-
1Academic Journal
المؤلفون: Lashkaripour, R., Foroutannia, D.
مصطلحات موضوعية: keyword:inequality, keyword:norm, keyword:summability matrix, keyword:Hausdorff matrix, keyword:Nörlund matrix, keyword:weighted mean matrix, keyword:weighted sequence space and Lorentz sequence space, msc:15A45, msc:15A60, msc:47-99, msc:47A99, msc:47B37
وصف الملف: application/pdf
Relation: mr:MR2337614; zbl:Zbl 1174.15017; reference:[1] G. Bennett: Factorizing the classical inequalities.Mem. Amer. Math. Soc. 576 (1996), 1–130. Zbl 0857.26009, MR 1317938; reference:[2] G. Bennett: Inequalities complimentary to Hardy.Quart. J. Math. Oxford (2) 49 (1998), 395–432. Zbl 0929.26013, MR 1652236; reference:[3] D. Borwein and F. P. Cass: Nörlund matrices as bounded operators on $l_p$.Arch. Math. 42 (1984), 464–469. MR 0756700, 10.1007/BF01190697; reference:[4] D. Borwein: Nörlund operators on $l_p$.Canada. Math. Bull. 36 (1993), 8–14. MR 1205888, 10.4153/CMB-1993-002-x; reference:[5] G. H. Hardy: An inequality for Hausdorff means.J. London Math. Soc. 18 (1943), 46–50. Zbl 0061.12704, MR 0008854; reference:[6] G. H. Hardy: Divergent Series.2nd edition, American Mathematical Society, 2000.; reference:[7] G. H. Hardy and J. E. Littlewood: A maximal theorem with function-theoretic.Acta Math. 54 (1930), 81–116. MR 1555303, 10.1007/BF02547518; reference:[8] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.2nd edition, Cambridge University press, Cambridge, 2001. MR 0944909; reference:[9] G. J. O. Jameson and R. Lashkaripour: Lower bounds of operators on weighted $l_p$ spaces and Lorentz sequence spaces.Glasgow Math. J. 42 (2000), 211–223. MR 1763740, 10.1017/S0017089500020061; reference:[10] G. J. O. Jameson and R. Lashkaripour: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.J. Inequalities in Pure and Applied Mathematics, 3, Issue 1, Article 6 (2002). MR 1888921; reference:[11] R. Lashkaripour: Lower bounds and norms of operators on Lorentz sequence spaces.Doctoral dissertation (Lancaster, 1997).; reference:[12] R. Lashkaripour: Transpose of the Weighted Mean operators on Weighted Sequence Spaces.WSEAS Transaction on Mathematics, Issue 4, 4 (2005), 380–385. MR 2119309; reference:[13] R. Lashkaripour and D. Foroutannia: Lower Bounds for Matrices on Weighted Sequence Spaces.Journal of Sciences Islamic Republic of IRAN, 18 (2007), 49–56. MR 2499829; reference:[14] J. Pecaric, I. Peric and R. Roki: On bounds for weighted norms for matrices and integral operators.Linear Algebra and Appl. 326 (2001), 121–135. MR 1815954