-
1Academic Journal
المؤلفون: Luner, Petr, Flusser, Jan
مصطلحات موضوعية: keyword:Thin-Plate Spline, keyword:fast evaluation, keyword:subtabulation, msc:41A15, msc:65D07, msc:65D17, msc:65D18
وصف الملف: application/pdf
Relation: mr:MR2131128; zbl:Zbl 1249.65025; reference:[1] Arad N., Dyn N., Reisfeld, D., Yeshurun Y.: Image warping by radial basis functions: Application to facial expressions.CVGIP: Graphical Models and Image Processing 56 (1994), 161–172; reference:[2] Arad N., Gotsman C.: Enhancement by image-dependent warping.IEEE Trans. Image Processing 8 (1999), 1063–1074 10.1109/83.777087; reference:[3] Beatson R. K., Newsam G. N.: Fast evaluation of radial basis functions.Comput. Math. Appl. 24 (1992), 7–19 Zbl 0765.65021, MR 1190302, 10.1016/0898-1221(92)90167-G; reference:[4] Berman M.: Automated smoothing of image and other regularly spaced data.IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468 10.1109/34.291451; reference:[5] Bookstein F. L.: Principal warps: Thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585 Zbl 0691.65002, 10.1109/34.24792; reference:[6] Carr J. C., Fright W. R., Beatson R.: Surface interpolation with radial basis functions for medical imaging.IEEE Trans. Medical Imaging 16 (1997), 96–107 10.1109/42.552059; reference:[7] Duchon J.: Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces.RAIRO Anal. Num. 10 (1976), 5–12 MR 0470565; reference:[8] Flusser J.: An adaptive method for image registration.Pattern Recognition 25 (1992), 45–54 10.1016/0031-3203(92)90005-4; reference:[9] Goshtasby A.: Registration of images with geometric distortions.IEEE Trans. Geoscience and Remote Sensing 26 (1988), 60–64 10.1109/36.3000; reference:[10] Greengard L., Rokhlin V.: A fast algorithm for particle simulations.J. Comput. Phys. 73 (1987), 325–348 Zbl 0629.65005, MR 0918448, 10.1016/0021-9991(87)90140-9; reference:[11] Grimson W. E. L.: A computational theory of visual surface interpolation.Philos. Trans. Roy. Soc. London Ser. B 298 (1982), 395–427 10.1098/rstb.1982.0088; reference:[12] Harder R. L., Desmarais R. N.: Interpolation using surface splines.J. Aircraft 9 (1972), 189–191 10.2514/3.44330; reference:[13] Kašpar R., Zitová B.: Weighted thin-plate spline image denoising.Pattern Recognition 36 (2003), 3027–3030 Zbl 1059.68150, 10.1016/S0031-3203(03)00133-X; reference:[14] Powell M. J. D.: Tabulation of thin plate splines on a very fine two-dimensional grid.In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L. Schumacher, eds.), Birkhäuser Verlag, Basel, 1992, pp. 221–244 Zbl 0813.65014, MR 1269364; reference:[15] Powell M. J. D.: Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.Numerical Analysis Report of University of Cambridge, DAMTP/1992/NA2, Cambridge 1992 Zbl 0813.65014, MR 1269364; reference:[16] Rohr K., Stiehl H. S., Buzug T. M., Weese, J., Kuhn M. H.: Landmark-based elastic registration using approximating thin-plate splines.IEEE Trans. Medical Imaging 20 (2001), 526–534 10.1109/42.929618; reference:[17] Wahba G.: Spline Models for Observational Data.SIAM, Philadelphia 1990 Zbl 0813.62001, MR 1045442; reference:[18] Wolberg G.: Digital Image Warping.IEEE Computer Society Press, 1990
-
2Academic Journal
المؤلفون: Feireisl, Eduard
مصطلحات موضوعية: keyword:thin plate, keyword:simply supported, keyword:existence, keyword:infinitely many nonzero time-periodic solutions, keyword:Ljusternik-Schnirelman theory, keyword:approximate solution, msc:35B10, msc:35L70, msc:58E05, msc:73K12, msc:74H45, msc:74K20
وصف الملف: application/pdf
Relation: mr:MR0940708; zbl:Zbl 0648.73024; reference:[1] H. Amann G. Mancini: Some applications of monotone operator theory to resonance problems.Nonlinear Anal. 3 (1979), 815-830. MR 0548954, 10.1016/0362-546X(79)90050-6; reference:[2] K. C. Chang L. Sanchez: Nontrivial periodic solutions of a nonlinear beam equation.Math. Meth. in the Appl. Sci. 4 (1982), 194-205. MR 0659037, 10.1002/mma.1670040113; reference:[3] E. Feireisl: On periodic solutions of a beam equation.(Czech.). Thesis, Fac. Math. Phys. of Charles Univ., Prague 1982.; reference:[4] V. Lovicar: Free vibrations for the equation $u_{tt} - u_{xx} + f(u) = 0$ with f sublinear.Proceedings of EQUADIFF 5, Teubner Texte zur Mathematik, Band 47, 228-230. MR 0715981; reference:[5] P. H. Rabinowitz: Free vibrations for a semilinear wave equation.Comm. Pure Appl. Math. 31 (1978), 31-68. Zbl 0341.35051, MR 0470378, 10.1002/cpa.3160310103