-
1Academic Journal
مصطلحات موضوعية: keyword:weighted distribution, keyword:preservation, keyword:stochastic ordering, keyword:aging classes, msc:60E05, msc:60E15, msc:62N05
وصف الملف: application/pdf
Relation: mr:MR3396474; zbl:Zbl 06486920; reference:[1] Ahmad, I., Kayid, M.: Reversed preservation of stochastic orders for random minima and maxima with applications.Stat. Pap. 48 (2007), 283-293. Zbl 1114.60017, MR 2295816, 10.1007/s00362-006-0331-x; reference:[2] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.International Series in Decision Processes Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625; reference:[3] Bartoszewicz, J.: On a representation of weighted distributions.Stat. Probab. Lett. 79 (2009), 1690-1694. Zbl 1170.60009, MR 2547939, 10.1016/j.spl.2009.04.007; reference:[4] Bartoszewicz, J., Skolimowska, M.: Preservation of classes of life distributions and stochastic orders under weighting.Stat. Probab. Lett. 76 (2006), 587-596. Zbl 1088.62017, MR 2255787, 10.1016/j.spl.2005.09.003; reference:[5] Błażej, P.: Preservation of classes of life distributions under weighting with a general weight function.Stat. Probab. Lett. 78 (2008), 3056-3061. Zbl 1158.62010, MR 2474397, 10.1016/j.spl.2008.05.028; reference:[6] Izadkhah, S., Rezaei, A. H., Amini, M., Borzadaran, G. R. Mohtashami: A general approach for preservation of some aging classes under weighting.Commun. Stat., Theory Methods 42 (2013), 1899-1909. MR 3045360, 10.1080/03610926.2011.598998; reference:[7] Izadkhah, S., Roknabadi, A. H. Rezaei, Borzadaran, G. R. Mohtashami: On properties of reversed mean residual life order for weighted distributions.Commun. Stat., Theory Methods 42 (2013), 838-851. MR 3028980, 10.1080/03610926.2011.586484; reference:[8] Jain, K., Singh, H., Bagai, I.: Relations for reliability measures of weighted distributions.Commun. Stat., Theory Methods 18 (1989), 4393-4412. Zbl 0707.62197, MR 1046715, 10.1080/03610928908830162; reference:[9] Karlin, S.: Total Positivity. Vol. I.Stanford University Press, Stanford, California (1968). MR 0230102; reference:[10] Kochar, S. C., Gupta, R. P.: Some results on weighted distributions for positive-valued random variables.Probab. Eng. Inf. Sci. 1 (1987), 417-423. Zbl 1134.60315, 10.1017/S0269964800000498; reference:[11] Misra, N., Gupta, N., Dhariyal, I. D.: Preservation of some aging properties and stochastic orders by weighted distributions.Commun. Stat., Theory Methods 37 (2008), 627-644. Zbl 1136.62065, MR 2392347, 10.1080/03610920701499506; reference:[12] Nanda, A. K., Jain, K.: Some weighted distribution results on univariate and bivariate cases.J. Stat. Plann. Inference 77 (1999), 169-180. Zbl 0924.62018, MR 1687954, 10.1016/S0378-3758(98)00190-6; reference:[13] Nanda, A. K., Singh, H., Misra, N., Paul, P.: Reliability properties of reversed residual lifetime.Commun. Stat., Theory Methods 32 (2003), 2031-2042. Zbl 1156.62360, MR 2002004, 10.1081/STA-120023264; reference:[14] Navarro, J., Aguila, Y. del, Ruiz, J. M.: Characterizations through reliability measures from weighted distributions.Stat. Pap. 42 (2001), 395-402. MR 1860754, 10.1007/s003620100066; reference:[15] Pakes, A. G., Navarro, J., Ruiz, J. M., Aguila, Y. del: Characterizations using weighted distributions.J. Stat. Plann. Inference 116 (2003), 389-420. MR 2000091, 10.1016/S0378-3758(02)00357-9; reference:[16] Patil, G. P., Rao, C. R.: Weighted distributions and size-biased sampling with applications to wildlife populations and human families.Biometrics 34 (1978), 179-189. Zbl 0384.62014, MR 0507202, 10.2307/2530008; reference:[17] Rao, C. R.: On discrete distributions arising out of methods of ascertainment.Sankhy\=a, Ser. A 27 (1965), 311-324. Zbl 0212.21903, MR 0208736; reference:[18] Shaked, Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics Springer, New York (2007). MR 2265633