يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:weak* sequentially continuous lattice operations"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3557583; zbl:Zbl 06644017; reference:[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133; reference:[2] Aqzzouz, B., Bouras, K.: Weak and almost Dunford-Pettis operators on Banach lattices.Demonstr. Math. 46 (2013), 165-179. Zbl 1280.46010, MR 3075506; reference:[3] Aqzzouz, B., Bouras, K.: Dunford-Pettis sets in Banach lattices.Acta Math. Univ. Comen., New Ser. 81 (2012), 185-196. Zbl 1274.46051, MR 2975284; reference:[4] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices.Isr. J. Math. 34 (1979), 287-320. Zbl 0438.47042, MR 0570888, 10.1007/BF02760610; reference:[5] Kaddouri, A. El, Moussa, M.: About the class of ordered limited operators.Acta Univ. Carol. Math. Phys. 54 (2013), 37-43. Zbl 1307.46008, MR 3222749; reference:[6] Emmanuele, G.: A dual characterization of Banach spaces not containing $\ell ^{1}$.Bull. Pol. Acad. Sci. Math. 34 (1986), 155-160. MR 0861172; reference:[7] Ghenciu, I., Lewis, P.: The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets.Colloq. Math. 106 (2006), 311-324. Zbl 1118.46017, MR 2283818, 10.4064/cm106-2-11; reference:[8] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Aqzzouz, Belmesnaoui, Elbour, Aziz

    وصف الملف: application/pdf

    Relation: mr:MR2807713; zbl:Zbl 1224.46035; reference:[1] Aliprantis, C. D., Burkinshaw, O.: Locally Solid Riesz Spaces.Academic Press (1978). Zbl 0402.46005, MR 0493242; reference:[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Reprint of the 1985 original. Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133; reference:[3] Dodds, P. G.: o-weakly compact mappings of Riesz spaces.Trans. Amer. Math. Soc. 214 (1975), 389-402. Zbl 0313.46011, MR 0385629; reference:[4] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093; reference:[5] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab Theorems.Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752