يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"keyword:superconvergence"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Conference
  3. 3
    Academic Journal

    المؤلفون: Huang, Pengzhan

    وصف الملف: application/pdf

    Relation: mr:MR3233549; zbl:Zbl 06362233; reference:[1] Bochev, P., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations.SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). Zbl 1145.76015, MR 2217373, 10.1137/S0036142905444482; reference:[2] Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems.Appl. Math., Praha 54 (2009), 237-250. Zbl 1212.65431, MR 2530541, 10.1007/s10492-009-0015-7; reference:[3] Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method.Appl. Math., Praha 51 (2006), 73-88. Zbl 1164.65489, MR 2197324, 10.1007/s10492-006-0006-x; reference:[4] Chen, H., Wang, J.: An interior estimate of superconvergence for finite element solutions for second-order elliptic problems on quasi-uniform meshes by local projections.SIAM J. Numer. Anal. 41 (2003), 1318-1338 (electronic). Zbl 1058.65118, MR 2034883, 10.1137/S0036142902410039; reference:[5] Chou, S. H., Ye, X.: Superconvergence of finite volume methods for the second-order elliptic problem.Comput. Methods Appl. Mech. Eng. 196 (2007), 3706-3712. Zbl 1173.65354, MR 2339996, 10.1016/j.cma.2006.10.025; reference:[6] Cui, M., Ye, X.: Superconvergence of finite volume methods for the Stokes equations.Numer. Methods Partial Differ. Equations 25 (2009), 1212-1230. Zbl 1170.76037, MR 2541808, 10.1002/num.20399; reference:[7] Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K.: FREEFEM++, version 2.3-3, 2008. Software avaible at http://www.freefem.org.; reference:[8] Heimsund, B. O., Tai, X. C., Wang, J. P.: Superconvergence for the gradient of finite element approximations by $L^2$ projections.SIAM J. Numer. Anal. 40 (2002), 1263-1280. Zbl 1047.65095, MR 1951894, 10.1137/S003614290037410X; reference:[9] Huang, P. Z., He, Y. N., Feng, X. L.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem.Math. Probl. Eng. 2011 (2011), Article ID 745908, pp. 14. Zbl 1235.74286, MR 2826898; reference:[10] Huang, P. Z., He, Y. N., Feng, X. L.: Two-level stabilized finite element method for Stokes eigenvalue problem.Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. Zbl 1266.65192, MR 2978223, 10.1007/s10483-012-1575-7; reference:[11] Huang, P. Z., Zhang, T., Ma, X. L.: Superconvergence by $L^2$-projection for a stabilized finite volume method for the stationary Navier-Stokes equations.Comput. Math. Appl. 62 (2011), 4249-4257. Zbl 1236.76017, MR 2859980, 10.1016/j.camwa.2011.10.012; reference:[12] Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods.Appl. Math., Praha 54 (2009), 1-15. Zbl 1212.65434, MR 2476018, 10.1007/s10492-009-0001-0; reference:[13] Li, J.: Penalty finite element approximations for the Stokes equations by $L^2$ projection.Math. Methods Appl. Sci. 32 (2009), 470-479. MR 2493591, 10.1002/mma.1051; reference:[14] Li, J., He, Y. N.: Superconvergence of discontinuous Galerkin finite element method for the stationary Navier-Stokes equations.Numer. Methods Partial Differ. Equations 23 (2007), 421-436. Zbl 1107.76046, MR 2289460, 10.1002/num.20188; reference:[15] Li, J., He, Y. N.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015; reference:[16] Li, J., He, Y. N., Wu, J. H.: A local superconvergence analysis of the finite element method for the Stokes equations by local projections.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6499-6511. Zbl 1227.65115, MR 2834057, 10.1016/j.na.2011.06.033; reference:[17] Li, J., Mei, L. Q., Chen, Z. X.: Superconvergence of a stabilized finite element approximation for the Stokes equations using a local coarse mesh $L^2$ projection.Numer. Methods Partial Differ. Equations 28 (2012), 115-126. Zbl 1234.65038, MR 2864661, 10.1002/num.20610; reference:[18] Li, J., Wang, J., Ye, X.: Superconvergence by $L^2$-projections for stabilized finite element methods for the Stokes equations.Int. J. Numer. Anal. Model. 6 (2009), 711-723. MR 2574761; reference:[19] Liu, H. P., Yan, N. N.: Enhancing finite element approximation for eigenvalue problems by projection method.Comput. Methods Appl. Mech. Eng. 233/236 (2012), 81-91. Zbl 1253.74107, MR 2924022, 10.1016/j.cma.2012.04.009; reference:[20] Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem.Numer. Methods Partial Differ. Equations 25 (2009), 244-257. Zbl 1169.65109, MR 2473688, 10.1002/num.20342; reference:[21] Wang, J.: Superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems.J. Math. Study 33 (2000), 229-243. Zbl 0987.65108, MR 1868268; reference:[22] Wang, J., Ye, X.: Superconvergence of finite element approximations for the Stokes problem by projection methods.SIAM J. Numer. Anal. 39 (2001), 1001-1013 (electronic). Zbl 1002.65118, MR 1860454, 10.1137/S003614290037589X; reference:[23] Ye, X.: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143-154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036; reference:[24] Yin, X., Xie, H., Jia, S., Gao, S.: Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods.J. Comput. Appl. Math. 215 (2008), 127-141. Zbl 1149.65090, MR 2400623, 10.1016/j.cam.2007.03.028

  4. 4
    Academic Journal

    المؤلفون: Zhang, Tie, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR2886235; zbl:Zbl 1249.65258; reference:[1] Chen, C. M., Huang, Y. Q.: High Accuracy Theory of Finite Element Methods.Hunan Science Press Hunan (1995), Chinese.; reference:[2] Cairlet, P. G.: The Finite Element Methods for Elliptic Problems.North-Holland Publishing Amsterdam (1978).; reference:[3] Hinton, E., Campbell, J. S.: Local and global smoothing of discontinuous finite element functions using a least squares method.Int. J. Numer. Methods Eng. 8 (1974), 461-480. Zbl 0286.73066, MR 0411120, 10.1002/nme.1620080303; reference:[4] Křížek, M., Neittaanmäki, P., (eds.), R. Stenberg: Finite Element Methods. Superconvergence, Postprocessing, and a Posteriori Estimates. Lecture Notes in Pure and Appl. Math., Vol. 196.Marcel Dekker New York (1998). MR 1602809; reference:[5] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for Finite Element Methods.Shanghai Sci. & Tech. Publishers Shanghai (1994), Chinese.; reference:[6] Oden, J. T., Brauchli, H. J.: On the calculation of consistent stress distributions in finite element applications.Int. J. Numer. Methods Eng. 3 (1971), 317-325. 10.1002/nme.1620030303; reference:[7] Turner, M. J., Martin, H. C., Weikel, B. C.: Further developments and applications of stiffness method.Matrix Meth. Struct. Analysis 72 (1964), 203-266.; reference:[8] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, Vol. 1605.Springer Berlin (1995). MR 1439050; reference:[9] Wilson, E. L.: Finite element analysis of two-dimensional structures.PhD. Thesis University of California Berkeley (1963).; reference:[10] Wang, Z. X., Guo, D. R.: Special Functions.World Scientific Singapore (1989). Zbl 0724.33001, MR 1034956; reference:[11] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique.Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. MR 1161557, 10.1002/nme.1620330702; reference:[12] Zhang, Z.: Recovery techniques in finite element methods.Adaptive Computations: Theory and Algorithms T. Tang, J. C. Xu Science Press Beijing (2007).; reference:[13] Zhang, Z.: Ultraconvergence of the patch recovery technique II.Math. Comput. 69 (2000), 141-158. Zbl 0936.65132, MR 1680911, 10.1090/S0025-5718-99-01205-3; reference:[14] Zhang, T., Lin, Y. P., Tait, R. J.: The derivative patch interpolation recovery technique for finite element approximations.J. Comput. Math. 22 (2004), 113-122. MR 2027918; reference:[15] Zhang, T., Li, C. J., Nie, Y. Y.: Derivative superconvergence of linear finite elements by recovery techniques.Dyn. Contin. Discrete Impuls. Syst., Ser. A 11 (2004), 853-862. Zbl 1059.65096, MR 2077127; reference:[16] Zhang, T.: Finite Element Methods for Evolutionary Integro-Differential Equations.Northeastern University Press Shenyang (2002), Chinese.; reference:[17] Zhu, Q. D., Meng, L. X.: New structure of the derivative recovery technique for odd-order rectangular finite elements and ultraconvergence.Science in China, Ser. A, Mathematics 34 (2004), 723-731 Chinese.; reference:[18] Zhu, Q. D., Lin, Q.: Superconvergence Theory of Finite Element Methods.Hunan Science Press Hunan (1989), Chinese.

  5. 5
    Academic Journal

    المؤلفون: Yan, Ningning

    وصف الملف: application/pdf

    Relation: mr:MR2530543; zbl:Zbl 1212.65256; reference:[1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems.Appl. Math. Optimization 12 (1984), 15-27. MR 0756510, 10.1007/BF01449031; reference:[2] Atkinson, K. E.: The Numerical Solution of Integral Equations of the Second Kind.Cambridge University Press Cambridge (1997). Zbl 0899.65077, MR 1464941; reference:[3] Babuška, I., A. K. Aziz \rm(eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.Academic Press New York (1972). MR 0347104; reference:[4] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept.SIAM J. Control Optim. 39 (2000), 113-132. Zbl 0967.65080, MR 1780911, 10.1137/S0363012999351097; reference:[5] Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations.J. Comput. Appl. Math. 67 (1996), 185-189. Zbl 0857.65145, MR 1388148, 10.1016/0377-0427(96)00012-X; reference:[6] Brunner, H., Yan, N.: Finite element methods for optimal control problems governed by integral equations and integro-differential equations.Numer. Math. 101 (2005), 1-27. Zbl 1076.65057, MR 2194716, 10.1007/s00211-005-0608-3; reference:[7] Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite element for quadratic optimal control.Int. J. Numer. Anal. Model. 3 (2006), 311-321. Zbl 1125.49026, MR 2237885; reference:[8] Chen, Y., Yi, N., Liu, W.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations.SIAM J. Numer. Anal. 46 (2008), 2254-2275. Zbl 1175.49003, MR 2421035, 10.1137/070679703; reference:[9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[10] Du, L., Yan, N.: High-accuracy finite element method for optimal control problem.J. Syst. Sci. Complex. 14 (2001), 106-110. Zbl 0983.49022, MR 1836999; reference:[11] Falk, F. S.: Approximation of a class of optimal control problems with order of convergence estimates.J. Math. Anal. Appl. 44 (1973), 28-47. Zbl 0268.49036, MR 0686788, 10.1016/0022-247X(73)90022-X; reference:[12] French, D. A., King, J. T.: Approximation of an elliptic control problem by the finite element method.Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. Zbl 0724.65069, MR 1143001, 10.1080/01630569108816430; reference:[13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem.(to appear).; reference:[14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions.Noordhoff International Publishing Leyden (1976). MR 0385645; reference:[15] Kress, R.: Linear Integral Equations, 2nd Edition.Springer New York (1999). MR 1723850; reference:[16] Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems.J. Sci. Comput. 33 (2007), 155-182. Zbl 1128.65048, MR 2342593, 10.1007/s10915-007-9147-7; reference:[17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods.Publishers of Hebei University Hebei (1996), Chinese.; reference:[18] Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing.Adv. Comput. Math. 9 (1998), 117-129. Zbl 0920.65087, MR 1662762, 10.1023/A:1018925103993; reference:[19] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations.Springer Berlin (1971). Zbl 0203.09001, MR 0271512; reference:[20] Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Control.Science Press Beijing (1981). Zbl 0542.93034, MR 0664760; reference:[21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs.Science Press Beijing (2008).; reference:[22] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems.SIAM J. Numer. Anal. 39 (2001), 73-99. Zbl 0988.49018, MR 1860717, 10.1137/S0036142999352187; reference:[23] Liu, W. B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems.Adv. Comput. Math. 15 (2001), 285-309. Zbl 1008.49024, MR 1887737, 10.1023/A:1014239012739; reference:[24] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems.SIAM J. Control Optim. 43 (2004), 970-985. Zbl 1071.49023, MR 2114385, 10.1137/S0363012903431608; reference:[25] Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications.Marcel Dekker New York (1994). MR 1275836; reference:[26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations.University of Jyväskylä Press Jyväskylä (1995).; reference:[27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods.Science Press Beijing (2008).; reference:[28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems.Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419.; reference:[29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text.Noordhoff International Publishing Leyden (1975).; reference:[30] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702; reference:[31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702

  6. 6
    Academic Journal

    المؤلفون: Brandts, Jan H.

    وصف الملف: application/pdf

    Relation: mr:MR2530540; zbl:Zbl 1212.65441; reference:[1] Barrios, T. P., Gatica, G. N.: An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses.J. Comput. Appl. Math. 200 (2007), 653-676. Zbl 1112.65106, MR 2289241, 10.1016/j.cam.2006.01.017; reference:[2] Bochev, P. B., Gunzburger, M. D.: Finite element methods of least-squares type.SIAM Rev. 40 (1998), 789-837. Zbl 0914.65108, MR 1659689, 10.1137/S0036144597321156; reference:[3] Brandts, J. H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68 (1994), 311-324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064; reference:[4] Brandts, J. H., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489; reference:[5] Brandts, J. H., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141; reference:[6] Brandts, J. H., Chen, Y. P.: An alternative to the least-squares mixed finite element method for elliptic problems.In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175. Zbl 1056.65110, MR 2121365, 10.1007/978-3-642-18775-9_14; reference:[7] Brandts, J. H., Chen, Y. P.: Superconvergence of least-squares mixed finite elements.Int. J. Numer. Anal. Model. 3 (2006), 303-310. Zbl 1096.65108, MR 2237884; reference:[8] Brandts, J. H., Chen, Y. P., Yang, J.: A note on least-squares mixed finite elements in relation to standard and mixed finite elements.IMA J. Numer. Anal. 26 (2006), 779-789. Zbl 1106.65102, MR 2269196, 10.1093/imanum/dri048; reference:[9] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151. Zbl 0338.90047, MR 0365287; reference:[10] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods.Springer Berlin-Heidelberg-New York (1991). Zbl 0788.73002, MR 1115205; reference:[11] Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F.: First-order system least squares for second-order partial differential equations: Part I.SIAM J. Numer. Anal. 31 (1994), 1785-1799. MR 1302685, 10.1137/0731091; reference:[12] Carey, G. F., Pehlivanov, A. I.: Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements.Comput. Methods Appl. Mech. Eng. 150 (1997), 125-131. Zbl 0907.65101, MR 1487940, 10.1016/S0045-7825(97)00098-4; reference:[13] Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C.: Least-squares finite elements for fluid flow and transport.Int. J. Numer. Methods Fluids 27 (1998), 97-107. Zbl 0904.76043, MR 1602155, 10.1002/(SICI)1097-0363(199801)27:1/43.0.CO;2-2; reference:[14] Ciarlet, P.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition.SIAM Philadelphia (2002). MR 1930132; reference:[15] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96.Marcel Dekker New York (1998). MR 1602809; reference:[16] Pehlivanov, A. I., Carey, G. F.: Error estimates for least-squares mixed finite elements.RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. Zbl 0820.65065, MR 1295584, 10.1051/m2an/1994280504991; reference:[17] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.: Least-squares mixed finite elements for second order elliptic problems.SIAM J. Numer. Anal. 31 (1994), 1368-1377. Zbl 0806.65108, MR 1293520, 10.1137/0731071; reference:[18] Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems. I: Error estimates.Numer. Math. 72 (1996), 501-522. Zbl 0878.65096, MR 1376110, 10.1007/s002110050179; reference:[19] Raviart, P. A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems.Lect. Notes Math. 606 (1977), 292-315. Zbl 0362.65089, MR 0483555, 10.1007/BFb0064470; reference:[20] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605.Springer Berlin (1995). MR 1439050

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2316155; zbl:Zbl 1164.65493; reference:[1] B. Achchab, S. Achchab, O. Axelsson, and A. Souissi: Upper bound of the constant in strengthened C.B.S. inequality for systems of linear partial differential equations.Numer. Algorithms 32 (2003), 185–191. MR 1989366, 10.1023/A:1024058625449; reference:[2] B. Achchab, O. Axelsson, A. Laayouni, and A. Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-dimensional elasticity system.Numer. Linear Algebra Appl. 8 (2001), 191–205. MR 1817796, 10.1002/1099-1506(200104/05)8:33.0.CO;2-7; reference:[3] D. N. Arnold, R. Falk, and R. Winther: Finite element exterior calculus.Acta Numer. 15 (2006), 1–135. MR 2269741, 10.1017/S0962492906210018; reference:[4] O. Axelsson: On multigrid methods of the two-level type.In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960, W. Hackbusch, U. Trotenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367. Zbl 0505.65040, MR 0685778; reference:[5] O. Axelsson, R. Blaheta: Two simple derivations of universal bounds for the CBS inequality constant.Appl. Math. 49 (2004), 57–72. MR 2032148, 10.1023/B:APOM.0000024520.06175.8b; reference:[6] R. Blaheta: Nested tetrahedral grids and strengthened CBS inequality.Numer. Linear Algebra Appl. 10 (2003), 619–637. MR 2030627, 10.1002/nla.340; reference:[7] R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimates of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems.Numer. Linear Algebra Appl. 11 (2004), 309–326. MR 2057704, 10.1002/nla.350; reference:[8] D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition.Cambridge University Press, Cambridge, 2001, pp. 309–326. MR 1827293; reference:[9] J. H. Brandts, S. Korotov, and M. Křížek: The strengthened Cauchy-Bunyakowski-Schwarz inequality for $n$-simplicial linear finite elements.In: Springer Lecture Notes in Computer Science, Vol. 3401, Springer-Verlag, Berlin, 2005, pp. 203–210.; reference:[10] J. H. Brandts, S. Korotov, and M. Křížek: Survey of discrete maximum principles for linear elliptic and parabolic problems.In: Proc. Conf. ECCOMAS 2004, P. Neittaanmäki et al. (eds.), Univ. of Jyväskylä, 2004, pp. 1–19.; reference:[11] J. H. Brandts, S. Korotov, and M. Křížek: Dissection of the path-simplex in $\mathbb{R}^n$ into $n$ path-subsimplices.Linear Algebra Appl. 421 (2007), 382–393. MR 2294350; reference:[12] J. H. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489–505. MR 1987941, 10.1093/imanum/23.3.489; reference:[13] S. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15.Springer-Verlag, New York, 1994. MR 1278258; reference:[14] P. Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174; reference:[15] C. M. Chen: Optimal points of stresses for tetrahedron linear element.Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese); reference:[16] : COMSOL, Multiphysics Version 3.3 (2006).Sweden, http://www.femlab.com.; reference:[17] H. S. M. Coxeter: Trisecting an orthoscheme.Comput. Math. Appl. 17 (1989), 59–71. Zbl 0706.51019, MR 0994189, 10.1016/0898-1221(89)90148-X; reference:[18] : FEMLAB version 2.2 (2002). Multiphysics in Matlab, for use with Matlab.COMSOL, Sweden, http://www.femlab.com.; reference:[19] H. Fujii: Some remarks on finite element analysis of time-dependent field problems.In: Theory Pract. Finite Elem. Struct. Anal, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. Zbl 0373.65047; reference:[20] G. Goodsell: Pointwise superconvergence of the gradient for the linear tetrahedral element.Numer. Methods Partial Differ. Equations 10 (1994), 651–666. Zbl 0807.65112, MR 1290950, 10.1002/num.1690100511; reference:[21] J. Karátson, S. Korotov: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions.Numer. Math. 99 (2005), 669–698. MR 2121074, 10.1007/s00211-004-0559-0; reference:[22] M. Křížek, Q. Lin: On the diagonal dominance of stiffness matrices in 3D.East-West J. Numer. Math. 3 (1995), 59–69. MR 1331484; reference:[23] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538; reference:[24] : Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196.M. Křížek, P. Neittaanmäki, and R. Stenberg (eds.), Marcel Dekker, New York, 1998. MR 1602809; reference:[25] J. C. Nédélec: Mixed finite elements in $\mathbb{R}^3$.Numer. Math. 35 (1980), 315–341. 10.1007/BF01396415; reference:[26] J. C. Nédélec: A new family of mixed finite elements in $\mathbb{R}^3$.Numer. Math. 50 (1986), 57–81. MR 0864305, 10.1007/BF01389668; reference:[27] L. A. Oganesjan, L. A. Ruhovets: Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary.Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120. MR 0295599; reference:[28] V. Ruas Santos: On the strong maximum principle for some piecewise linear finite element approximate problems of non-positive type.J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 29 (1982), 473–491. Zbl 0488.65052, MR 0672072; reference:[29] R. P. Stevenson: An optimal adaptive finite element method.SIAM J. Numer. Anal. 42 (2005), 2188–2217. Zbl 1081.65112, MR 2139244, 10.1137/S0036142903425082; reference:[30] P. Tong: Exact solutions of certain problems by finite-element method.AIAA J. 7 (1969), 178–180. 10.2514/3.5067

  8. 8
    Academic Journal

    المؤلفون: Brandts, Jan H.

    وصف الملف: application/pdf

    Relation: mr:MR1727979; zbl:Zbl 1060.65642; reference:[1] S. Adjerid, J.E. Flaherty, Y.J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737; reference:[2] M. Berzins: Global error estimation in the method of lines for parabolic equations.SIAM J. Sci. Stat. Comput. 9(4) (1988), 687–703. Zbl 0659.65081, MR 0945932, 10.1137/0909045; reference:[3] J.H. Brandts: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68(3) (1994), 311–324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064; reference:[4] J.H. Brandts: Superconvergence for triangular order $k=1$ Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods.Appl. Numer. Math. (1996), to appear (accepted). Zbl 0948.65120, MR 1755693; reference:[5] J.H. Brandts: Superconvergence of mixed finite element semi-discretizations of two time-dependent problems.Appl. Math. 44(1) (1999), 43–53. Zbl 1059.65518, MR 1666846, 10.1023/A:1022220219953; reference:[6] J. Douglas, J.E. Roberts: Global estimates for mixed methods for second order elliptic problems.Math. Comp. 44(169) (1985), 39–52. MR 0771029, 10.1090/S0025-5718-1985-0771029-9; reference:[7] R. Durán: Superconvergence for rectangular mixed finite elements.Numer. Math. 58 (1990), 2–15. MR 1075159, 10.1007/BF01385626; reference:[8] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems I: A linear model problem.SIAM J. Numer. Anal. 28 (1991), 43–77. MR 1083324, 10.1137/0728003; reference:[9] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems II: Optimal error estimates in $L_{\infty }L_2$ and $L_{\infty }L_{\infty }$.SIAM J. Numer. Anal. 32 (1995), 706–740. MR 1335652, 10.1137/0732033; reference:[10] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems III: Time steps variable in space.Manuscript.; reference:[11] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems IV: Nonlinear problems.SIAM J. Numer. Anal. 32 (1995), 1729–1749. MR 1360457, 10.1137/0732078; reference:[12] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems V: Long-time integration.SIAM J. Numer. Anal. 32 (1995), 1750–1763. MR 1360458, 10.1137/0732079; reference:[13] K. Eriksson, C. Johnson, S. Larsson: Adaptive finite element methods for parabolic problems VI: Analytic semigroups.SIAM J. Numer. Anal. 35(4) (1998), 1315–1325. MR 1620144, 10.1137/S0036142996310216; reference:[14] D. Estep: A posteriori error bounds and global error control for approximation of ordinary differential equations.SIAM J. Numer. Anal. 32(1) (1995), 1–48. Zbl 0820.65052, MR 1313704, 10.1137/0732001; reference:[15] C. Johnson, Y. Nie, V. Thomée: An a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problem.SIAM J. Numer. Anal. 27(2) (1990), 277–291. MR 1043607, 10.1137/0727019; reference:[16] M. Křížek, P. Neittaanmäki, R. Stenberg (eds): Finite element methods: superconvergence, post-processing and a posteriori estimates.Proc. Conf. Univ. of Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics volume 196, Marcel Dekker, New York, 1998. MR 1602809; reference:[17] J. Lawson, M. Berzins, P.M. Dew: Balancing space and time errors in the method of lines for parabolic equations.SIAM J. Sci. Stat. Comput. 12(3) (1991), 573–594. MR 1093207, 10.1137/0912031; reference:[18] P. Monk: A comparison of three mixed methods for the time-dependent Maxwell’s equations.SIAM J. Sci. Stat. Comput. 13(5) (1992), 1097–1122. Zbl 0762.65081, MR 1177800, 10.1137/0913064; reference:[19] P. Monk: An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations.J. Comp. Appl. Math. 47 (1993), 101–121. Zbl 0784.65091, MR 1226366, 10.1016/0377-0427(93)90093-Q; reference:[20] A.K. Pani: An $H^1$-Galerkin mixed finite element method for parabolic partial differential equations.SIAM J. Numer. Anal. 35(2) (1998), 712–727. Zbl 1096.76516, MR 1618886, 10.1137/S0036142995280808; reference:[21] P.A. Raviart, J.M. Thomas: A mixed finite element method for second order elliptic problems.Lecture Notes in Mathematics 606, 1977, pp. 292–315. MR 0483555; reference:[22] A.H. Schatz, V. Thomeé, W.L. Wendland (eds): Mathematical Theory of Finite and Boundary Element Methods.Birkhäuser Verlag, Basel, 1990. MR 1116555; reference:[23] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Lecture Notes in Mathematics 1054, Springer Verlag, New York, 1998. MR 0744045

  9. 9
    Academic Journal

    المؤلفون: Brandts, Jan H.

    وصف الملف: application/pdf

    Relation: mr:MR1666846; zbl:Zbl 1059.65518; reference:[1] J.H. Brandts: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Num. Math. 68(3) (1994), 311–324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064; reference:[2] J.H. Brandts: Superconvergence for second order triangular mixed and standard finite elements.Report 9 of: Lab. of Sc. Comp, Univ. of Jyväskylä, Finland, 1996.; reference:[3] J. Douglas and J.E. Roberts: Global estimates for mixed methods for second order elliptic problems.Math. of Comp. 44(169) (1985), 39–52. MR 0771029, 10.1090/S0025-5718-1985-0771029-9; reference:[4] R. Durán: Superconvergence for rectangular mixed finite elements.Num. Math. 58 (1990), 2–15. MR 1075159; reference:[5] P. Monk: A comparison of three mixed methods for the time-dependent Maxwell’s equations.SIAM J. Sci. Stat. Comput. 13(5) (1992), 1097–1122. Zbl 0762.65081, MR 1177800, 10.1137/0913064; reference:[6] P. Monk: An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations.J. of Comp. Appl. Math. 47 (1993), 101–121. Zbl 0784.65091, MR 1226366, 10.1016/0377-0427(93)90093-Q; reference:[7] P.A. Raviart and J.M. Thomas: A mixed finite element method for second order elliptic problems.Lecture Notes in Mathematics, 606, 1977, pp. 292–315. MR 0483555; reference:[8] : Mathematical theory of finite and boundary element methods.A.H. Schatz, V. Thomeé, and W.L. Wendland (eds.), Birkhäuser Verlag, Basel, 1990. Zbl 0701.00028, MR 1116555

  10. 10
    Academic Journal

    المؤلفون: Zhu, Qiding

    وصف الملف: application/pdf

    Relation: mr:MR1652096; zbl:Zbl 0938.65128; reference:[1] Bramble, J. H., Schatz A. H.: High order local accuracy by averaging in the finite element method.Math. Comp. 31 (1977), 94–111. MR 0431744, 10.1090/S0025-5718-1977-0431744-9; reference:[2] Chen, C. M.: Optimal points of the stresses approximated by triangular linear element in FEM.Natur. Sci. J. Xiangtan Univ. 1 (1978), 77–90.; reference:[3] Chen, C. M.: Superconvergence of finite element solution and its derivatives.Numer. Math. J. Chinese Univ. 3:2 (1981), 118–125. MR 0635547; reference:[4] Chen, C. M., Liu, J. G.: Superconvergence of gradient of triangular linear element in general domain.Natur. Sci. J. Xiangtan Univ. 1 (1987), 114–127. MR 0899930; reference:[5] Chen, C. M., Zhu Q. D.: A new estimate for the finite element method and optimal point theorem for stresses.Natur. Sci. J. Xiangtan Univ. 1 (1978), 10–20.; reference:[6] Ding, X. X., Jiang, L.S., Lin, Q., Luo, P. Z.: The finite element method for 4th order non-linear differential equation.Acta Mathematica Sinica 20:2 (1977), 109–118. MR 0657978; reference:[7] Douglas, J. Jr., Dupond, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems.Topics in Numerical Analysis, Academic Press, 1973, pp. 89–92. MR 0366044; reference:[8] Douglas, J. Jr., Dupont, T., Wheeler, M. F.: An $L^{\infty }$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials.RAIRO Anal. Numér. 8 (1974), 61–66. MR 0359358; reference:[9] He, W. M.: A derivative extrapolation for second order triangular element.(1997), Master thesis.; reference:[10] Jia, Z. P.: The high accuracy arithmetic for $k$-th order rectangular finite element.(1990), Master thesis.; reference:[11] Křížek, M., Neittaanmäki, P.: On superconvegence techniques.Acta Appl. Math. 9 (1987), 175–198. 10.1007/BF00047538; reference:[12] Li, B.: Superconvergence for higher-order triangular finite elements.Chinese J. Numer. Math. Appl. 12 (1990), 75–79. MR 1118707; reference:[13] Lin, Q., Lu, T., Shen, S. M.: Maximum norm estimates extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulation.J. Comput. Math. 1 (1983), 376–383.; reference:[14] Lin, Q., Xu, J. C.: Linear finite elements with high accuracy. J. Comput. Math. 3.(1985), 115–133. MR 0854355; reference:[15] Lin, Q., Yan, N. N.: Construction and Analysis for Efficient Finite Element Method.Hebei University Press, 1996. (Chinese); reference:[16] Lin, Q., Zhu, Q. D.: Asymptotic expansion for the derivative of finite elements.J. Comput. Math. 2 (1984), 361–363. MR 0869509; reference:[17] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers, 1994.; reference:[18] Oganesyan, L. A., Rukhovetz, L. A.: A study of the rate of convergence of variational difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary.U.S.S.R. Comput. Math. and Math. Phys. 9 (1969), 158–183. 10.1016/0041-5553(69)90159-1; reference:[19] Schatz, A. H., Sloan, I. H., Wahlbin, L. B.: Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point.SIAM J. Numer. Anal. 33 (1996), 505–521. MR 1388486, 10.1137/0733027; reference:[20] Schatz, A. H., Wahlbin, L. B.: Interior maximum norm estimates for finite element methods, Part II.Math. Comp (1995). MR 0431753; reference:[21] Thomée, V.: High order local approximation to derivatives in the finite element method.Math. Comp. 31 (1977), 652–660. MR 0438664, 10.2307/2005998; reference:[22] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods.LN in Math. 1605, Springer, Berlin, 1995. Zbl 0826.65092, MR 1439050; reference:[23] Wahlbin, L. B.: General principles of superconvergence in Galerkin finite element methods.In Finite element methods: superconvergence, post-processing and a posteriori estimates, M. Křížek, P. Neittaanmäki, R. Stenberg (eds.), Marcel Dekker, New York, 1998, pp. 269–285. Zbl 0902.65046, MR 1602738; reference:[24] Zhu, Q. D.: The derivative optimal point of the stresses for second order finite element method.Natur. Sci. J. Xiangtan Univ. 3 (1981), 36–45.; reference:[25] Zhu, Q. D.: Natural inner superconvergence for the finite element method.In Proc. of the China-France Symposium on Finite Element Methods (Beijing 1982), Science Press, Gorden and Breach, Beijing, 1983, pp. 935–960. Zbl 0611.65074, MR 0754041; reference:[26] Zhu, Q. D.: Uniform superconvergence estimates of derivatives for the finite element method.Numer. Math. J. Xiangtan Univ. 5. Zbl 0549.65073, MR 0745576; reference:[27] Zhu, Q. D.: Uniform superconvergence estimates for the finite element method.Natur. Sci. J. Xiangtan Univ. (19851983), 10–26 311–318. MR 0890708; reference:[28] Zhu, Q. D., Lin, Q.: The Superconvergence Theory of Finite Element Methods.Hunan Scientific and Technical Publishers, Changsha, 1989. (Chinese); reference:[29] Zhu, Q. D.: The superconvergence for the 3rd order triangular finite elements.(1997) (to appear).; reference:[30] Zlámal, M.: Some superconvergence results in the finite element method, LN in Math. 606.(1977, 353–362), Springer, Berlin. MR 0488863

  11. 11
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1395685; zbl:Zbl 0870.65093; reference:[1] M. Ainsworth, A. Craig: A posteriori error estimators in the finite element method.Numer. Math. 60 (1992), 429–463. MR 1142306, 10.1007/BF01385730; reference:[2] I. Babuška, A. Miller: The post-processing in the finite element method, Parts I–II.Internat. J. Numer. Methods Engrg. 20 (1984), 1085–1109, 1111–1129. 10.1002/nme.1620200611; reference:[3] H.-J. Bartsch: Taschenbuch mathematischer Formeln.VEB Fachbuchverlag, Leipzig, 1979. MR 1246330; reference:[4] D. Begis, R. Glowinski: Applications de la méthode des éléments finis à l’approximation d’un problème de domaine optimal.Appl. Math. Optim. 2 (1975), 130–169. MR 0443372, 10.1007/BF01447854; reference:[5] J. H. Bramble, R. S. Hilbert: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation.SIAM J. Numer. Anal. 7 (1970), 112–124. MR 0263214, 10.1137/0707006; reference:[6] J. H. Bramble, A. H. Schatz: Estimates for spline projections.RAIRO Anal. Numér. 10 (1976), 5–37. MR 0436620; reference:[7] P. G. Ciarlet: Basic error estimates for elliptic problems, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.).North-Holland, Amsterdam, 1991. MR 1115237; reference:[8] R. Durán, M. A. Muschietti, R. Rodríguez: On the asymptotic exactness of error estimators for linear triangular finite elements.Numer. Math. 59 (1991), 107–127. MR 1106377, 10.1007/BF01385773; reference:[9] G. Goodsell, J. R. Whiteman: Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity.Numer. Methods Partial Differential Equations 6 (1990), 59–74. MR 1034433, 10.1002/num.1690060105; reference:[10] G. Goodsell, J. R. Whiteman: Superconvergence of recovered gradients of piecewise quadratic finite element approximations.Numer. Methods Partial Differential Equations 7 (1991), 61–83. MR 1088856, 10.1002/num.1690070106; reference:[11] E. J. Haug, K. K. Choi, V. Komkov: Design sensitivity analysis of structural systems.Academic Press, London, 1986. MR 0860040; reference:[12] I. Hlaváček, M. Křížek: On a superconvergent finite element scheme for elliptic systems, Parts I–III.Apl. Mat. 32 (1987), 131–154, 200–213, 276–289.; reference:[13] I. Hlaváček, M. Křížek: Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations.J. Comput. Math (to appear). MR 1414854; reference:[14] V. Kantchev: Superconvergence of the gradient for linear finite elements for nonlinear elliptic problems.Proc. of the ISNA Conf., Prague, 1987, Teubner, Leipzig, 1988, 199–204. Zbl 0677.65107, MR 1171706; reference:[15] V. Kantchev, R. D. Lazarov: Superconvergence of the gradient of linear elements for 3D Poisson equation.Proc. Internat. Conf. Optimal Algorithms (ed. B. Sendov), Blagoevgrad, 1986, Izd. Bulg. Akad. Nauk, Sofia, 1986, 172–182.; reference:[16] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 (1982), 46–75. MR 0640139; reference:[17] M. Křížek, P. Neittaanmäki: Superconvergence phenomenon arising in the finite element method from averaging gradients.Numer. Math. 45 (1984), 105–116. MR 0761883, 10.1007/BF01379664; reference:[18] M. Křížek, P. Neittaanmäki: On a global superconvergence of the gradient of linear triangular elements.J. Comput. Appl. Math. 18 (1987), 221–233. MR 0896426, 10.1016/0377-0427(87)90018-5; reference:[19] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538; reference:[20] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite-element approximations.IMA J. Numer. Anal. 5 (1985), 407–427. Zbl 0584.65067, MR 0816065, 10.1093/imanum/5.4.407; reference:[21] Q. Lin, N. Yan: A rectangle test for singular solution with irregular meshes.Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) Culture Publ. Co., 1991, 236–237.; reference:[22] Q. Lin, Q. Zhu: Asymptotic expansion for the derivative of finite elements.J. Comput. Math. 2 (1984), 361–363. MR 0869509; reference:[23] A. Louis: Acceleration of convergence for finite element solutions of the Poisson equation.Numer. Math. 33 (1979), 43–53. Zbl 0435.65090, MR 0545741, 10.1007/BF01396494; reference:[24] L. A. Oganesjan, L. A. Ruchovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary (Russian).Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. MR 0295599; reference:[25] V. Thomée, J. Xu, N. Zhang: Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem.SIAM J. Numer. Anal. 26 (1989), 553–573. MR 0997656, 10.1137/0726033; reference:[26] L. B. Wahlbin: Local behavior in finite element methods, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.).North-Holland, Amsterdam, 1991, 353–522. MR 1115238; reference:[27] L. B. Wahlbin: Superconvergence in Galerkin finite element methods (Lecture notes).Cornell Univ., 1994, 1–243. MR 1439050; reference:[28] M. F. Wheeler, J. R. Whiteman: Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations.Numer. Methods Partial Differential Equations 3 (1987), 65–82. MR 1012906, 10.1002/num.1690030106; reference:[29] R. Wohlgemuth: Superkonvergenz des Gradienten im Postprocessing von FiniteElemente-Methoden.Preprint Nr. 94, Tech. Univ. Chemnitz, 1989, 1–15.; reference:[30] O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates.Part 1, Internat. J. Numer. Methods Engrg. 33 (1992), 1331–1364. MR 1161557, 10.1002/nme.1620330702

  12. 12
    Academic Journal

    المؤلفون: Hlaváček, Ivan, Chleboun, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1395687; zbl:Zbl 0870.65050; reference:[1] R.H. Bartels, J. C. Beatty and B.A. Barsky: An Introduction to Splines for use in Computer Graphics and Geometric Modelling.Morgan Kaufmann, Los Altos, 1987. MR 0919732; reference:[2] D. Begis, R. Glowinski: Application de la méthode des éléments finis à l’approximation d’un probléme de domaine optimal.Appl. Math. Optim. 2 (1975), 130–169. MR 0443372, 10.1007/BF01447854; reference:[3] C. de Boor: A Practical Guide to Splines.Springer-Verlag, New York, 1978. Zbl 0406.41003, MR 0507062; reference:[4] V. Braibant, C. Fleury: Aspects theoriques de l’optimisation de forme par variation de noeuds de controle, in Conception optimale de formes (Cours et Séminaires).Tome II, INRIA, Nice, 1983.; reference:[5] J. Chleboun: Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem.Kybernetika 29 (1993), 231–248. Zbl 0805.49024, MR 1231869; reference:[6] J. Chleboun, R.A.E. Mäkinen: Primal hybrid formulation of an elliptic equation in smooth optimal shape problems.Adv. in Math. Sci. and Appl. 5 (1995), 139–162. MR 1325963; reference:[7] P.G. Ciarlet: Basic error estimates for elliptic problems, Handbook of Numerical Analysis II (P.G. Ciarlet, J.L. Lions eds.).North-Holland, Amsterdam, 1991. MR 1115237; reference:[8] J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape Design, Theory and Applications.John Wiley, Chichester, 1988. MR 0982710; reference:[9] E.J. Haug, K.K. Choi and V. Komkov: Design Sensitivity Analysis of Structural Systems.Academic Press, Orlando, London, 1986. MR 0860040; reference:[10] I. Hlaváček: Optimization of the domain in elliptic problems by the dual finite element method.Apl. Mat. 30 (1985), 50–72. MR 0779332; reference:[11] I. Hlaváček, R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284–304.; reference:[12] I. Hlaváček, M. Křížek and Pištora: How to recover the gradient of linear elements on nonuniform triangulations.Appl. Math. 41 (1996), 241–267. MR 1395685; reference:[13] I. Hlaváček, M. Křížek: Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations.To appear in Journal of Computation. MR 1414854; reference:[14] I. Hlaváček: Shape optimization by means of the penalty method with extrapolation.Appl. Math 39 (1994), 449–477. MR 1298733; reference:[15] J.T. King, S.M. Serbin: Boundary flux estimates for elliptic problems by the perturbed variational method.Computing 16 (1976), 339–347. MR 0418485, 10.1007/BF02252082; reference:[16] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538; reference:[17] R.D. Lazarov, A.I. Pehlivanov, S.S. Chow and G.F. Carey: Superconvergence analysis of the approximate boundary flux calculations.Numer. Math. 63 (1992), 483–501. MR 1189533, 10.1007/BF01385871; reference:[18] R.D. Lazarov, A.I. Pehlivanov: Local superconvergence analysis of the approximate boundary flux calculations.Proceed. of the Conference Equadiff 7, Teubner-Texte zur Math., Bd 118, Leipzig 1990, 275–278.; reference:[19] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite element approximations.IMA J. Numer. Anal. 5 (1985), 407–427. Zbl 0584.65067, MR 0816065, 10.1093/imanum/5.4.407; reference:[20] P.A. Raviart, J.M. Thomas: Primal hybrid finite element method for 2nd order elliptic equations.Math. Comp. 31 (1977), 391–413. MR 0431752; reference:[21] J. Sokolowski, J.P. Zolesio: Introduction to Shape Optimization: Shape Sensitivity Analysis.Springer-Verlag, Berlin, 1992. MR 1215733; reference:[22] L.B. Wahlbin: Superconvergence in Galerkin finite element methods (Lecture notes).Cornell University 1994, 1–243. MR 1439050

  13. 13
    Academic Journal

    المؤلفون: Regińska, Teresa

    وصف الملف: application/pdf

    Relation: mr:MR0949249; zbl:Zbl 0664.65076; reference:[1] J. P. Aubin: Approximation of elliptic boundary value problems.Wiley-Interscience (1972). Zbl 0248.65063, MR 0478662; reference:[2] I. Babuška J. E. Osborn: Generalized finite element methods: their performance and their relation to mixed methods.SIAM J. Numer. Anal. 20 (1983), 510-536. MR 0701094, 10.1137/0720034; reference:[3] C. de Boor B. Swartz: Collocation at Gaussian points.SIAM J. Numer. Anal. 10 (1973), 582-606. MR 0373328, 10.1137/0710052; reference:[4] P. Ciarlet: The finite element method for elliptic problems.North-Holland Publishing Company (1978). Zbl 0383.65058, MR 0520174; reference:[5] C. A. Chandler: Superconvergence for second kind integral equations, Application and Numerical Solution of Integral Equations.Sijthoff, Noordhoff (1980), 103-117. MR 0582986; reference:[6] P. J. Dams: Interpolation and approximation.Blaisdell Publishing Company (1963).; reference:[7] J. Douglas, Jr. T. Dupont: Some superconvergence results for Galerkin methods for the approximate solution of two point boundary problems.Topics in numerical analysis, (1973), 89-92. MR 0366044; reference:[8] J. Douglas, Jr. T. Dupont: Collocation methods for parabolic equations in a single space variable.Lecture Notes in Math. 385 (1974). MR 0483559; reference:[9] T. Dupont: A unified theory of superconvergence for Galerkin methods for two-point boundary value problems.SIAM J. Numer. Anal. vol. 13, no. 3, (1976), 362-368. MR 0408256, 10.1137/0713032; reference:[10] M. Křížek P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175-198. MR 0900263, 10.1007/BF00047538; reference:[11] T. Regińska: Superconvergence of external approximation for two-point boundary problems.Apl. Mat. 32 (1987), pp. 25-36. MR 0879327; reference:[12] G. R. Richter: Superconvergence of piecewise polynomial Galerkin approximations for Fredholm integral equations of the second kind.Numer. Math. 31 (1978), pp. 63-70. Zbl 0427.65091, MR 0508588, 10.1007/BF01396014; reference:[13] A. Spence K. S. Thomas: On superconvergence properties of Galerkin's method for compact operator equations.IMA J. Numer. Anal. 3 (1983), pp. 253 - 271. MR 0723049, 10.1093/imanum/3.3.253; reference:[14] V. Thomée: Spline approximation and difference schemes for the heat equation. The mathematical foundations of finite element method with application to partial differential equations.Academic Press (1972), pp. 711 - 746. MR 0403265; reference:[15] M. Zlámal: Some superconvergence results in the finite element method.Lecture Notes 606, (1977), p. 353-362. MR 0488863, 10.1007/BFb0064473

  14. 14
    Academic Journal

    المؤلفون: Hlaváček, Ivan, Křížek, Michal

    وصف الملف: application/pdf

    Relation: mr:MR0895878; zbl:Zbl 0636.65115; reference:[1] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174; reference:[2] I. Hlaváček M. Křížek: On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions.Apl. Mat. 32 (1987), 131 -154. MR 0885758; reference:[3] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334. 10.1007/BF00249518; reference:[4] M. Křížek P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664; reference:[5] L. A. Oganesjan L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations.Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.; reference:[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584; reference:[7] M. Zlámal: Some superconvergence results in the finite element method.Mathematical Aspects of Finite Element Methods (Proc. Conf., Rome, 1975). Springer-Verlag, Berlin, Heidelberg, New York, 1977, 353-362. MR 0488863

  15. 15
    Academic Journal

    المؤلفون: Hlaváček, Ivan, Křížek, Michal

    وصف الملف: application/pdf

    Relation: mr:MR0885758; zbl:Zbl 0622.65097; reference:[1] S. Agmon A. Douglis L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050, 10.1002/cpa.3160170104; reference:[2] A. B. Andreev: Superconvergence of the gradient for linear triangle elements for elliptic and parabolic equations.C. R. Acad. Bulgare Sci. 37 (1984), 293 - 296. Zbl 0575.65106, MR 0758156; reference:[3] I. Babuška A. Miller: The post-processing technique in the finite element method.Parts I-III, Internat. J. Numer. Methods Engrg. 20 (1984), 1085-1109, 1111-1129.; reference:[4] C. M. Chen: Optimal points of the stresses for triangular linear element.Numer. Math. J. Chinese Univ. 2 (1980), 12-20. Zbl 0534.73057, MR 0619174; reference:[5] C. M. Chen: $W^{1,\infty}$-interior estimates for finite element method on regular mesh.J. Comput. Math. 3 (1985), 1-7. Zbl 0603.34024, MR 0815405; reference:[6] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174; reference:[7] I. Hlaváček M. Hlaváček: On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses.Apl. Mat. 14 (1969), 387-410. MR 0250537; reference:[8] V. P. Iljin: Svojstva někotorych klassov differenciruemych funkcij mnogich peremennych, zadannych v n-mernoj oblasti.Trudy Mat. Inst. Steklov. 66 (1962), 227-363.; reference:[9] M. Křížek P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664; reference:[10] M. Křížek P. Neittaanmäki: On Superconvergence techniques.Preprint n. 34, Univ. of Jyväskylä, 1984, 1 - 43 (to appear in Acta Appl. Math.). MR 0900263; reference:[11] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite element approximations.IMA J. Numer. Anal. 5 (1985), 407-427. Zbl 0584.65067, MR 0816065, 10.1093/imanum/5.4.407; reference:[12] Q. Lin J. Ch. Xu: Linear finite elements with high accuracy.J. Comput. Math. 3 (1985), 115-133. Zbl 0577.65094, MR 0854355; reference:[13] A. Louis: Acceleration of convergence for finite element solutions of the Poisson equation.Numer. Math. 33 (1979), 43-53. Zbl 0435.65090, MR 0545741, 10.1007/BF01396494; reference:[14] L. A. Oganesjan V. J. Rivkind L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations. Part I.(Proc. Sem., Issue 5, Vilnius, 1973), Inst. of Phys. and Math., Vilnius, 1973, 3-389.; reference:[15] L. A. Oganesjan L. A. Ruchovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional regions with smooth boundary.Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1120. MR 0295599; reference:[16] L. A. Oganesjan L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations.Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.; reference:[17] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584; reference:[18] J. Nečas I. Hlaváček: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-334. MR 0252844, 10.1007/BF00249518; reference:[19] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier, Amsterdam, Oxford, New York, 1981. MR 0600655; reference:[20] V. Thomée: High order local approximations to derivatives in the finite element method.Math. Соmр. 31 (1977), 652-660. MR 0438664; reference:[21] B. Westergren: Interior estimates for elliptic systems of difference equations.(Thesis). Univ. of Goteborg, 1982.; reference:[22] Q. D. Zhu: Natural inner Superconvergence for the finite element method.(Proc. China-France Sympos. on the Finite Element method, Beijing, 1982), Science Press, Beijing, Gordon and Breach, New York, 1983, 935-960. MR 0754041; reference:[23] M. Zlámal: Superconvergence and reduced integration in the finite element method.Math. Соmр. 32 (1978), 663-685. MR 0495027

  16. 16
    Academic Journal

    المؤلفون: Regińska, Teresa

    وصف الملف: application/pdf

    Relation: mr:MR0879327; zbl:Zbl 0641.65064; reference:[1] J. P. Aubin: Approximation of elliptic boundary-value problems.Wiley-Interscience, New York, 1972. Zbl 0248.65063, MR 0478662; reference:[2] C. De Boor B. Swartz: Collocation at Gausian points.SIAM J. Numer. Anal. 10 (1973), 582-606. MR 0373328, 10.1137/0710052; reference:[3] P. Ciarlet: The finite element method for elliptic problems.North-Holland, Publishing Company (1978). Zbl 0383.65058, MR 0520174; reference:[4] J. Douglas, Jr. T. Dupont: Collocation method for parabolic equations in a single space variable.Lecture Notes in Math., 385 (1974). MR 0483559; reference:[5] J. Douglas, Jr. T. Dupont: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems.- Topics in numerical analysis, ed. J.J.M.F. Miller, pp. 89-92 (1973). MR 0366044; reference:[6] P. J. Davis: Interpolation and approximation.Blaisdell Publishing Company (1963). Zbl 0111.06003, MR 0157156; reference:[7] M. Křížek P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), pp. 105-116. MR 0761883, 10.1007/BF01379664; reference:[8] T. Regińska: Superconvergence of eigenvalue external approximation for ordinary differential operators.IMA Jour. Numer. Anal. 6 (1986), pp. 309-323. MR 0967671, 10.1093/imanum/6.3.309; reference:[9] M. Zlámal: Some superconvergence results in the finite element method.- Mathematical Aspects of f.e.m., Lecture Notes 606 (1977), pp. 353 - 362. MR 0488863, 10.1007/BFb0064473