يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"linear symmetric operator"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: 日本機械学会論文集 C編 / Transactions of the Japan Society of Mechanical Engineers Series C. 1988, 54(505):2214

  2. 2
    Academic Journal

    المؤلفون: Lovíšek, Ján

    وصف الملف: application/pdf

    Relation: mr:MR0982340; zbl:Zbl 0678.73059; reference:[1] R. A. Adams: Sobolev Spaces.Academic Press, New York, San Francisco, London 1975, Zbl 0314.46030, MR 0450957; reference:[2] H. Attouch: Convergence des solution d'inéquations variationnelles avec obstacle.Proceedings of the International Meeting on Recent Methods in Nonlinear analysis. (Rome, May 1978) ed. by E. De Giorgi - E. Magenes - U. Mosco.; reference:[3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing Program, Boston. London, Melbourne 1984. Zbl 0574.49005, MR 0742624; reference:[4] I. Boccardo C. Dolcetta: Stabilita delle soluzioni di disequazioni variazionali ellittiche e paraboliche quasi-lineari.Ann. Universeta Ferrara, 24 (1978), 99-111.; reference:[5] J. Céa: Optimisation, Théorie et Algorithmes.Dunod Paris, 1971. MR 0298892; reference:[6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Berlin, Springer Verlag 1975. MR 0521262; reference:[7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Verlag 1984. Zbl 0536.65054, MR 0737005; reference:[8] I. Hlaváček I. Bock J. Lovíšek: Optimal Control of a Variational Inequality with Applications to Structural Analysis.II. Local Optimization of the Stress in a Beam. III. Optimal Design of an Elastic Plate. Appl. Math. Optimization 13: 117-136/1985. MR 0794174, 10.1007/BF01442202; reference:[9] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696; reference:[10] V. G. Litvinov: Optimal control of elliptic boundary value problems with applications to mechanics.Moskva "Nauka" 1987, (in Russian).; reference:[11] M. Bernadou J. M. Boisserie: The finite element method in thin shell. Theory: Application to arch Dam simulations.Birkhäuser Boston 1982. MR 0663553; reference:[12] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier Scientific Publishing Company, Amsterdam 1981. MR 0600655; reference:[13] U. Mosco: Convergence of convex sets of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. MR 0298508, 10.1016/0001-8708(69)90009-7; reference:[14] K. Ohtake J. T. Oden N. Kikuchi: Analysis of certain unilateral problems in von Karman plate theory by a penalty method - PART 1. A variational principle with penalty.Computer Methods in Applied Mechanics and Engineering 24 (1980), 117-213, North Holland Publishing Company.; reference:[15] P. D. Panagiotopoulos: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy functions.Birkhäuser-Verlag, Boston-Basel-Stutgart, 1985. Zbl 0579.73014, MR 0896909

  3. 3
    Academic Journal

    المؤلفون: Lovíšek, Ján

    وصف الملف: application/pdf

    Relation: mr:MR0916062; zbl:Zbl 0647.73042; reference:[1] R. A. Adams: Sobolev spaces.Academic Press, New York, San Francisco, London 1975. Zbl 0314.46030, MR 0450957; reference:[2] H. Attouch: Convergence des solutions d'inequations variationnelles avec obstacle.Proceedings of the international meeting on recent methods in nonlinear analysis. Rome, may 1978, ed. by E. De Giorgi - E. Magenes - U. Mosco.; reference:[3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing Program, Boston, London, Melbourne 1984. Zbl 0574.49005, MR 0742624; reference:[4] I. Boccardo A. Dolcetta: Stabilita delle soluzioni di disequazioni variazionali ellitiche e paraboliche quasi - lineari.Ann. Universeta Ferrara, 24 (1978), 99-111.; reference:[5] J. M. Boisserie, Glowinski: Optimization of the thickness law for thin axisymmetric shells.Computers 8. Structures, 8 (1978), 331-343. Zbl 0379.73090; reference:[6] I. Hlaváček: Optimalization of the shape of axisymmetric shells.Aplikace matematiky 28, с. 4, pp. 269-294. MR 0710176; reference:[7] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod Paris, 1969. Zbl 0189.40603, MR 0259693; reference:[8] F. Mignot: Controle dans les inéquations variationelles elliptiques.Journal Functional Analysis. 22 (1976), 130-185. Zbl 0364.49003, MR 0423155, 10.1016/0022-1236(76)90017-3; reference:[9] J. Nečas: Les méthodes directes en theorie des équations elliptiques.Academia, Praha, 1967. MR 0227584; reference:[10] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies. An introduction.Amsterdam, Elsevier, 1981. MR 0600655; reference:[11] P. D. Panagiotopoulos: Inequality problems in mechanics and applications.Birkhäuser, Boston-Basel-Stuttgart, 1985. Zbl 0579.73014, MR 0896909; reference:[12] J. P. Yvon: Controle optimal de systémes gouvernes par des inéquations variationnelles.Rapport Laboria, February 1974.; reference:[13] O. C. Zienkiewcz: The Finite Element Method in Engineering.Science, McGraw Hill, London, 1984.