-
1Academic Journal
المؤلفون: Matkowski, Janusz
مصطلحات موضوعية: keyword:Lagrange mean-value theorem, keyword:mean, keyword:Darboux property of derivative, keyword:vector-valued function, msc:26A24, msc:26E60
وصف الملف: application/pdf
Relation: mr:MR3058273; zbl:Zbl 1274.26009; reference:[1] Berrone, L. R., Moro, J.: Lagrangian means.Aequationes Math. 55 (1998), 217-226. Zbl 0903.39006, MR 1615392, 10.1007/s000100050031; reference:[2] Matkowski, J.: Mean value property and associated functional equation.Aequationes Math. 58 (1999), 46-59. MR 1714318, 10.1007/s000100050006; reference:[3] Matkowski, J.: A mean-value theorem and its applications.J. Math. Anal. Appl. 373 (2011), 227-234. Zbl 1206.26032, MR 2684472, 10.1016/j.jmaa.2010.06.057
-
2Academic Journal
المؤلفون: Schappacher, Gudrun
مصطلحات موضوعية: keyword:vector valued function, keyword:Orlicz space, keyword:Luxemburg norm, keyword:delta-growth condition, keyword:duality, msc:46B10, msc:46E30, msc:46E40
وصف الملف: application/pdf
Relation: mr:MR2151462; zbl:Zbl 1099.46021; reference:[1] J. Lemaitre, J.-L. Chaboche: Mechanics of Solid Materials.Cambridge University Press, Cambridge, 1990.; reference:[2] J.-P. Aubin: Optima and Equilibria. An Introduction to Nonlinear Analysis.Springer-Verlag, Berlin, 1998. Zbl 0930.91001, MR 1729758; reference:[3] W. Desch, R. Grimmer: On the well-posedness of constitutive laws involving dissipation potentials.Trans. Am. Math. Soc. 353 (2001), 5095–5120. MR 1852096, 10.1090/S0002-9947-01-02847-1; reference:[4] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Pure and Applied Mathematics, Vol. 146.Marcel Dekker, New York, 1991. MR 1113700; reference:[5] M. A. Krasnosel’skij, Ya. B. Rutickij: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen, 1961. MR 0126722; reference:[6] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434; reference:[7] M. S. Skaff: Vector valued Orlicz spaces. Generalized $N$-functions, I.Pac. J. Math. 28 (1969), 193–206. Zbl 0176.11002, MR 0415305, 10.2140/pjm.1969.28.193; reference:[8] M. S. Skaff: Vector valued Orlicz spaces, II.Pac. J. Math. 28 (1969), 413–430. Zbl 0176.11003, MR 0415306, 10.2140/pjm.1969.28.413; reference:[9] G. Schappacher: Generalizations of Orlicz spaces of vector valued functions.PhD. Thesis, Karl Franzens University, Graz, 2003. MR 2151462; reference:[10] C. Bennett, R. Sharpley: Interpolation of Operators. Pure and Applied Mathematics, Vol. 129.Academic Press, Boston, 1988. MR 0928802; reference:[11] N. Dinculeanu: Vector Measures. Hochschulbücher für Mathematik.Pergamon Press, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. (English) MR 0206189
-
3Academic Journal
المؤلفون: Nowak, Marian
مصطلحات موضوعية: keyword:vector valued function spaces, keyword:locally solid topologies, keyword:strong topologies, keyword:Mackey topologies, keyword:absolute weak topologies, msc:46A40, msc:46E30, msc:46E40
وصف الملف: application/pdf
Relation: mr:MR1761397; zbl:Zbl 1050.46513; reference:[AB$_1$] C.D. Aliprantis and O. Burkinshaw: Locally Solid Riesz Spaces.Academic Press, New York, San Francisco, London, 1978. MR 0493242; reference:[AB$_2$] C.D. Aliprantis and O. Burkinshaw: Positive Operators.Academic Press, Inc., 1985. MR 0809372; reference:[B$_1$] A.V. Bukhvalov: Vector-valued function spaces and tensor products.Siberian Math. J. 13 (1972), no. 6, 1229–1238. (Russian) MR 0358342; reference:[B$_2$] A.V. Bukhvalov: On an analytic representation of operators with abstract norm.Soviet. Math. Dokl. 14 (1973), 197–201. Zbl 0283.47028; reference:[B$_3$] A.V. Bukhvalov: On an analytic representation of operators with abstract norm.Izv. Vyssh. Ucebn. Zaved. Mat. 11 (1975), 21–32. (Russian) MR 0470746; reference:[B$_4$] A.V. Bukhvalov: On an analytic representation of linear operators by vector-valued measurable functions.Izv. Vyssh. Ucebn. Zaved. Mat. 7 (1977), 21–31. (Russian); reference:[CHM] J. Cerda, H. Hudzik, M. Mastyło: Geometric properties of Köthe-Bochner spaces.Math. Proc. Cambridge Philos. Soc. 120 (1996), 521–533. MR 1388204, 10.1017/S0305004100075058; reference:[DU] J. Diestel, J.J. Uhl Jr.: Vector Measures.Amer. Math. Soc., Math. Surveys 15, Providence, 1977. MR 0453964; reference:[FN] K. Feledziak, M. Nowak: Locally solid topologies on vector-valued function spaces.Collect. Math. 48, 4–6 (1997), 487–511. MR 1602576; reference:[FPS] M. Florencio, P.J. Paúl annd C. Sáez: Duals of vector-valued Köthe function spaces.Math. Proc. Cambridge Philos. Soc. 112 (1992), 165–174. MR 1162941, 10.1017/S0305004100070845; reference:[F] D.H. Fremlin: Topological Riesz Spaces and Measure Theory.Camb. Univ. Press, 1974. Zbl 0273.46035, MR 0454575; reference:[G] D.A. Gregory: Some basic properties of vector sequence spaces.J. Reine Angew. Math. 237 (1969), 26–38. MR 0251497; reference:[KA] L.V. Kantorovitch, G.P. Akilov: Functional Analysis.3$^{rd}$ ed., Nauka, Moscow, 1984. (Russian) MR 0788496; reference:[K] G. Köthe: Topological Vector Spaces I.Springer-Verlag, Berlin, Heidelberg, New York, 1983. MR 0248498; reference:[M] A.L. Macdonald: Vector valued Köthe function spaces I.Illinois J. Math. 17 (1973), 533–545. Zbl 0271.46034, MR 0333662, 10.1215/ijm/1256051473; reference:[MR] L.C. Moore, J.C. Reber: Mackey topologies which are locally convex Riesz topologies.Duke Math. J. 39 (1972), 105–119. MR 0295045, 10.1215/S0012-7094-72-03915-4; reference:[N$_1$] M. Nowak: Duality theory of vector valued function spaces I.Comment. Math. 37 (1997), 195–215. Zbl 0908.46023, MR 1608189; reference:[N$_2$] M. Nowak: Duality theory of vector–valued function spaces III.Comment. Math. 38 (1998), 101–108. Zbl 0972.46025, MR 1672244; reference:[PC] N. Phuong-Các: Generalized Köthe function spaces I.Math. Proc. Cambridge Philos. Soc. 65 (1969), 601–611. MR 0248499, 10.1017/S030500410000339X; reference:[Ro] A.P. Robertson, W.J. Robertson: Topological Vector Spaces.Cambridge, 1973. MR 0350361; reference:[R] R.C. Rosier: Dual spaces of certain vector sequence spaces.Pacific J. Math. 46 (1973), 487–501. Zbl 0263.46009, MR 0328544, 10.2140/pjm.1973.46.487; reference:[W] J.H. Webb: Sequential convergence in locally convex spaces.Math. Proc. Cambridge Philos. Soc. 64 (1968), 341–364. Zbl 0157.20202, MR 0222602, 10.1017/S0305004100042900; reference:[We] R. Welland: On Köthe spaces.Trans. Amer. Math. Soc. 112 (1964), 267–277. Zbl 0122.11501, MR 0172110, 10.2307/1994294; reference:[Wi] A. Wilansky: Modern Methods in Topological Vector Spaces.Mc Graw-Hill, Inc., 1978. Zbl 0395.46001, MR 0518316; reference:[V] B.Z. Vulikh: Introduction to the Theory of Partially Ordered Spaces.Wolter-Hoordhoff, Groningen, Netherlands, 1967. Zbl 0186.44601, MR 0224522
-
4Academic Journal
المؤلفون: Nowak, Marian
مصطلحات موضوعية: keyword:vector-valued function spaces, keyword:Orlicz functions, keyword:Orlicz spaces, keyword:Orlicz-Bochner spaces, keyword:topological dual, keyword:order dual, keyword:order continuous linear functionals, keyword:singular linear functionals, keyword:modulars, keyword:conjugate modulars, msc:46A20, msc:46E30, msc:46E40
وصف الملف: application/pdf
Relation: mr:MR1732484; zbl:Zbl 1010.46028; reference:[1] Aliprantis C.D., Burkinshaw O.: Locally solid Riesz spaces.Academic Press, New York, 1978. Zbl 1043.46003, MR 0493242; reference:[2] Ando T.: Linear functionals on Orlicz spaces.Niew Arch. Wisk. 8 (1960), 1-16. Zbl 0129.08001, MR 0123907; reference:[3] Behrends E.: M-structure and the Banach-Stone theorem.Lecture Notes in Math. 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0371.46013, MR 0547509; reference:[4] Bochner S., Taylor A.E.: Linear functionals on certain spaces of abstractly-valued functions.Ann. of Math. (2) 39 (1938), 913-944. Zbl 0020.37101, MR 1503445; reference:[5] Bukhvalov A.V.: On an analytic representation of operators with abstract norm.Soviet Math. Dokl. 14 (1973), 197-201. Zbl 0283.47028; reference:[6] Bukhvalov A.V.: On an analytic representation of operators with abstract norm (in Russian).Izv. Vyss. Uceb. Zaved. 11 (1975), 21-32. MR 0470746; reference:[7] Bukhvalov A.V.: On an analytic representation of linear operators by vector-valued measurable functions (in Russian).Izv. Vyss. Uceb. Zaved. 7 (1977), 21-31.; reference:[8] Bukhvalov A.V., Lozanowskii G.Ya.: On sets closed in measure in spaces of measurable functions.Trans. Moscow Math. Soc. 2 (1978), 127-148.; reference:[9] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces.Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. Zbl 0647.46030, MR 0937545; reference:[10] Day M.M.: The spaces $L^p$ with $0; reference:[11] Drewnowski L.: Compact operators on Musielak-Orlicz spaces.Comment. Math. 27 (1988), 225-232. Zbl 0676.46024, MR 0978274; reference:[12] Escribano C., Fernández F.J., Jiminéz Guerra P.: On the Orlicz spaces of functions valued in locally convex spaces.Comment. Math. 32 (1992), 33-44. MR 1202756; reference:[13] Gramsch B.: Die Klasse metrischer linear Raüme $\Cal L_\Phi $.Math. Ann. 176 (1967), 61-78. MR 0209819; reference:[14] Hernandez F.: Continuous functionals on a class of Orlicz spaces.Houston J. Math. 11 2 (1985), 171-181. Zbl 0577.46025, MR 0792193; reference:[15] Ionescu Tulcea A., Ionescu Tulcea C.: Topics in the Theory of Lifting.Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl 0179.46303, MR 0276438; reference:[16] Kamińska A., Turett B.: Uniformly non-$l^1(n)$ Orlicz-Bochner spaces.Bull. Polon. Acad. Sci. 35 3-4 (1987), 211-218. MR 0908170; reference:[17] Kantorovich L.V., Akilov G.P.: Functional Analysis (in Russian).Nauka, Moscow, 1984 (3$^{rd}$ edition). MR 0788496; reference:[18] Luxemburg W.A.: Banach Function Spaces.Delft, 1955. Zbl 0162.44701, MR 0072440; reference:[19] Luxemburg W.A., Zaanen A.C.: Conjugate spaces of Orlicz spaces.Indagationes Math. 59 (1956), 217-228. Zbl 0072.12301, MR 0077899; reference:[20] Maligranda L., Wnuk W.: Landau type theorem for Orlicz spaces.Math. Z. 208 (1991), 57-64. Zbl 0738.46013, MR 1125732; reference:[21] Musielak J., Orlicz W.: Some remarks on modular spaces.Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl 0099.09202, MR 0112017; reference:[22] Musielak J.: Orlicz spaces and modular spaces.Lecture Notes Math. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl 0557.46020, MR 0724434; reference:[23] Nakano H.: On generalized modular spaces.Studia Math. 31 (1968), 439-449. MR 0234248; reference:[24] Nowak M.: On the order structure of Orlicz lattices.Bull. Acad. Polon. Sci. 36 5-6 (1988), 239-249. Zbl 0767.46005, MR 1101668; reference:[25] Nowak M.: Order continuous linear functionals on non-locally convex Orlicz spaces.Comment. Math. Univ. Carolinae 33.3 (1992), 465-475. Zbl 0812.46017, MR 1209288; reference:[26] Nowak M.: Duality of non-locally convex Orlicz spaces.Math. Japonica 5 (1993), 813-832. Zbl 0801.46029, MR 1240281; reference:[27] Nowak M.: Duality theory of vector-valued function spaces I.Comment. Math. 37 (1997), 195-215. Zbl 0908.46023, MR 1608189; reference:[28] Nowak M.: A note on generalized Young's inequality for Orlicz functions.Funct. et Approx. 26 (1998), 3 225-231. Zbl 0927.46020, MR 1666621; reference:[29] Nowak M.: Mackey topologies of Orlicz-Bochner spaces.Proc. Razmadze Math. Inst. 118 (1998), 101-110. Zbl 0951.46011, MR 1693247; reference:[30] Orlicz W.: A note on modular spaces I.Bull. Acad. Polon. Sci. 9 (1961), 157-162. Zbl 0109.33404, MR 0131763; reference:[31] Orlicz W.: On integral representability of linear functionals over the space of $\varphi $-integrable functions.Bull. Acad. Polon. Sci. 8 (1960), 567-569. MR 0126160; reference:[32] Rao M.M.: Linear functionals on Orlicz spaces: General theory.Pacific J. Math. 25 3 (1968), 553-585. Zbl 0164.43601, MR 0412791; reference:[33] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces.Marcel Dekker, New York, Basel, Hong Kong, 1991. Zbl 0724.46032, MR 1113700; reference:[34] Rolewicz S.: Some remarks on the spaces $N(L)$ and $N(l)$.Studia Math. 18 (1959), 1-9. Zbl 0085.32301, MR 0103413; reference:[35] Turpin P.: Convexités dans les espaces vectoriels topologiques généraux.Dissertationes Math. 131 (1976). Zbl 0331.46001, MR 0423044; reference:[36] Wilansky A.: Modern methods in topological vector spaces.McGrawhill, Inc., 1978. Zbl 0395.46001, MR 0518316; reference:[37] Zaanen A.C.: Riesz Spaces II.North-Holland Publ. Com., Amsterdam, New York, Oxford, 1983. Zbl 0519.46001, MR 0704021