dissertation/ Thesis
  15. 15
    Dissertation/ Thesis
  16. 16
    Dissertation/ Thesis
  17. 17
    Dissertation/ Thesis
  18. 18
    Dissertation/ Thesis

    المؤلفون: Tovar Lozada, Jaiverth Adrian

    المساهمون: Ramos López, Gustavo, Forero Rodríguez, Felipe, Peña Traslaviña, Néstor Misael

    وصف الملف: 43 páginas; application/pdf

    Relation: Lak P. Y. Key S. Yoon S.-M. y Nam S.-R. “Digital twin application for the evaluation of protection performance in iec-61850-based digital substations” en 2023 IEEE International Conference on Advanced Power System Automation and Protection (APAP) pp. 68–72 2023 doi:10.1109/APAP59666.2023.10348444.; Draganova-Zlateva I. y Geotgiev D. N. “Digital substations” en 2021 13th Electrical Engineering Faculty Conference (BulEF) pp. 1–6 2021 doi:10.1109/BulEF53491.2021.9690844.; Lozano J. C. Koneru K. Ortiz N. y Cardenas A. A. “Digital substations and iec 61850: A primer” IEEE Communications Magazine vol. 61 no. 6 pp. 28–34 2023 doi:10.1109/MCOM.001.2200568.; Meier S. Werner T. y Popescu-Cirstucescu C. “Performance considerations in digital substations” en 13th International Conference on Development in Power System Protection 2016 (DPSP) pp. 1–9 2016 doi:10.1049/cp.2016.0057.; FutureBridge “Upcoming digital technologies: Impact on the transmission & distribution sector.” https://www.futurebridge.com/blog/upcoming-digital-technologies-impact-on-the-transmission-distribution-sector/ 2024. [Accessed: 05-Jan-2024].; Azar R. “Substations: Transformations and improvements [in my view]” IEEE Power and Energy Magazine vol. 17 no. 4 pp. 108–105 2019 doi:10.1109/MPE.2019.2910423.; del Río García P. “Hacia las subestaciones iec 61850 un reto actual para las compañías eléctricas” en III Congreso Smart Grids DNV GL Energy 2016 https://www.smartgridsinfo.es/comunicaciones/comunicacion-hacia-subestaciones-iec-61850-reto-actual-companias-electricas.; Ma W. Mu L. Ao P. y ZhanG X. “New type merging unit for digital substation” en 2011 International Conference on Advanced Power System Automation and Protection vol. 2 pp. 1598–1601 2011 doi:10.1109/APAP.2011.6180614.; Dinesh Babu K. N. Arockia Yesuraja D. A. y Khan S. “Testing commissioning of digital substation - iec 61850-9-2 le complied ieds merging units” en 16th International Conference on Developments in Power System Protection (DPSP 2022) vol. 2022 pp. 78–85 2022 doi:10.1049/icp.2022.0916.; Balan S. Lajitha C. S. Mathew J. Sreedhanya L. R. y Bhaskara Rao V. “Design of a novel iec 61850 based merging unit for substation automation” en 2018 International CET Conference on Control Communication and Computing (IC4) pp. 101–105 2018 doi:10.1109/CETIC4.2018.8530933.; Vardhan H. Ramlachan R. Szela W. y Gdowik E. “Deploying digital substations: Experience with a digital substation pilot in north america” en 2018 71st Annual Conference for Protective Relay Engineers (CPRE) pp. 1–9 2018 doi:10.1109/CPRE.2018.8349795.; Siemens AG “Siprotec 5: Digitalize your substation – boost efficiency and reliability process bus v08.40.” Online 2024 https://www.siemens.com/processbus.; Sun L. Muguira L. Jiménez J. Astarloa A. y Lázaro J. “High-performance computing architecture for sample value processing in the smart grid” IEEE Access vol. 10 pp. 12208–12218 2022 doi:10.1109/ACCESS.2022.3146164.; Hong J. Girdhar M. Ten C.-W. Lee S. y Choi S. “Cybersecurity of sampled value messages in substation automation system” en 2022 IEEE Power Energy Society General Meeting (PESGM) pp. 1–1 2022 doi:10.1109/PESGM48719.2022.9916758.; Ingram D. M. E. Campbell D. A. Schaub P. y Ledwich G. “Test and evaluation system for multi-protocol sampled value protection schemes” en 2011 IEEE Trondheim PowerTech pp. 1–7 2011 doi:10.1109/PTC.2011.6019243.; Hong J. Song T.-J. Lee H. y Zaboli A. “Automated cybersecurity tester for iec61850-based digital substations” Energies vol. 15 no. 21 2022 doi:10.3390/en15217833.; International Electrotechnical Commission “IEC 61869-9: Instrument transformers - Part 9: Digital interface for instrument transformers” International Standard International Electrotechnical Commission 2016. Edition 1.0.; Elrawy M. F. Hadjidemetriou L. Laoudias C. y Michael M. K. “Light-weight and robust network intrusion detection for cyber-attacks in digital substations” en 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia) pp. 1–5 2021 doi:10.1109/ISGTAsia49270.2021.9715626.; Jay D. Goyel H. Manickam U. y Khare G. “Unsupervised learning based intrusion detection for goose messages in digital substation” en 2022 22nd National Power Systems Conference (NPSC) pp. 242–247 2022 doi:10.1109/NPSC57038.2022.10069042.; Yegorov P. K. Lackovitch A. Dean E. Mustafa H. M. Basumallik S. y Srivastava A. “Analyzing goose security in iec61850-based substation using ml sdn and digital twin” en 2023 North American Power Symposium (NAPS) pp. 1–6 2023 doi:10.1109/NAPS58826.2023.10318551.; IEC “IEC 61850-8-1: Specific communication service mapping - mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3” technical report IEC 2020.; Clarke E. Circuit Analysis of A-C Power Systems. John Wiley Sons 1943.; Lipo T. A. Introduction to AC Machine Design. Wiley-IEEE Press 2017.; Hochreiter S. y Schmidhuber J. “Long short-term memory” Neural Computation vol. 9 no. 8 pp. 1735–1780 1997.; Calzone O. “An intuitive explanation of lstm” Medium 2022 https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c.; Gers F. A. Schmidhuber J. y Cummins F. “Learning to forget: Continual prediction with lstm” Neural Computation vol. 12 no. 10 pp. 2451–2471 2000.; Yin Y. Alaeddini S. y Fu Y. “Automatic fault analysis and visualization of digital substation event” en 2020 IEEE Power Energy Society General Meeting (PESGM) pp. 1–5 2020 doi:10.1109/PESGM41954.2020.9281882.; Chen J. Zhu J. Ma L. Xu X. Wu J. y Shen H. “Design and implementation of digital big data analysis platform based on substation maintenance full link” en 2021 IEEE 4th International Conference on Automation Electronics and Electrical Engineering (AUTEEE) pp. 508–512 2021 doi:10.1109/AUTEEE52864.2021.9668706.; Kezunovic M. Sevcik D. Lunsford R. y Popovic T. “Integration of substation data” en 2007 60th Annual Conference for Protective Relay Engineers pp. 505–510 2007 doi:10.1109/CPRE.2007.359920.; Luo Z. y Hu H. “Intelligent analysis of substation images based on deep machine learning technology” en 2022 World Automation Congress (WAC) pp. 346–350 2022 doi:10.23919/WAC55640.2022.9934526.; Altaher A. “The role of modern substation automation systems in smart grid evolution” IEEE Smart Grid Bulletin 2021 https://smartgrid.ieee.org/bulletins/august-2021/the-role-of-modern-substation-automation-systems-in-smart-grid-evolution.; Fan, R., Yin, T., Huang, R., Lian, J., y Wang, S., “Transmission line fault location using deep learning techniques,” en 2019 North American Power Symposium (NAPS), pp. 1–5, 2019, doi:10.1109/NAPS46351.2019.9000224.; Zhang, S., Wang, Y., Liu, M., y Bao, Z., “Data-based line trip fault prediction in power systems using lstm networks and svm,” IEEE Access, vol. 6, pp. 7675–7686, 2018, doi:10.1109/ACCESS.2017.2785763.; Devi, M. M., Sharma, M., y Ganguly, A., “Detection and classification of transmis sion line faults using lstm algorithm,” en 2023 IEEE 2nd International Conference on Industrial Electronics: Developments Applications (ICIDeA), pp. 146–151, 2023, doi:10.1109/ICIDeA59866.2023.10295270.; Roy, B., Adhikari, S., Datta, S., Devi, K. J., Devi, A. D., Alsaif, F., Alsulamy, S., y Ustun, T. S., “Deep learning based relay for online fault detection, classification, and fault location in a grid-connected microgrid,” IEEE Access, vol. 11, pp. 62674–62696, 2023, doi:10.1109/ACCESS.2023.3285768.; Xiong, S., Gao, T., Zhao, X., y Fei, Z., “Multi-fault integrated classification and iden tification method based on lstm,” en 2023IEEE 4th InternationalConferenceonElectricalMaterialsandPowerEquipment (ICEMPE), pp. 1–4, 2023, doi:10.1109/ICEMPE5783 1.2023.10139519.; https://hdl.handle.net/1992/73582; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  19. 19
    Dissertation/ Thesis
  20. 20