-
1Academic Journal
المؤلفون: Cipra, Tomáš, Hendrych, Radek
مصطلحات موضوعية: keyword:GARCH model, keyword:Kalman filter, keyword:outlier, keyword:robust recursive estimation, keyword:volatility, msc:62F35, msc:62M10, msc:91G70
وصف الملف: application/pdf
Relation: mr:MR3902625; zbl:Zbl 07031765; reference:[1] Aknouche, A., Guerbyenne, H.: Recursive estimation of GARCH models.Comm. Statist. Simul. Comput. 35 (2006), 925-938. MR 2291371, 10.1080/03610910600880328; reference:[2] Balke, N. S., Fomby, T. B.: Large shocks, small shocks, and economic fluctuations: outliers in macroeconomics time series.J. Appl. Econometr. 31 (1994), 307-327. 10.1002/jae.3950090205; reference:[3] Bernholt, T., Fried, R., Gather, U., Wegener, I.: Modified repeated median filters.Statist. Comput. 16 (2006), 177-192. MR 2227394, 10.1007/s11222-006-8449-1; reference:[4] Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity.J. Econometr. 31 (1986), 307-327. MR 0853051, 10.1016/0304-4076(86)90063-1; reference:[5] Bose, A., Mukherjee, K.: Estimating the ARCH parameters by solving linear equations.J. Time Series Anal. 24 (2003), 127-136. MR 1965808, 10.1111/1467-9892.00296; reference:[6] Calvet, L. E., Czellar, V., Ronchetti, E.: Robust filtering.J. Amer. Statist. Assoc. 110 (2015), 1591-1606. MR 3449057, 10.1080/01621459.2014.983520; reference:[7] Carnero, M. A., Peña, D., Ruiz, E.: Effects of outliers on the identification and estimation of GARCH models.J. Time Series Anal. 28 (2007), 471-497. MR 2396627, 10.1111/j.1467-9892.2006.00519.x; reference:[8] Carnero, M. A., Peña, D., Ruiz, E.: Estimating GARCH volatility in the presence of outliers.Econom. Lett. 114 (2012), 86-90. MR 2879552, 10.1016/j.econlet.2011.09.023; reference:[9] Charles, A.: Forecasting volatility with outliers in GARCH models.J. Forecast. 27 (2008), 551-565. MR 2588565, 10.1002/for.1065; reference:[10] Charles, A., Darné, O.: Outliers and GARCH models in financial data.Econom. Lett. 86 (2005), 347-352. MR 2124418, 10.1016/j.econlet.2004.07.019; reference:[11] Cipra, T.: Robust exponential smoothing.J. Forecast. 11 (1992), 57-69. 10.1002/for.3980110106; reference:[12] Cipra, T.: Robust recursive estimation in nonlinear time-series.Comm. Statist. Theory Methods 27 (1998), 1071-1082. MR 1626293, 10.1080/03610929808832146; reference:[13] Cipra, T., Hanzák, T.: Exponential smoothing for time series with outliers.Kybernetika 47 (2011), 165-178. MR 2828571; reference:[14] Cipra, T., Romera, R.: Robust Kalman filter and its applications in time series analysis.Kybernetika 27 (1991), 481-494. MR 1150938; reference:[15] Crevits, R., Croux, C.: Forecasting using robust exponential smoothing with damped trend and seasonal components.Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080). 10.13140/RG.2.2.11791.18080); reference:[16] Croux, C., Gelper, S.: Computational aspects of robust Holt-Winters smoothing based on M-estimation.Appl. Math. 53 (2008), 163-176. MR 2411122, 10.1007/s10492-008-0002-4; reference:[17] Croux, C., Gelper, S. E. C., Mahieu, K.: Robust exponential smoothing of multivariate time series.Comput. Statist. Data Anal. 54 (2010), 2999-3006. MR 2727729, 10.1016/j.csda.2009.05.003; reference:[18] Dalhaus, R., Rao, S. S.: A recursive online algorithm for the estimation of time-varying ARCH parameters.Bernoulli 13 (2007), 389-422. MR 2331257, 10.3150/07-bej5009; reference:[19] Engle, R. F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation.Econometrica 50 (1982), 987-1007. MR 0666121, 10.2307/1912773; reference:[20] Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns.J. Finance 58 (2003), 1269-1300. 10.1111/1540-6261.00566; reference:[21] Fasso, A.: Recursive least squares with ARCH errors and nonparametric modelling of environmental time series.Working Paper 6, University of Bergamo 2009.; reference:[22] Franke, J., Härdle, W. K., Hafner, C. M.: Statistics of Financial Markets: An Introduction.Springer, Berlin 2011. MR 2722946, 10.1007/978-3-642-16521-4; reference:[23] Franses, P. H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility.Int. J. Forecast. 15 (1999), 1-9. 10.1016/s0169-2070(98)00053-3; reference:[24] Galeano, P., Peña, D.: Finding outliers in linear and nonlinear time series.In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260. MR 3135884, 10.1007/978-3-642-35494-6_15; reference:[25] Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing.J. Forecast. 29 (2009), 285-300. Zbl 1203.62164, MR 2752114, 10.1002/for.1125; reference:[26] Gerencsér, L., Orlovits, Z., Torma, B.: Recursive estimation of GARCH processes.In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422.; reference:[27] Grané, A., Veiga, H.: Wavelet based detection of outliers in financial time series.Comput. Statist. Data Anal. 54 (2010), 2580-2593. MR 2720462, 10.1016/j.csda.2009.12.010; reference:[28] Gregory, A. V., Reeves, J. J.: Estimation and inference in ARCH model in the presence of outliers.J. Financ. Econometr. 8 (2010), 547-569. 10.1093/jjfinec/nbq028; reference:[29] Grillenzoni, C.: Optimized adaptive prediction.J. Ital. Statist. Soc. 6 (1997), 37-58. 10.1007/bf03178900; reference:[30] Grillenzoni, C.: Recursive generalized M-estimators of system parameters.Technometrics 39 (1997), 211-224. 10.2307/1270909; reference:[31] Hendrych, R., Cipra, T.: Robustified on-line estimation of the EWMA models: Simulations and applications.In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242. 10.3311/ppee.9684; reference:[32] Hendrych, R., Cipra, T.: Self-weighted recursive estimation of GARCH models.Comm. Statist. Simul. Comput. 47 (2018), 315-328. MR 3757688, 10.1080/03610918.2015.1053924; reference:[33] Hill, J. B.: Robust estimation and inference for heavy tailed GARCH.Bernoulli 21 (2015), 1629-1669. MR 3352056, 10.3150/14-bej616; reference:[34] Hotta, L. K., Tsay, R. S.: Outliers in GARCH processes.In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358. MR 3076022, 10.1201/b11823-20; reference:[35] Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D.: Forecasting with Exponential Smoothing. The State Space Approach.Springer, Berlin 2008. 10.1111/j.1751-5823.2009.00085_17.x; reference:[36] Jiang, J., Zhao, Q., Hui, Y. V.: Robust modelling of ARCH models.J. Forecast. 20 (2001), 111-133. 10.1002/1099-131x(200103)20:23.0.co;2-n; reference:[37] Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H.: Estimating GARCH models using recursive methods.; reference:[38] Koch, K. R., Yang, Y.: Robust Kalman filter for rank deficient observation models.J. Geodesy 72 (1998), 436-441. 10.1007/s001900050183; reference:[39] Lanius, V., Gather, U.: Robust online signal extraction from multivariate time series.Comput. Statist. Data Anal. 54 (2010), 966-975. MR 2580931, 10.1016/j.csda.2009.10.009; reference:[40] Ling, S.: Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/ IGARCH models.J. Econometr. 140 (2007), 849-873. MR 2408929, 10.1016/j.jeconom.2006.07.016; reference:[41] Ljung, L.: System Identification: Theory for the User.Prentice Hall PTR, Upper Saddle River 1999.; reference:[42] Ljung, L., Söderström, T. S.: Theory and Practice of Recursive Identification.MIT Press, Cambridge 1983. MR 0719192; reference:[43] Michálek, J.: Robust methods in exponential smoothing.Kybernetika 32 (1996), 289-306. MR 1438221; reference:[44] Muler, N., Yohai, V.: Robust estimates for GARCH models.J. Statist. Planning Inference 138 (2008), 2918-2940. MR 2442223, 10.1016/j.jspi.2007.11.003; reference:[45] Park, B.-J.: An outlier robust GARCH model and forecasting volatility of exchange rate returns.J. Forecast. 21 (2002), 381-393. 10.1002/for.827; reference:[46] Peng, L., Yao, Q.: Least absolute deviations estimation for ARCH and GARCH models.Biometrika 90 (2003), 967-975. MR 2024770, 10.1093/biomet/90.4.967; reference:[47] Romera, R., Cipra, T.: On practical implementation of robust Kalman filtering.Comm. Statist. Simul. Comput. 24 (1995), 461-488. Zbl 0850.62688, MR 1333047, 10.1080/03610919508813252; reference:[48] Ruckdeschel, P., Spangl, B., Pupashenko, D.: Robust Kalman tracking and smoothing with propagating and non propagating outliers.Statist. Papers 55 (2014), 93-123. MR 3152769, 10.1007/s00362-012-0496-4; reference:[49] Sakata, S., White, H.: High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility.Econometrica 66 (1998), 529-567. 10.2307/2998574; reference:[50] Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S.: Outlier-tolerant Kalman filter of state vectors in linear stochastic system.Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41. 10.14569/ijacsa.2011.021206; reference:[51] Söderström, T. S., Stoica, P.: System Identification.Prentice Hall, New York 1989.; reference:[52] Tsay, R. S.: Analysis of Financial Time Series.Wiley, Hoboken 2013. MR 2778591; reference:[53] Yang, Y.: Adaptively robust Kalman filters with applications in navigation.In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82. 10.14569/ijacsa.2011.021206; reference:[54] Yang, Y., Gao, W., Zhang, X.: Robust Kalman filtering with constraints: a case study for integrated navigation.J. Geodesy 84 (2010), 373-381. 10.1007/s00190-010-0374-6; reference:[55] Zhang, R., Ling, S.: Asymptotic inference for AR models with heavy-tailed G-GARCH noises.Econometr. Theory 31 (2015), 880-890. MR 3377272, 10.1017/s0266466614000632; reference:[56] Zhu, K., Li, W. K.: A new Pearson-type QMLE for conditionally heteroskedastic models.J. Business Econom. Statist. 33 (2015), 552-565. MR 3416600, 10.1080/07350015.2014.977446; reference:[57] Zhu, K., Ling, S.: Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models.Ann. Statist. 39 (2011), 2131-2163. MR 2893864, 10.1214/11-aos895; reference:[58] Zhu, K., Ling, S.: LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises.J. Amer. Statist. Assoc. 110 (2015), 784-794. MR 3367264, 10.1080/01621459.2014.977386
-
2Academic Journal
مصطلحات موضوعية: keyword:Black–Scholes equation, keyword:volatility, keyword:controllability, keyword:observability, keyword:Carleman estimates, msc:45K05, msc:47N10, msc:91B28, msc:91G10, msc:93B05, msc:93C20, msc:93E03
وصف الملف: application/pdf
Relation: mr:MR2479312; zbl:Zbl 1177.93021; reference:[1] Adams R. A., Fournier J. F.: Sobolev Spaces.Second edition. Academic Press, New York 2003 Zbl 1098.46001, MR 2424078; reference:[2] Khodja F. Ammar, Benabdallah, A., Dupaix C.: Null controllability of some reaction diffusion systems with one control force.J. Math. Anal. Appl. 320 (2006), 928–943 MR 2226005; reference:[3] Amster P., Averbuj C. G., Mariani M. C.: Solutions to a stationary nonlinear Black–Scholes type equation.J. Math. Anal. Appl. 276 (2002), 231–238 Zbl 1027.60077, MR 1944348; reference:[4] Amster P., Averbuj C. G., Mariani M. C., Rial D.: A Black–Scholes option pricing model with transaction costs.J. Math. Anal. Appl. 303 (2005), 688–695 Zbl 1114.91044, MR 2122570; reference:[5] Anita S., Barbu V.: Null controllability of nonlinear convective heat equation.ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173 MR 1744610; reference:[6] Barbu V.: Controllability of parabolic and Navier–Stokes equations.Scientiae Mathematicae Japonicae 56 (2002), 143–211 Zbl 1010.93054, MR 1911840; reference:[7] Black F., Scholes M.: The pricing of options and corporate liabilities.J. Political Economics 81 (1973), 637–659 Zbl 1092.91524; reference:[8] Bouchouev I., Isakov V.: The inverse problem of option pricing.Inverse Problems 13 (1997), L11–L17 Zbl 0894.90014, MR 1474358; reference:[9] Bouchouev I., Isakov V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets.Inverse problems 15 (1999), R95–R116 Zbl 0938.35190, MR 1696930; reference:[10] Chae D., Imanivilov, O. Yu., Kim M. S.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions.J. Dynamical Control Systems 2 (1996), 449–483 MR 1420354; reference:[11] Doubova A., Fernandez-Cara E., Gonzalez-Burgos, M., Zuazua E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient.SIAM J. Control Optim. 41 (2002), 789–819 Zbl 1038.93041, MR 1939871; reference:[12] Egger H., Engl H. W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates.Inverse Problems 21 (2005) 1027–1045 Zbl 1205.65194, MR 2146819; reference:[13] Fursikov A. V., Imanuvilov O. Yu.: Controllability of Evolution Equations.Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996 Zbl 0862.49004, MR 1406566; reference:[14] Hörmander L.: Linear Partial Differential Operators I – IV.Springer–Verlag, Berlin 1985; reference:[15] Imanuvilov O. Yu.: Boundary controllability of parabolic equations.Sbornik Mathematics 187 (1995), 879–900 MR 1349016; reference:[16] Imanuvilov O. Yu., Yamamoto M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations.Publ. Res. Inst. Math. Sci. 39 (2003), 227–274 Zbl 1065.35079, MR 1987865; reference:[17] Ingber L., Wilson J. K.: Statistical mechanics of financial markets: Exponential modifications to Black–Scholes.Mathematical and Computer Modelling 31 (2000) 167–192 Zbl 1042.91524, MR 1761486; reference:[18] Jódar L., Sevilla-Peris P., Cortes J. C., Sala R.: A new direct method for solving the Black–Scholes equations.Appl. Math. Lett. 18 (2005), 29–32 MR 2121550; reference:[19] Kangro R., Nicolaides R.: Far field boundary conditions for Black–Scholes equations.SIAM J. Numer. Anal. 38 (2000), 1357–1368 Zbl 0990.35013, MR 1790037; reference:[20] Sakthivel K., Balachandran, K., Sritharan S. S.: Controllability and observability theory of certain parabolic integro-differential equations.Comput. Math. Appl. 52 (2006), 1299–1316 MR 2307079; reference:[21] Sakthivel K., Balachandran, K., Lavanya R.: Exact controllability of partial integrodifferential equations with mixed boundary conditions.J. Math. Anal. Appl. 325 (2007), 1257–1279 Zbl 1191.93013, MR 2270082; reference:[22] Sowrirajan R., Balachandran K.: Determination of a source term in a partial differential equation arising in finance.Appl. Anal. (to appear) Zbl 1170.35328, MR 2536788; reference:[23] Widdicks M., Duck P. W., Andricopoulos A. D., Newton D. P.: The Black–Scholes equation revisited: Asymptotic expansions and singular perturbations.Mathematical Finance 15 (2005), 373–371 Zbl 1124.91342, MR 2132196; reference:[24] Wilmott I., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives.Cambridge University Press, Cambridge 1995 Zbl 0842.90008, MR 1357666