يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"keyword:spread"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4586907; zbl:Zbl 07729520; reference:[1] Andrade, E., Dahl, G., Leal, L., Robbiano, M.: New bounds for the signless Laplacian spread.Linear Algebra Appl. 566 (2019), 98-120. Zbl 1410.05114, MR 3896162, 10.1016/j.laa.2018.12.019; reference:[2] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread.Linear Algebra Appl. 544 (2018), 254-272. Zbl 1388.05108, MR 3765785, 10.1016/j.laa.2017.07.037; reference:[3] Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inéqualité entre des intégrales definies.Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. Zbl 0040.31904, MR 0042474; reference:[4] ndağ, Ş. B. Bozkurt Altı: Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs.Math. Interdisc. Research 4 (2019), 171-182. 10.22052/mir.2019.208991.1180; reference:[5] ndağ, Ş. B. Bozkurt Altı: Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs.Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. Zbl 07540020, MR 4187056, 10.7251/BIMVI2101135A; reference:[6] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585; reference:[7] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis.University of California, San Diego (2008). MR 2711548; reference:[8] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs.Linear Algebra Appl. 433 (2010), 172-190. Zbl 1217.05138, MR 2645076, 10.1016/j.laa.2010.02.002; reference:[9] Cheng, B., Liu, B.: The normalized incidence energy of a graph.Linear Algebra Appl. 438 (2013), 4510-4519. Zbl 1282.05104, MR 3034547, 10.1016/j.laa.2013.01.003; reference:[10] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. AMS, Providence (1997). Zbl 0867.05046, MR 1421568, 10.1090/cbms/092; reference:[11] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables.J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. Zbl 1204.26031, MR 2749168, 10.1155/2010/128258; reference:[12] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). MR 0572262; reference:[13] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacian of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. Zbl 1113.05061, MR 2312332, 10.1016/j.laa.2007.01.009; reference:[14] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian. II.Linear Algebra Appl. 432 (2010), 2257-2277. Zbl 1218.05089, MR 2599858, 10.1016/j.laa.2009.05.020; reference:[15] Das, K. C., Güngör, A. D., Bozkurt, Ş. B.: On the normalized Laplacian eigenvalues of graphs.Ars Comb. 118 (2015), 143-154. Zbl 1349.05205, MR 3330443; reference:[16] Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San: On Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. Zbl 1464.05070, MR 3241719; reference:[17] Gomes, H., Martins, E., Robbiano, M., Martín, B. San: Upper bounds for Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. Zbl 1464.05236, MR 3241720; reference:[18] Gu, R., Huang, F., Li, X.: Randić incidence energy of graphs.Trans. Comb. 3 (2014), 1-9. Zbl 1463.05331, MR 3239628, 10.22108/TOC.2014.5573; reference:[19] Gutman, I., Milovanović, E., Milovanović, I.: Bounds for Laplacian-type graph energies.Miskolc Math. Notes 16 (2015), 195-203. Zbl 1340.05164, MR 3384599, 10.18514/MMN.2015.1140; reference:[20] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\phi$-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1; reference:[21] Liu, B., Huang, Y., Feng, J.: A note on the Randić spectral radius.MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. Zbl 1289.05133, MR 3052189; reference:[22] Liu, M., Liu, B.: The signless Laplacian spread.Linear Algebra Appl. 432 (2010), 505-514. Zbl 1206.05064, MR 2577696, 10.1016/j.laa.2009.08.025; reference:[23] Güngör, A. D. Maden, Çevik, A. S., Habibi, N.: New bounds for the spread of the signless Laplacian spectrum.Math. Inequal. Appl. 17 (2014), 283-294. Zbl 1408.05082, MR 3220994, 10.7153/mia-17-23; reference:[24] Milovanović, I., Milovanović, E., Glogić, E.: On applications of Andrica-Badea and Nagy inequalities in spectral graph theory.Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. Zbl 1389.05104, MR 3437422; reference:[25] Mitrinović, D. S.: Analytic Inequalities.Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). Zbl 0199.38101, MR 274686, 10.1007/978-3-642-99970-3; reference:[26] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001; reference:[27] Shi, L.: Bounds on Randić indices.Discrete Math. 309 (2009), 5238-5241. Zbl 1179.05039, MR 2548924, 10.1016/j.disc.2009.03.036; reference:[28] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis.ETH Zürich, Zürich (2005).

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3247461; zbl:Zbl 06391493; reference:[1] Gutman, I., Das, K. C.: The first Zagreb index 30 years after.MATCH Commun. Math. Comput. Chem. 50 83-92 (2004). Zbl 1053.05115, MR 2037426; reference:[2] Mitrinović, D. S.: Analytic Inequalities. In Cooperation with P. M. Vasić.Die Grundlehren der mathematischen Wissenschaften 165 Springer, Berlin (1970). Zbl 0199.38101, MR 0274686; reference:[3] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis.Mathematics and Its Applications (East European Series) 61 Kluwer Academic Publishers, Dordrecht (1993). MR 1220224; reference:[4] You, Z., Liu, B.: The Laplacian spread of graphs.Czech. Math. J. 62 155-168 (2012). Zbl 1245.05089, MR 2899742, 10.1007/s10587-012-0003-z

  3. 3
    Academic Journal

    المؤلفون: You, Zhifu, Liu, BoLian

    وصف الملف: application/pdf

    Relation: mr:MR2899742; zbl:Zbl 1245.05089; reference:[1] Bao, Y. H., Tan, Y. Y., Fan, Y. Z.: The Laplacian spread of unicyclic graphs.Appl. Math. Lett. 22 (2009), 1011-1015. Zbl 1179.05069, MR 2522991, 10.1016/j.aml.2009.01.023; reference:[2] Chen, Y., Wang, L.: The Laplacian spread of tricyclic graphs.Electron. J. Comb. 16 (2009), R80. Zbl 1230.05198, MR 2529789, 10.37236/169; reference:[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs.VEB Deutscher Verlag der Wissenschaften Berlin (1980). Zbl 0458.05042; reference:[4] Das, K. C.: The Laplacian spectrum of a graph.Comput. Math. Appl. 48 (2004), 715-724. Zbl 1058.05048, MR 2105246, 10.1016/j.camwa.2004.05.005; reference:[5] Dam, E. R. van, Haemers, W. H.: Graphs with constant $\mu$ and $\overline{\mu}$.Discrete Math. 182 (1998), 293-307. MR 1603715, 10.1016/S0012-365X(97)00150-7; reference:[6] Fan, Y. Z., Xu, J., Wang, Y., Liang, D.: The Laplacian spread of a tree.Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only. Zbl 1153.05323, MR 2383736; reference:[7] Fan, Y., Li, S., Tan, Y.: The Laplacian spread of bicyclic graphs.J. Math. Res. Expo. 30 (2010), 17-28. MR 2605816; reference:[8] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 98-305. Zbl 0265.05119, MR 0318007; reference:[9] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007; reference:[10] Gregory, D. A., Hershkowitz, D., Kirkland, S. J.: The spread of the spectrum of a graph.Linear Algebra Appl. 332-334 (2001), 23-35. Zbl 0978.05049, MR 1839425; reference:[11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-239. Zbl 0733.05060, MR 1041245, 10.1137/0611016; reference:[12] Grone, R., Merris, R.: The Laplacian spectrum of a graph II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653; reference:[13] Hong, Y., Shu, J. L.: A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type.Discrete Math. 211 (2000), 229-232. Zbl 0952.05045, MR 1735340, 10.1016/S0012-365X(99)90280-7; reference:[14] Lazić, M.: On the Laplacian energy of a graph.Czech. Math. J. 56 (2006), 1207-1213. Zbl 1164.05408, MR 2280804, 10.1007/s10587-006-0089-2; reference:[15] Li, J., Shiu, W. C., Chan, W. H.: Some results on the Laplacian eigenvalues of unicyclic graphs.Linear Algebra Appl. 430 (2009), 2080-2093. Zbl 1225.05169, MR 2503955; reference:[16] Li, P., Shi, J. S., Li, R. L.: Laplacian spread of bicyclic graphs.J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese. MR 2682387; reference:[17] Liu, H., Lu, M., Tian, F.: On the Laplacian spectral radius of a graph.Linear Algebra Appl. 376 (2004), 135-141. Zbl 1032.05087, MR 2014889; reference:[18] Liu, B., Liu, M.-H.: On the spread of the spectrum of a graph.Discrete Math. 309 (2009), 2727-2732. Zbl 1194.05091, MR 2523780, 10.1016/j.disc.2008.06.026; reference:[19] Lu, M., Liu, H., Tian, F.: Laplacian spectral bounds for clique and independence numbers of graphs.J. Comb. Theory, Ser. B 97 (2007), 726-732. Zbl 1122.05072, MR 2344135, 10.1016/j.jctb.2006.12.003; reference:[20] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613; reference:[21] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs.Am. Math. Mon. 63 (1956), 175-177. Zbl 0070.18503, MR 0078685, 10.2307/2306658; reference:[22] Ozeki, N.: On the estimation of the inequality by the maximum.J. College Arts Chiba Univ. 5 (1968), 199-203. MR 0254198; reference:[23] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003; reference:[24] You, Z., Liu, B.: The minimum Laplacian spread of unicyclic graphs.Linear Algebra Appl. 432 (2010), 499-504. Zbl 1206.05066, MR 2577695, 10.1016/j.laa.2009.08.027; reference:[25] Zhang, X.: On the two conjectures of Graffiti.Linear Algebra Appl. 385 (2004), 369-379. Zbl 1051.05062, MR 2063360; reference:[26] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs.Linear Algebra Appl. 429 (2008), 2239-2246. Zbl 1144.05325, MR 2446656, 10.1016/j.laa.2008.06.023

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1705532; zbl:Zbl 1274.93260; reference:[1] Ansari A., Viswanathan R.: Application of expectation–maximization algorithm to the detection of a direct–sequence signal in pulsed noise jamming.IEEE Trans. Comm. 41 (1993), 1151–1154 Zbl 0800.94120, 10.1109/26.231956; reference:[2] Dempster A. P., Laird N. M., Rubin D. B.: Maximum–likelihood from incomplete data via EM algorithm.J. Roy. Statist. Soc. 39 (1977), 1–17 MR 0501537; reference:[3] Georghiades C. N., Han J. C.: Optimum decoding of TCM in the presence of phase–errors.In: Proc. 1990 International Symposium and Its Applications (ISITA’90), Hawaii 1990; reference:[4] Georghiades C. N., Han J. C.: Sequence estimation in the presence of random parameters via the EM algorithm, submitte.; reference:[5] Georghiades C. N., Snyder D. L.: The expectation–maximization algorithm for symbol unsynchronized sequence detection.In: IEEE Trans. Comm. COM-39 (1991), 54–61 10.1109/26.68276; reference:[6] Han J. C., Georghiades C. N.: Maximum–likelihood sequence estimation for fading channels via the EM algorithm.In: Proc. Communication Theory Mini Conference, Houston 1993; reference:[7] Kaleh G. K.: Joint decoding and phase estimation via the expectation–maximization algorithm.In: Proc. Internat. Symposium on Information Theory, San Diego 1990; reference:[8] Milstein L. B., Iltis R. A.: Signal processing for interference rejection in spread spectrum communications.IEEE ASSP Magazine (1986), 18–31 10.1109/MASSP.1986.1165359; reference:[9] Modestino J. W.: Reduced–complexity iterative maximum–likelihood sequence estimation on channels with memory.In: Proc. Internat. Symposium on Information Theory, San Antonio 1993; reference:[10] Wu C. F.: On the convergence properties of the EM algorithm.Ann. Statist. 11 (1983), 1, 95–103 Zbl 0517.62035, MR 0684867, 10.1214/aos/1176346060

  5. 5
    Academic Journal

    المؤلفون: Arhangel'skii, A. V.

    وصف الملف: application/pdf

    Relation: mr:MR1357532; zbl:Zbl 0837.54005; reference:[1] Arhangel'skii A.V.: On the cardinality of bicompacta satisfying the first axiom of countability.Soviet Math. Dokl. 10 (1969), 951-955. MR 0119188; reference:[2] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33-96. MR 0526012; reference:[3] Arhangel'skii A.V.: Theorems on the cardinality of families of sets in compact Hausdorff spaces.Soviet Math. Dokl. 17:1 (1976), 213-217. MR 0405327; reference:[4] Arhangel'skii A.V.: A theorem on cardinality.Russ. Math. Surveys 34:4 (1979), 153-154. MR 0548421; reference:[5] Arhangel'skii A.V., Hamdi M.M. Genedi: The beginnings of the Theory of Relative Topological Properties.p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian).; reference:[6] Arhangel'skii A.V.: $C_p$-Theory.in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992. Zbl 0932.54015; reference:[7] Arhangel'skii V.A.: Relative compactness and networks.Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian).; reference:[8] Bell M., Ginsburg J., Woods G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number.Pacific J. Math. 79 (1978), 37-45. MR 0526665; reference:[9] Burke D.K., Hodel R.E.: The number of compact subsets of a topological space.Proc. Amer. Math. Soc. 58 (1976), 363-368. Zbl 0335.54005, MR 0418014; reference:[10] Charlesworth A.: On the cardinality of a topological space.Proc. Amer. Math. Soc. 66 (1977), 138-142. Zbl 0364.54004, MR 0451184; reference:[11] Corson H.H., Michael E.: Metrization of certain countable unions.Illinois J. Math. 8 (1964), 351-360. MR 0170324; reference:[12] Dow A., Vermeer J.: An example concerning the property of a space being Lindelöf in another.Topology and Appl. 51 (1993), 255-260. Zbl 0827.54014, MR 1237391; reference:[13] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321; reference:[14] Fedorchuk V.V.: On the cardinality of hereditarily separable compact Hausdorff spaces.Soviet Math. Dokl. 16 (1975), 651-655. Zbl 0331.54029; reference:[15] Ginsburg J., Woods G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Amer. Math. Soc. 64 (1977), 357-360. Zbl 0398.54002, MR 0461407; reference:[16] Grothendieck A.: Criteres de compacticite dans les espaces fonctionnels genereaux.Amer. J. Math. 74 (1952), 168-186. MR 0047313; reference:[17] Gryzlow A.A.: Two theorems on the cardinality of topological spaces.Soviet Math. Dokl. 21 (1980), 506-509.; reference:[18] Hajnal A., Juhász I.: Discrete subspaces of topological spaces.Indag. Math. 29 (1967), 343-356. MR 0229195; reference:[19] Hodel R.E.: A technique for proving inequalities in cardinal functions.Topology Proc. 4 (1979), 115-120. MR 0583694; reference:[20] Hodel R.E.: Cardinal Functions, 1.in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984. MR 0776620; reference:[21] Hodel R.E.: Combinatorial set theory and cardinal function inequalities.Proc. Amer. Math. Soc. 111:2 (1991), 567-575. Zbl 0713.54007, MR 1039531; reference:[22] Mischenko A.: Spaces with point countable bases.Soviet Math. Dokl. 3 (1962), 855-858.; reference:[23] Pol R.: Short proofs of two theorems on cardinality of topological spaces.Bull. Acad. Polon. Sci. 22 (1974), 1245-1249. Zbl 0295.54004, MR 0383333; reference:[24] Ranchin D.V.: On compactness modulo an ideal.Dokl. AN SSSR 202 (1972), 761-764 (in Russian). MR 0296899; reference:[25] Shapirovskij B.E.: On discrete subspaces of topological spaces; weight, tightness and Souslin number.Soviet Math. Dokl. 13 (1972), 215-219.; reference:[26] Shapirovskij B.E.: Canonical sets and character. Density and weight in compact spaces.Soviet Math. Dokl. 15 (1974), 1282-1287. Zbl 0306.54012; reference:[27] Stephenson R.M., Jr.: Initially $\kappa $-compact and related spaces.in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984. Zbl 0588.54025, MR 0776632; reference:[28] van Douwen Eric K.: Applications of maximal topologies.Topol. and Appl. 51:2 (1993), 125-139. Zbl 0845.54028, MR 1229708