-
1Academic Journal
المؤلفون: Omelka, Marek
مصطلحات موضوعية: keyword:testing statistical hypothesis, keyword:locally most powerful tests, msc:62F03, msc:65C60
وصف الملف: application/pdf
Relation: mr:MR2193860; zbl:Zbl 1244.62018; reference:[1] Brown L. D., Marden J. M.: Local admissibility and local unbiasedness in hypothesis testing problems.Ann. Statist. 20 (1992), 832–852 Zbl 0767.62006, MR 1165595, 10.1214/aos/1176348659; reference:[2] Chibisov D. M.: Asymptotic expansions for some asymptotically pptimal tests.In: Proc. Prague Symp. on Asymptotic Statistics, Volume II (J. Hájek, ed.), Charles University, Prague 1973, pp. 37–68 MR 0400501; reference:[3] Efron B.: Defining the curvature of a statistical problem (with application to second order efficiency).Ann. Statist. 3 (1975), 1189–1242 MR 0428531, 10.1214/aos/1176343282; reference:[4] Gupta A. S., Vermeire L.: Locally optimal tests for multiparameter hypotheses.J. Amer. Statist. Assoc. 81 (1986), 819–825 Zbl 0635.62020, MR 0860517, 10.1080/01621459.1986.10478340; reference:[5] Isaacson S. L.: On the theory of unbiased tests of simple statistical hypothesis specifying the values of two or more parameters.Ann. Math. Statist. 22 (1951), 217–234 MR 0041401, 10.1214/aoms/1177729642; reference:[6] Jurečková J.: $L_1$-derivatives, score function and tests.In: Statistical Data Analysis Based on the $L_1$-Norm and Related Methods (Y. Dodge, ed.), Birkhäuser, Basel 2002, pp. 183–189; reference:[7] Kallenberg W. C. M.: The shortcomming of locally most powerful test in curved exponential families.Ann. Statist. 9 (1981), 673–677 MR 0615444, 10.1214/aos/1176345472; reference:[8] Lehmann E. L.: Testing Statistical Hypothesis.Second edition. Chapman & Hall, New York 1994; reference:[9] Littel R. C., Folks J. L.: A test of equality of two normal population means and variances.J. Amer. Statist. Assoc. 71 (1976), 968–971 MR 0420945, 10.1080/01621459.1976.10480978; reference:[10] Peers H. W.: Likelihood ratio and associated test criteria.Biometrika 58 (1971), 577–587 Zbl 0245.62026, 10.1093/biomet/58.3.577; reference:[11] Ramsey F. L.: Small sample power functions for nonparametric tests of location in the double exponential family.J. Amer. Statist. Assoc. 66 (1971), 149–151 Zbl 0215.26402, 10.1080/01621459.1971.10482236; reference:[12] Witting H.: Mathematische Statistik I.Teubner–Verlag, Stuttgart 1985 Zbl 0581.62001, MR 0943833; reference:[13] Wong P. G., Wong S. P.: A curtailed test for the shape parameter of the Weibull distribution.Metrika 29 (1982), 203–209 Zbl 0492.62022, MR 0685566, 10.1007/BF01893380