يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"keyword:upper and lower solutions"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: He, Yanli, Li, Kun

    وصف الملف: application/pdf

    Relation: mr:MR4283307; zbl:07396171; reference:[1] Cahn, J. W., Mallet-Paret, J., Vleck, E. S. Van: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice.SIAM J. Appl. Math. 59 (1999), 455-493. Zbl 0917.34052, MR 1654427, 10.1137/S0036139996312703; reference:[2] Chen, X., Guo, J.-S.: Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations.J. Differ. Equations 184 (2002), 549-569. Zbl 1010.39004, MR 1929888, 10.1006/jdeq.2001.4153; reference:[3] Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics.Math. Ann. 326 (2003), 123-146. Zbl 1086.34011, MR 1981615, 10.1007/s00208-003-0414-0; reference:[4] Cheng, C.-P., Li, W.-T., Wang, Z.-C., Zheng, S.: Traveling waves connecting equilibrium and periodic orbit for a delayed population model on a two-dimensional spatial lattice.Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (2016), Article ID 1650049, 13 pages. Zbl 1336.34106, MR 3482808, 10.1142/S0218127416500498; reference:[5] Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems.J. Differ. Equations 149 (1998), 248-291. Zbl 0911.34050, MR 1646240, 10.1006/jdeq.1998.3478; reference:[6] Guo, J.-S., Wu, C.-H.: Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system.Osaka J. Math. 45 (2008), 327-346. Zbl 1155.34016, MR 2441943; reference:[7] Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models.J. Differ. Equations 252 (2012), 4357-4391. Zbl 1251.34018, MR 2881041, 10.1016/j.jde.2012.01.009; reference:[8] Hankerson, D., Zinner, B.: Wavefronts for a cooperative tridiagonal system of differential equations.J. Dyn. Differ. Equations 5 (1993), 359-373. Zbl 0777.34013, MR 1223452, 10.1007/BF01053165; reference:[9] Huang, J., Lu, G., Ruan, S.: Traveling wave solutions in delayed lattice differential equations with partial monotonicity.Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 1331-1350. Zbl 1084.34059, MR 2112956, 10.1016/j.na.2004.10.020; reference:[10] Huang, J., Lu, G., Zou, X.: Existence of traveling wave fronts of delayed lattice differential equations.J. Math. Anal. Appl. 298 (2004), 538-558. Zbl 1126.34323, MR 2086974, 10.1016/j.jmaa.2004.05.027; reference:[11] Keener, J. P.: Propagation and its failure in coupled systems of discrete excitable cells.SIAM J. Appl. Math. 47 (1987), 556-572. Zbl 0649.34019, MR 0889639, 10.1137/0147038; reference:[12] Li, K., Huang, J., Li, X., He, Y.: Traveling wave fronts in a delayed lattice competitive system.Appl. Anal. 97 (2018), 982-999. Zbl 1400.34125, MR 3777853, 10.1080/00036811.2017.1295450; reference:[13] Li, K., Li, X.: Traveling wave solutions in a delayed lattice competition-cooperation system.J. Difference Equ. Appl. 24 (2018), 391-408. Zbl 1425.37050, MR 3757175, 10.1080/10236198.2017.1409222; reference:[14] Li, W.-T., Lin, G., Ruan, S.: Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems.Nonlinearity 19 (2006), 1253-1273. Zbl 1103.35049, MR 2229998, 10.1088/0951-7715/19/6/003; reference:[15] Lin, G., Li, W.-T.: Traveling waves in delayed lattice dynamical systems with competition interactions.Nonlinear Anal., Real World Appl. 11 (2010), 3666-3679. Zbl 1206.34099, MR 2683821, 10.1016/j.nonrwa.2010.01.013; reference:[16] Mallet-Paret, J.: The Fredholm alternative for functional-differential equations of mixed type.J. Dyn. Differ. Equations 11 (1999), 1-47. Zbl 0927.34049, MR 1680463, 10.1023/A:1021889401235; reference:[17] Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems.J. Dyn. Differ. Equations 11 (1999), 49-127. Zbl 0921.34046, MR 1680459, 10.1023/A:1021841618074; reference:[18] Weng, P.: Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip.Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 883-904. Zbl 1185.34114, MR 2552078, 10.3934/dcdsb.2009.12.883; reference:[19] Wu, S.-L., Liu, S.-Y.: Travelling waves in delayed reaction-diffusion equations on higher dimensional lattices.J. Difference Equ. Appl. 19 (2013), 384-401. Zbl 1273.34074, MR 3037281, 10.1080/10236198.2011.645815; reference:[20] Wu, J., Zou, X.: Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations.J. Differ. Equations 135 (1997), 315-357. Zbl 0877.34046, MR 1441274, 10.1006/jdeq.1996.3232; reference:[21] Yu, Z.-X., Yuan, R.: Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice.Osaka J. Math. 50 (2013), 963-976. Zbl 1287.34061, MR 3161423; reference:[22] Yu, Z.-X., Zhang, W., Wang, X.: Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems.Math. Comput. Modelling 58 (2013), 1510-1521. MR 3143380, 10.1016/j.mcm.2013.06.009; reference:[23] Zhao, H.-Q.: Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices.Electron. J. Differ. Equ. 2013 (2013), Article ID 119, 15 pages. Zbl 1288.35095, MR 3065072; reference:[24] Zhao, H.-Q., Wu, S.-L.: Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice.Nonlinear Anal., Real World Appl. 12 (2011), 1178-1191. Zbl 1243.34013, MR 2736300, 10.1016/j.nonrwa.2010.09.011; reference:[25] Zinner, B.: Stability of traveling wavefronts for the discrete Nagumo equation.SIAM J. Math. Anal. 22 (1991), 1016-1020. Zbl 0739.34060, MR 1112063, 10.1137/0522066; reference:[26] Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation.J. Differ. Equations 96 (1992), 1-27. Zbl 0752.34007, MR 1153307, 10.1016/0022-0396(92)90142-A; reference:[27] Zinner, B., Harris, G., Hudson, W.: Traveling wavefronts for the discrete Fisher's equation.J. Differ. Equations 105 (1993), 46-62. Zbl 0778.34006, MR 1237977, 10.1006/jdeq.1993.1082; reference:[28] Zou, X.: Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices.Electron. J. Differ. Equ. 1997 (1997), 211-222. Zbl 0913.34041, MR 1672189; reference:[29] Zou, X., Wu, J.: Local existence and stability of periodic traveling waves of lattice functional-differential equations.Can. Appl. Math. Q. 6 (1998), 397-418. Zbl 0919.34062, MR 1668040

  2. 2
    Academic Journal

    المؤلفون: Carrasco, Hugo, Minhós, Feliz

    وصف الملف: application/pdf

    Relation: mr:MR3737117; zbl:Zbl 06837078; reference:[1] Agarwal R.P., O'Regan D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publisher, Glasgow, 2001. Zbl 0988.34002, MR 1845855; reference:[2] Boucherif A.: Second order boundary value problems with integral boundary conditions.Nonlinear Anal. 70 (2009) no. 1, 364–371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007; reference:[3] Cabada A., Fialho J., Minhós F.: Non ordered lower and upper solutions to fourth order functional BVP.Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218. MR 2987401; reference:[4] Cabada A., Minhós F.: Fully nonlinear fourth-order equations with functional boundary conditions.J. Math. Anal. Appl. 340 (2008), 239–251. Zbl 1138.34008, MR 2376151, 10.1016/j.jmaa.2007.08.026; reference:[5] Corduneanu C.: Integral Equations and Applications.Cambridge University Press, Cambridge, 1991. Zbl 1156.45001, MR 1109491; reference:[6] Feng H., Ji D., Ge W.: Existence and uniqueness of solutions for a fourth-order boundary value problem.Nonlinear Anal. 70 (2009), 3761–3566. MR 2502764, 10.1016/j.na.2008.07.013; reference:[7] Fialho J., Minhós F.: Higher order functional boundary value problems without monotone assumptions.Bound. Value Probl. 2013, 2013:81. Zbl 1293.34027, MR 3055842; reference:[8] Fu D., Ding W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces.Adv. Difference Equ. 2013, 2013:65. MR 3044690; reference:[9] Graef J., Kong L., Minhós F., Fialho J.: On the lower and upper solution method for higher order functional boundary value problems.Appl. Anal. Discrete Math. 5 (2011), no. 1, 133–146. Zbl 1289.34054, MR 2809041, 10.2298/AADM110221010G; reference:[10] Graef J., Kong L., Minhós F.: Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions.Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383. MR 2775180, 10.1007/s12591-010-0071-1; reference:[11] Han J., Liu Y., Zhao J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations.Appl. Math. Comput. 218 (2012), 5002–5009. MR 2870024; reference:[12] Jiang J., Liu L., Wu Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions.Appl. Math. Comput. 215 (2009), 1573–1582. MR 2571646; reference:[13] Kong L., Wong J.: Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions.J. Math. Anal. Appl. 367 (2010), 588–611. Zbl 1197.34035, MR 2607284, 10.1016/j.jmaa.2010.01.063; reference:[14] Lu H., Sun L., Sun J.: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed.Bound. Value Probl. 2012, 2012:56. MR 2942969; reference:[15] Minhós F., Fialho J.: On the solvability of some fourth-order equations with functional boundary conditions.Discrete Contin. Dyn. Syst., 2009, suppl., 564–573. Zbl 1192.34023, MR 2648180; reference:[16] Pei M., Chang S., Oh Y.S.: Solvability of right focal boundary value problems with superlinear growth conditions.Bound. Value Probl. 2012, 2012:60. MR 2965952; reference:[17] Yoruk F., Aykut Hamal N.: Second-order boundary value problems with integral boundary conditions on the real line.Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13. Zbl 1292.34017, MR 3159428; reference:[18] Wang M.X., Cabada A., Nieto J.J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58 (1993), 221–235. Zbl 0789.34027, MR 1244394, 10.4064/ap-58-3-221-235; reference:[19] Zeidler E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems.Springer, New York, 1986. Zbl 0583.47050, MR 0816732; reference:[20] Zhang Z., Zhang C.: Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids.Nonlinear Anal. 102 (2014), 1–13. Zbl 1292.76005, MR 3182794; reference:[21] Zhu S., Wu Q., Cheng X.: Numerical solution of the Falkner-Skan equation based on quasilinearization.Appl. Math. Comput. 215 (2009), 2472–2485. MR 2563461

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2378524; zbl:Zbl 1164.34003; reference:[1] Agarwal R. P., Benchohra M., O’Regan D., Ouahab A.: Second order impulsive dynamic equations on time scales.Funct. Differ. Equ. 11 (2004), 223–234. MR 2095486; reference:[2] Agarwal R. P., Bohner M., Saker S. H.: Oscillation of second order delay dynamic equations.Canad. Appl. Math. Quart. 13 (1), (2005), 1-17. Zbl 1126.39003, MR 2236199; reference:[3] Agarwal R. P., O’Regan D., Wong P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 1157.34301, MR 1680024; reference:[4] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Second Order Dynamic Equations.Taylor Francis, Ltd., London, 2003. Zbl 1043.34032, MR 1965832; reference:[5] Aulbach B., Hilger S.: Linear dynamic processes with inhomogeneous time scale. Nonlinear dynamics and quantum dynamical systems.Akademie-Verlag, Berlin, Math. Res. 59 (1990), 9–20. MR 1068548; reference:[6] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect.Ellis Horwood Ltd., Chichister, 1989. Zbl 0684.34056, MR 1010418; reference:[7] Bainov D. D., Simeonov P. S.: Oscillation Theory of Impulsive Differential Equations.International Publications Orlando, Florida, 1998. Zbl 0949.34002, MR 1459713; reference:[8] Benchohra M., Boucherif A.: An existence results for first order initial value problems for impulsive differential inclusions in Banach spaces.Arch. Math. (Brno) 36 (2000), 159–169. MR 1785033; reference:[9] Benchohra M., Hamani S., Henderson J.: Oscillation and nonoscillation for impulsive dynamic equations on certain time scales.Adv. Differential Equations 2006 (2006), Article ID 60860, 12 pages. Zbl 1139.39008, MR 2255161; reference:[10] Benchohra M., Henderson J., Ntouyas S. K.: Impulsive Diferential Equations and Inclusions.Hindawi Publishing Corporation, Vol. 2, New York, 2006.; reference:[11] Benchohra M., Henderson J., Ntouyas S. K., Ouahab A.: On first order impulsive dynamic equations on time scales.J. Differ. Equations Appl. 10 (2004), 541–548. Zbl 1054.39012, MR 2060411; reference:[12] Benchohra M., Ntouyas S. K., Ouahab A.: Existence results for second order boundary value problem of impulsive dynamic equations on time scales.J. Math. Anal. Appl. 296 (2004), 65–73. Zbl 1060.34017, MR 2070493; reference:[13] Bohner E. A., Bohner M., Saker S. H.: Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations.Electronic Trans. Numerical Anal. 27 (2007), 1–12. Zbl 1177.34047, MR 2346144; reference:[14] Bohner M., Peterson A.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, New York, 2001. Zbl 0978.39001, MR 1843232; reference:[15] Bohner M., Peterson A., editors: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, 2003. MR 1962542; reference:[16] Bohner M., Saker S. H.: Oscillation of second order nonlinear dynamic equations on time scales.Rocky Mountain J. Math. 34 (2004), 1239–1254. Zbl 1075.34028, MR 2095254; reference:[17] Bohner M., Tisdell C.: Second order dynamic inclusion.J. Nonlinear Math. Phys. 12 (2005), 36–45. MR 2217094; reference:[18] Deimling K.: Multivalued Differential Equations.Walter De Gruyter, Berlin-New York, 1992. Zbl 0820.34009, MR 1189795; reference:[19] Erbe L.: Oscillation criteria for second order linear equations on a time scale.Canad. Appl. Math. Quart. 9 (2001), 1–31. Zbl 1050.39024, MR 1975729; reference:[20] Erbe L., Peterson A., Saker S. H.: Oscillation criteria for second order nonlinear dynamic equations on a time scale.J. London Math. Soc. 67 (2003), 701–714. MR 1967701; reference:[21] Graef J. R., Karsai J.: On the oscillation of impulsively damped halflinear oscillators.Proc. Sixth Colloquium Qual. Theory Differential Equations, Electron. J. Qual. Theory Differential Equations (14), (2000), 1–12. Zbl 0971.34022, MR 1798664; reference:[22] Graef J. R., Karsai J.: Oscillation and nonoscillation in nonlinear implusive system with increasing energy.in Proceeding of the Third International Conference on Dynamical systems and Differential Equations, Discrete Contin. Dynam. Systems 7 (2000), 161–173. MR 1798664; reference:[23] Granas A., Dugundji J.: Fixed Point Theory.Springer-Verlag, New York, 2003. Zbl 1025.47002, MR 1987179; reference:[24] Henderson J.: Nontrivial solutions to a nonlinear boundary value problem on a times scale.Comm. Appl. Nonlinear Anal. 11 (2004), 65–71. MR 2028694; reference:[25] Henderson J.: Double solutions of impulsive dynamic boundary value problems on a time scale.J. Differ. Equations Appl. 8 (2002), 345–356. Zbl 1003.39019, MR 1897856; reference:[26] Henderson J., Tisdell C.: Topological transversality and boundary value problems on time scales.J. Math. Anal. Appl. 289 (2004), 110–125. Zbl 1047.34014, MR 2020531; reference:[27] Hu, Sh., Papageorgiou N.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, 1997. Zbl 0887.47001, MR 1485775; reference:[28] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations.World Scientific, Singapore, 1989. Zbl 0719.34002, MR 1082551; reference:[29] Lakshmikantham V., Sivasundaram S., Kaymakcalan B.: Dynamic Systems on Measure Chains.Kluwer Academic Publishers, Dordrecht, 1996. Zbl 0869.34039, MR 1419803; reference:[30] Saker S. H.: Oscillation of nonlinear dynamic equations on time scales.Appl. Math. Comp. 148 (2004), 81–91. Zbl 1045.39012, MR 2014626; reference:[31] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations.World Scientific, Singapore, 1995. Zbl 0837.34003, MR 1355787

  4. 4
    Academic Journal

    المؤلفون: Drábek, Pavel

    وصف الملف: application/pdf

    Relation: mr:MR1981524; zbl:Zbl 1074.35035; reference:[1] A. Anane: Etude des valeurs propres et de la résonance pour l’opérateur $p$-Laplacien.Thése de doctorat, U.L.B., 1987–1988.; reference:[2] P. A. Binding, P. Drábek, Y. X. Huang: On the Fredholm alternative for the $p$-Laplacian.Proc. Amer. Math. Soc. 125 (1997), 3555–3559. MR 1416077, 10.1090/S0002-9939-97-03992-0; reference:[3] M. Del Pino, P. Drábek, R. Manásevich: The Fredholm alternative at the first eigenvalue for the one-dimensional $p$-Laplacian.J. Differ. Equations 151 (1999), 386–419. MR 1669705, 10.1006/jdeq.1998.3506; reference:[4] E. Di Benedetto: $C^{1+d}$ local regularity of weak solutions of degenerate elliptic equations.Nonlin. Anal. 7 (1983), 827–850. MR 0709038, 10.1016/0362-546X(83)90061-5; reference:[5] P. Drábek: Geometry of the energy functional and the Fredholm alternative for the $p$-Laplacian in more dimensions.(to appear).; reference:[6] P. Drábek, P. Girg, R. Manásevich: Generic Fredholm alternative for the one dimensional $p$-Laplacian.Nonlin. Differ. Equations Appl. 8 (2001), 285–298. MR 1841260, 10.1007/PL00001449; reference:[7] P. Drábek, G. Holubová: Fredholm alternative for the $p$-Laplacian in higher dimensions.(to appear). MR 1864314; reference:[8] P. Drábek, P. Krejčí, P. Takáč: Nonlinear Differential Equations.Chapman & Hall/CRC, Boca Raton, 1999. MR 1695376; reference:[9] P. Drábek, A. Kufner, F. Nicolosi: Quasilinear Elliptic Equations with Degenerations and Singularities.De Gruyter Series in Nonlinear Anal. and Appl. 5, Walter de Gruyter, Berlin, New York, 1997. MR 1460729; reference:[10] P. Drábek, S. B. Robinson: Resonance problems for the $p$-Laplacian.J. Funct. Anal. 169 (1999), 189–200. MR 1726752, 10.1006/jfan.1999.3501; reference:[11] P. Drábek, P. Takáč: A counterexample to the Fredholm alternative for the $p$-Laplacian.Proc. Amer. Math. Soc. 127 (1999), 1079–1087. MR 1646309, 10.1090/S0002-9939-99-05195-3; reference:[12] J. Fleckinger-Pellé, P. Takáč: An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$.Preprint. MR 1895113; reference:[13] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609–623. MR 0267269; reference:[14] G. Liebermann: Boundary regularity for solutions of degenerate elliptic equations.Nonlin. Anal. 12 (1998), 1203–1219.; reference:[15] P. Lindqvist: On the equation ${\mathrm div} (%7C\nabla u%7C^{p-2} \nabla u)+ \lambda %7Cu%7C^{p-2} u=0$.Proc. Amer. Math. Soc. 109 (1990), 157–164. Zbl 0714.35029, MR 1007505, 10.1090/S0002-9939-1990-1007505-7; reference:[16] R. Manásevich, P. Takáč: On the Fredholm alternative for the $p$-Laplacian in one dimension.Preprint. MR 1881394; reference:[17] P. Takáč: On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue.Preprint. MR 1896161; reference:[18] P. Takáč: On the number and structure of solutions for a Fredholm alternative with $p$-Laplacian.Preprint. MR 1935641; reference:[19] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations.J. Differ. Equations 51 (1984), 126–150. MR 0727034, 10.1016/0022-0396(84)90105-0

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1725842; zbl:Zbl 1046.35054; reference:[1] Aizicovici S., Papageorgiou N. S.: Infinite dimensional parametric optimal control problems.Math. Nachr. 162 (1993), 17–38. Zbl 0807.49001, MR 1239573; reference:[2] Boccardo L., Murat F., Puel J.-P.: Existence results for some quasilinear parabolic problems.Nonlin. Anal-TMA 13 (1989), 373–392. MR 0987375; reference:[3] Carl S.: On the existence of extremal weak solutions for a class of quasilinear parabolic problems.Diff. Integ. Eqns 6 (1993), 1493–1505. Zbl 0805.35057, MR 1235207; reference:[4] Carl S.: Enclosure of solution for quasilinear dynamic hemivariational inequalities.Nonlin. World 3 (1996), 281–298. MR 1411356; reference:[5] Chang K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. 80 (1981), 102–129. MR 0614246; reference:[6] Chipot M., Rodrigues, J-E.: Comparison and stability of solutions to a class of quasilinear parabolic problems.Proc. Royal Soc. Edinburgh 110 A (1988), 275–285. Zbl 0669.35052, MR 0974743; reference:[7] Costa D. G., Goncalves J. V. A.: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. 153 ( 1990), 470–485. Zbl 0717.49007, MR 1080660; reference:[8] Dancer E. N., Sweers G.: On the existence of maximal weak solution for a semilinear elliptic equation.Diff. Integr. Eqns 2 (1989), 533–540. MR 0996759; reference:[9] Deuel J., Hess P.: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. Zbl 0372.35045, MR 0492636; reference:[10] Dunford N., Schwartz J.: Linear Operators I.Wiley, New York (1958).; reference:[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775; reference:[12] Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions.CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660; reference:[13] Halidias N., Papageorgiou N. S.: Second order multivalued boundary value problems.Archivum Math. (Brno) 34 (1998), 267–284. Zbl 0915.34021, MR 1645320; reference:[14] Kandilakis D., Papageorgiou N. S.: Nonlinear periodic parabolic problems with nonmonotone discontinuities.Proc. Edinburgh Math. Soc. 41 (1998), 117–132. Zbl 0909.35074, MR 1604345; reference:[15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018; reference:[16] Lions J.-L.: Quelques Methodes de Resolution des Problems aux Limits Non-Lineaires.Dunod, Paris (1969). MR 0259693; reference:[17] Miettinen M.: Approximation of hemivariational inequalities and optimal control problem.Univ. of Jyvaskyla, Math. Department, Finland, Report 59 (1993). MR 1248824; reference:[18] Miettinen M.: A parabolic hemivariational inequality.Nonl. Anal-TMA 26 (1996), 725–734. Zbl 0858.35072, MR 1362746; reference:[19] Mokrane A.: Existence of bounded solutions for some nonlinear parabolic equations.Proc. Royal Soc. Edinburgh 107 (1987), 313–326. MR 0924524; reference:[20] Panagiotopoulos P. D.: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer Verlag, New York, Berlin (1994). MR 1385670; reference:[21] Rauch J.: Discontinuous semilinear differential equations and multiple-valued maps.Proc. AMS 64 (1977), 272–282. Zbl 0413.35031, MR 0442453; reference:[22] Stuart C.: Maximal and minimal solutions of elliptic equations with discontinuous nonlinearities.Math. Zeitschrift 163 (1978), 239–249. MR 0513729; reference:[23] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, New York (1990). Zbl 0684.47029

  6. 6
    Academic Journal

    المؤلفون: Nieto, Juan J.

    وصف الملف: application/pdf

    Relation: mr:MR1159797; zbl:Zbl 0832.34028; reference:[1] Aftabizadeh A.R., Gupta C.P., Xu J.M.: Existence and uniqueness theorems for three-point boundary value problems.SIAM J. Math. Anal. 20 (1989), 716-726. Zbl 0704.34019, MR 0990873; reference:[2] Aftabizadeh A.R., Gupta C.P., Xu J.M.: Periodic boundary value problems for third order ordinary differential equations.Nonlinear Anal. 14 (1990), 1-10. Zbl 0706.34018, MR 1028242; reference:[3] Afuwape A.U., Omari P., Zanolin F.: Nonlinear perturbations of differential operators with nontrivial kernel and applications to third-order periodic boundary value problems.J. Math. Anal. Appl. 143 (1989), 35-56. Zbl 0695.47044, MR 1019448; reference:[4] Afuwape A.U., Zanolin F.: An existence theorem for periodic solutions and applications to some third order nonlinear differential equations.preprint.; reference:[5] Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific, Singapore, 1986. Zbl 0921.34021, MR 1021979; reference:[6] Agarwal R.P.: Existence-uniqueness and iterative methods for third-order boundary value problems.J. Comp. Appl. Math. 17 (1987), 271-289. Zbl 0617.34008, MR 0883170; reference:[7] Cabada A., Nieto J.J.: A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 151 (1990), 181-189. Zbl 0719.34039, MR 1069454; reference:[8] Ezeilo J.O.C., Nkashama M.N.: Resonant and nonresonant oscillations for some third order nonlinear ordinary differential equations.Nonlinear Anal. 12 (1988), 1029-1046. Zbl 0676.34021, MR 0962767; reference:[9] Gregus M.: Third Order Linear Differential Equations.D. Reidel, Dordrecht, 1987. Zbl 0602.34005, MR 0882545; reference:[10] Ladde G.S., Lakshmikantham V., Vatsala A.S.: Monotone Iterative Techniques for Nonlinear Differential Equations.Pitman, Boston, 1985. Zbl 0658.35003, MR 0855240; reference:[11] Lakshmikantham V., Nieto J.J., Sun Y.: An existence result about periodic boundary value problems of second order differential equations.Appl. Anal., to appear. MR 1121320; reference:[12] Nieto J.J.: Nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 130 (1988), 22-29. Zbl 0678.34022, MR 0926825; reference:[13] Rudolf B., Kubacek Z.: Remarks on J. J. Nieto's paper: Nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 146 (1990), 203-206. Zbl 0713.34015, MR 1041210; reference:[14] Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Springer-Verlag, New York, 1988. Zbl 0871.35001, MR 0953967