-
1Academic Journal
المؤلفون: Wißmann, Thorsten, Milius, Stefan, Katsumata, Shin-ya, Dubut, Jérémy
مصطلحات موضوعية: keyword:coalgebra, keyword:reachability, keyword:Kleisli category, msc:18A99, msc:18B20, msc:68Q99
وصف الملف: application/pdf
Relation: mr:MR4061365; zbl:Zbl 07177892; reference:[1] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories: The Joy of Cats.Repr. Theory Appl. Categ., 17, 2006. MR 2240597; reference:[2] Adámek J., Milius S., Bowler N., Levy P. B.: Coproducts of monads on $\mathsf{Set}$.Proc. of the 2012 27th Annual IEEE Symp. on Logic in Computer Science, Los Alamitos 2012, IEEE, 45–54. MR 3050425; reference:[3] Adámek J., Milius S., Moss L. S.: Fixed points of functors.J. Log. Algebr. Methods Program. 95 (2018), 41–81. MR 3759517, 10.1016/j.jlamp.2017.11.003; reference:[4] Adámek J., Milius S., Moss L. S., Sousa L.: Well-pointed coalgebras.Log. Methods Comput. Sci., Selected papers of “Foundations of Software Science and Computation Structures”: FOSSACS 2012 9 (2013), 3:2, 51 pages. MR 3091735; reference:[5] Adámek J., Milius S., Sousa L., Wißmann T.: On finitary functors.available at arXiv:1902.05788v3 [math.CT] (2019), 31 pages. MR 4027294; reference:[6] Adámek J., Rosický J.: Locally Presentable and Accessible Categories.London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994. MR 1294136; reference:[7] Adámek J., Trnková V.: Automata and Algebras in Categories.Mathematics and Its Applications (East European Series) 37, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1071169; reference:[8] Barlocco S., Kupke C., Rot J.: Coalgebra learning via duality.Foundations of Software Science and Computation Structures, Lecture Notes in Comput. Sci., 11425, Springer, Cham, 2019, pages 62–78. MR 3944008; reference:[9] Barr M.: Terminal coalgebras in well-founded set theory.Theoret. Comput. Sci. 114 (1993), no. 2, 299–315. MR 1228862, 10.1016/0304-3975(93)90076-6; reference:[10] Blok A.: Interaction, Observation and Denotation.MSc Thesis, Universiteit van Amsterdam, Amsterdam, 2012.; reference:[11] Carboni A., Lack S., Walters R. F. C.: Introduction to extensive and distributive categories.J. Pure and Appl. Algebra 84 (1993), no. 2, 145–158. MR 1201048, 10.1016/0022-4049(93)90035-R; reference:[12] Gabbay M., Pitts A.: A new approach to abstract syntax involving binders.Proc. of the 14th Symp. on Logic in Computer Science, Trento 1999, IEEE Computer Soc., Los Alamitos, 1999, 214–224. MR 1943416; reference:[13] Gumm H. P.: From $T$-coalgebras to filter structures and transition systems.Proc. of the 1st Conf. Algebra and Coalgebra in Computer Science, Lecture Notes in Comput. Sci., 3629, Springer, Berlin, 2005, 194–212. MR 2205008; reference:[14] Hasuo I., Jacobs B., Sokolova A.: Generic trace semantics via coinduction.Log. Methods Comput. Sci. 3 (2007), no. 4, 4:11, 36 pages. MR 2357498, 10.2168/LMCS-3(4:11)2007; reference:[15] Jacobs B.: The temporal logic of coalgebras via Galois algebras.Math. Structures Comput. Sci. 12 (2002), no. 6, 875–903. MR 1947808, 10.1017/S096012950200378X; reference:[16] Joyal A., Nielsen M., Winskel G.: Bisimulation from open maps.Inform. and Comput. 127 (1996), no. 2, 164–185. MR 1407994, 10.1006/inco.1996.0057; reference:[17] Kurz A., Petrişan D., Severi P., de Vries F.-J.: Nominal coalgebraic data types with applications to lambda calculus.Log. Methods Comput. Sci. 9 (2013), no. 4, 4:20, 52 pages. MR 3145058, 10.2168/LMCS-9(4:20)2013; reference:[18] Lasota S.: Coalgebra morphisms subsume open maps.Theoret. Comput. Sci. 280 (2002), no. 1–2, 123–135. MR 1905223, 10.1016/S0304-3975(01)00023-8; reference:[19] Manna Z., Pnueli A.: The Temporal Logic of Reactive and Concurrent Systems: Specification.Springer, New York, 1992. MR 1156076; reference:[20] Milius S., Schröder L., Wißmann T.: Regular behaviours with names: On rational fixpoints of endofunctors on nominal sets.Appl. Categ. Structures 24 (2016), no. 5, 663–701. MR 3546507, 10.1007/s10485-016-9457-8; reference:[21] Milius S., Wißmann T.: Finitary corecursion for the infinitary lambda calculus.Proc. of the 6th Conf. on Algebra and Coalgebra in Computer Science, LIPIcs. Leibniz Int. Proc. Inform., 35, 2015, 336–351. MR 3453807; reference:[22] Pitts A. M.: Nominal Sets. Names and Symmetry in Computer Science.Cambridge Tracts in Theoretical Computer Science, 57, Cambridge University Press, Cambridge, 2013. MR 3113350; reference:[23] Rutten J. J. M. M.: Universal coalgebra: a theory of systems.Theoret. Comput. Sci. 249 (2000), no. 1, 3–80. MR 1791953, 10.1016/S0304-3975(00)00056-6; reference:[24] Schröder L., Kozen D., Milius S., Wißmann T.: Nominal automata with name binding.Proc. of the 20th International Conf. on Foundations of Software Science and Computation Structures, available at arXiv:1603.01455v3 [cs.FL] (2017), 43 pages. MR 3655539; reference:[25] Trnková V.: Some properties of set functors.Comment. Math. Univ. Carolinae 10 (1969), no. 2, 323–352. MR 0252474; reference:[26] Trnková V.: On a descriptive classification of set functors. I.Comment. Math. Univ. Carolinae 12 (1971), no. 1, 143–174. MR 0294445; reference:[27] Wißmann T., Dubut J., Katsumata S.-Y., Hasuo I.: Path category for free - Open morphisms from coalgebras with non-deterministic branching.Proc. of the 22nd International Conf. on Foundations of Software Science and Computation Structures, available at arXiv:1811.12294v2 [cs.FL] (2018), 40 pages. MR 3944034
-
2Academic Journal
المؤلفون: Bohner, Martin, Wintz, Nick
مصطلحات موضوعية: keyword:time scale, keyword:dynamic equation, keyword:exponential function, keyword:controllability, keyword:reachability, keyword:observability, keyword:duality principle, keyword:time invariance, msc:34A30, msc:34H05, msc:34N05, msc:93B05, msc:93B07
وصف الملف: application/pdf
Relation: mr:MR2978261; zbl:Zbl 1265.34334; reference:[1] Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics.Colloq. Math. Soc. János Bolyai. 53 (1990), 37-56. Zbl 0723.34030, MR 1062633; reference:[2] Bartosiewicz, Z., Pawłuszewicz, E.: Linear control systems on time scales: unification of continuous and discrete.Proc. of 10th IEEE Int. Conference MMAR. (2004), 263-266. MR 2323260; reference:[3] Bartosiewicz, Z., Pawłuszewicz, E.: Realizations of linear control systems on time scales.Control Cybernet. 35 (2006), 769-786. Zbl 1133.93033, MR 2323260; reference:[4] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales.Birkhäuser, Basel (2001). Zbl 0993.39010, MR 1843232; reference:[5] Bohner, M., Peterson, A., eds.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, MA (2003). Zbl 1025.34001, MR 1962542; reference:[6] DaCunha, J.: Transition matrix and generalized matrix exponential via the Peano-{B}aker series.J. Difference Equ. Appl. 11 (2005), 1245-1264. Zbl 1093.39017, MR 2191005, 10.1080/10236190500272798; reference:[7] Davis, J. M., Gravagne, I. A., Jackson, B. J., II, R. J. Marks: Controllability, observability, realizability, and stability of dynamic linear systems.Electron. J. Diff. Equ. 37 (2009), 1-32. MR 2495842; reference:[8] Fausett, L. V., Murty, K. N.: Controllability, observability and realizability criteria on time scale dynamical systems.Nonlinear Stud. 11 (2004), 627-638. MR 2100755; reference:[9] Hilscher, R., Zeidan, V.: Weak maximum principle and accessory problem for control problems on time scales.Nonlinear Anal. 70 (2009), 3209-3226. Zbl 1157.49030, MR 2503067; reference:[10] Kalman, R. E.: Contributions to the theory of optimal control.Bol. Soc. Mat. Mexicana. 2 (1960), 102-119. Zbl 0112.06303, MR 0127472; reference:[11] Kalman, R. E.: On the general theory of control systems.Proc. 1st IFAC Congress Automatic Control. 1 (1960), 481-492.; reference:[12] Kalman, R. E.: Mathematical description of linear dynamical systems.J. SIAM Control Ser. A Control. 1 (1963), 152-192. Zbl 0145.34301, MR 0152167; reference:[13] Kalman, R. E., Ho, Y. C., Narendra, K. S.: Controllability of linear dynamical systems.Contrib. Differ. Equ. 1 (1963), 189-213. Zbl 0151.13303, MR 0155070; reference:[14] Molnar, S., Szigeti, F.: Controllability and reachability of dynamic discrete-time linear systems.Proceedings of the 4th International Conference on Control and Automation (2003), 350-354. MR 1368381; reference:[15] Wintz, N.: The Kalman filter on time scales.PhD Thesis, Missouri University of Science and Technology, Rolla, Missouri, USA (2009). MR 2941934; reference:[16] Zafer, A.: The matrix exponential on time scales.ANZIAM J. 48 (2006), 99-106. MR 2263186, 10.1017/S1446181100003436
-
3Academic Journal
المؤلفون: Ray, Goshaidas, Dey, Sitansu, Bhattacharyya, T. K.
مصطلحات موضوعية: keyword:switching function, keyword:reachability, keyword:Householder transformation, keyword:variable structure control, keyword:fuzzy logic, keyword:interconnected power systems, keyword:Lyapunov function, msc:93B12, msc:93C41, msc:93C42, msc:93D05, msc:93D15
وصف الملف: application/pdf
Relation: mr:MR2192426; zbl:Zbl 1249.93032; reference:[1] Chen C. L., Chang M. H.: Optimal design of fuzzy sliding mode control: A comparative study.Fuzzy Sets and Systems 93 (1998), 37–48; reference:[2] Chen C. G., Lin M. H., Hsiao J. M.: Sliding mode controllers design for linear discrete-time systems with matching perturbations.Automatica 36 (2000), 1205–1211 MR 1827616, 10.1016/S0005-1098(00)00030-3; reference:[3] DeCarlo R. A., Zak S. H., Matthews G. P.: Variable structure control of nonlinear multivariable systems: A tutorial.Proc. IEEE 76 (1988), 212–232; reference:[4] Edwarda C., Spurgeon S. K.: Sliding Mode Control: Theory and Applications.Taylor and Francis, London 1998; reference:[5] Fosha C. E., Elgerd O. I.: The megawatt-frequency control problem: A new approach via optimal control theory.IEEE Trans. Power Apparatus Systems 89 (1970), 563–577 10.1109/TPAS.1970.292603; reference:[6] Gutman S.: Uncertain dynamical systems: a Lyapunov min-max approach.IEEE Trans. Automat. Control 24 (1979), 437–443 Zbl 0416.93076, MR 0533394, 10.1109/TAC.1979.1102073; reference:[7] Hung J. Y., Gao, W., Hung J. C.: Variable structure control: a survey.IEEE Trans. Industrial Electronics 40 (1993), 2–22 10.1109/41.184817; reference:[8] Nobel N., Daniel J. W.: Applied Linear Algebra.Prentice–Hall, Englewood Cliffs, NJ 1988; reference:[9] Slotine J. J. E., Li W.: Applied Non-Linear Control.Prentice-Hall, Englewood Cliffs, NJ 1991; reference:[10] Utkin V. I.: Variable structure systems with sliding modes.IEEE Trans. Automat. Control 22 (1977), 212–222 Zbl 0382.93036, MR 0484664, 10.1109/TAC.1977.1101446; reference:[11] White B. A., Silson P. M.: Reachability in variable structure control systems.Proc. IEE-D (Control Theory and Applications) 131 (1984), 3, 85–91 Zbl 0541.93004; reference:[12] Yoo D. S., Chung M. J.: A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties.IEEE Trans. Automat. Control 37 (1992), 860–864 Zbl 0760.93014, MR 1164567, 10.1109/9.256348
-
4Academic Journal
المؤلفون: Gaubert, Stéphane, Katz, Ricardo
مصطلحات موضوعية: keyword:invariant spaces, keyword:reachability, keyword:geometric control, keyword:rational sets, keyword:Presburger arithmetics, keyword:max-plus algebra, keyword:discrete event systems, msc:06F05, msc:16Y60, msc:93B03, msc:93B07, msc:93B25, msc:93B27, msc:93C65
وصف الملف: application/pdf
Relation: mr:MR2069176; zbl:Zbl 1249.93125; reference:[1] Baccelli F., Cohen G., Olsder, G., Quadrat J.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Berstel J.: Transductions and Context-Free Languages.Teubner, Stuttgart 1979 Zbl 0424.68040, MR 0549481; reference:[3] Berstel J., Reutenauer C.: Rational Series and their Languages.Springer, New York 1988 Zbl 0668.68005, MR 0971022; reference:[4] Bés A.: A survey of arithmetical definability: A tribute to Maurice Boffa.Soc. Math. Belgique 2002, pp. 1–54 MR 1900396; reference:[5] Butkovič P.: Strong regularity of matrices – a survey of results.Discrete Applied Mathematics 48 (1994), 45–68 Zbl 0804.06017, MR 1254755, 10.1016/0166-218X(92)00104-T; reference:[6] Butkovič P., Cuninghame-Green R.: The equation $A\otimes x=B\otimes y$ over $({\mathbb{R}}\cup \lbrace -\infty \rbrace ,\max ,+)$.Theor. Comp. Sci. 48 (2003), 1, 3–12 MR 1957609; reference:[7] Butkovič P., Hegedüs G.: An elimination method for finding all solutions of the system of linear equations over an extremal algebra.Ekonom.-Mat. obzor 20 (1984), 2, 203–215 Zbl 0545.90101, MR 0782401; reference:[8] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions: Dynamics and Stability of Systems 14 (1999), 4, 407–43. MR 1746112, 10.1080/026811199281967; reference:[9] Cohen G., Gaubert, S., Quadrat J.: Kernels, images and projections in dioids.In: 3rd Workshop on Discrete Event Systems (WODES’96), IEE Edinburgh, August 1996, pp. 151–158; reference:[10] Cohen G., Gaubert, S., Quadrat J.: Linear projectors in the max-plus algebra: In: Proc.IEEE Mediterranean Conference, Cyprus, 1997, CDROM; reference:[11] Cohen G., Gaubert, S., Quadrat J.: Max-plus algebra and system theory: where we are and where to go now.Annual Reviews in Control 23 (1999), 207–219 10.1016/S1367-5788(99)90091-3; reference:[12] Cohen G., Gaubert, S., Quadrat J.: Duality and separation theorem in idempotent semimodules.Linear Algebra and Appl. 279 (2004), 395–422. Also e-print arXiv:math.FA/0212294 MR 2039751, 10.1016/j.laa.2003.08.010; reference:[13] Cohen G., Moller P., Quadrat, J., Viot M.: Algebraic tools for the performance evaluation of discrete event systems: IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–5.; reference:[14] Conway J.: Regular Algebra and Finite Machines.Chapman and Hall, London 1971 Zbl 0231.94041; reference:[15] Cuninghame-Green R.: Minimax Algebra.(Lecture Notes in Economics and Mathematical Systems 166.) Springer, Berlin 1976 Zbl 0739.90073, MR 0580321; reference:[16] Eilenberg S., Schützenberger M.: Rational sets in commutative monoids: J.Algebra 13 (1969), 1, 173–191 MR 0246985, 10.1016/0021-8693(69)90070-2; reference:[17] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes.Thèse, École des Mines de Paris, July 1992; reference:[18] Gaubert S.: Rational series over dioids and discrete event systems.In: Proc. 11th Conference on Analysis and Optimization of Systems – Discrete Event Systems. (Lecture Notes in Control and Inform. Sciences 199.) Sophia Antipolis, June 1994. Springer, Berlin 1995; reference:[19] Gaubert S.: Performance evaluation of (max,+) automata.IEEE Trans. Automat. Control 40 (1995), 12, 2014–2025 Zbl 0855.93019, MR 1364950, 10.1109/9.478227; reference:[20] Gaubert S.: Exotic semirings: Examples and general results: Support de cours de la 26$^{\text{ième}}$ École de Printemps d’Informatique Théorique, Noirmoutier, 199.; reference:[21] Gaubert S., Gunawardena J.: The duality theorem for min-max functions: C.R. Acad. Sci. 326 (1998), 43–48 MR 1649473, 10.1016/S0764-4442(97)82710-3; reference:[22] Gaubert S., Katz R.: Reachability Problems for Products of Matrices in Semirings.Research Report 4944, INRIA, September 2003. Also e-print arXiv:math.OC/0310028. To appear in Internat. J. Algebra and Comput Zbl 1108.20057, MR 2241626; reference:[23] Gaubert S., Plus M.: Methods and applications of (max,+) linear algebra.In: 14th Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck, March 1997 (R. Reischuk and M. Morvan, eds., Lecture Notes in Computer Science 1200), Springer, Berlin 1998, pp. 261–282 MR 1473780; reference:[24] Ginsburg S., Spanier E. H.: Semigroups, Presburger formulas, and languages.Pacific J. Math. 16 (1966), 2, 3–12 Zbl 0143.01602, MR 0191770, 10.2140/pjm.1966.16.285; reference:[25] Gunawardena J., ed.: Idempotency.(Publications of the Isaac Newton Institute.) Cambridge University Press, Cambridge 1998 Zbl 1144.68006, MR 1608370; reference:[26] Helbig S.: On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups.Comment. Math. Univ. Carolin. 29 (1988), 1, 157–167 Zbl 0652.06010, MR 0937558; reference:[27] Katz R.: Problemas de alcanzabilidad e invariancia en el álgebra max-plus.Ph.D. Thesis, University of Rosario, November 2003; reference:[28] Klimann I.: Langages, séries et contrôle de trajectoires.Thèse, Université Paris 7, 1999; reference:[29] Klimann I.: A solution to the problem of $(A,B)$-invariance for series: Theoret.Comput. Sci. 293 (2003), 1, 115–139 MR 1957615, 10.1016/S0304-3975(02)00234-7; reference:[30] Kolokoltsov V.: Linear additive and homogeneous operators.In: Idempotent Analysis (Advances in Soviet Mathematics 13), Amer. Math. Soc., Providence, RI 1992 Zbl 0925.47016, MR 1203786; reference:[31] Krob D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable.Internat. J. Algebra and Comput. 4 (1994), 3, 405–425 Zbl 0834.68058, MR 1297148, 10.1142/S0218196794000063; reference:[32] Krob D.: Some consequences of a Fatou property of the tropical semiring.J. Pure and Applied Algebra 93 (1994), 231–249 Zbl 0806.68083, MR 1275966, 10.1016/0022-4049(94)90090-6; reference:[33] Krob D., Rigny A. Bonnier: A complete system of identities for one letter rational expressions with multiplicities in the tropical semiring.J. Pure Appl. Algebra 134 (1994), 27–50 MR 1299364; reference:[34] Litvinov G., Maslov, V., Shpiz G.: Idempotent functional analysis: an algebraical approach.Math. Notes 69 (2001), 5, 696–729. Also e-print arXiv:math.FA/0009128 MR 1846814, 10.1023/A:1010266012029; reference:[35] Mairesse J.: A graphical approach of the spectral theory in the (max,+) algebra.IEEE Trans. Automat. Control 40 (1995), 1783–1789 Zbl 0845.93036, MR 1354519, 10.1109/9.467674; reference:[36] Moller P.: Théorie algébrique des Systèmes à Événements Discrets.Thèse, École des Mines de Paris, 1988; reference:[37] Oppen D. C.: A $2^{2^{2^{pn}}}$ upper bound on the complexity of Presburger arithmetic.J. Comput. System Sci. 16 (1978), 323–332 MR 0478750, 10.1016/0022-0000(78)90021-1; reference:[38] Pin J.-E.: Tropical semirings: In: Idempotency (J.Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 50–69 MR 1608374; reference:[39] Plus M.: Max-plus toolbox of scilab: Available from the contrib section of http:--www-rocq.inria.fr/scilab, 1998; reference:[40] Samborskiĭ S. N., Shpiz G. B.: Convex sets in the semimodule of bounded functions: In: Idempotent Analysis, pp.135–137. Amer. Math. Soc., Providence, RI 1992 MR 1203789; reference:[41] Schrijver A.: Theory of Linear and Integer Programming.Wiley, New York 1988 Zbl 0970.90052, MR 0874114; reference:[42] Simon I.: Limited subsets of the free monoid.In: 19th Annual Symposium on Foundations of Computer Science 1978, pp. 143–150 MR 0539835; reference:[43] Simon I.: The nondeterministic complexity of a finite automaton.In: Mots – Mélange offert à M. P. Schutzenberger (M. Lothaire, ed.), Hermes, Paris 1990, pp. 384–400 MR 1252678; reference:[44] Wagneur E.: Moduloids and pseudomodules.1. dimension theory. Discrete Math. 98 (1991), 57–73 Zbl 0757.06008, MR 1139597, 10.1016/0012-365X(91)90412-U; reference:[45] Walkup E., Borriello G.: A general linear max-plus solution technique.In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 406–415 Zbl 0898.68035, MR 1608375; reference:[46] Wonham W.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer, Berlin 1985 Zbl 0609.93001, MR 0770574; reference:[47] Zimmermann K.: A general separation theorem in extremal algebras.Ekonom.-Mat. obzor 13 (1977), 2, 179–201 Zbl 0365.90127, MR 0453607
-
5Academic Journal
المؤلفون: Prou, Jean-Michel, Wagneur, Edouard
مصطلحات موضوعية: keyword:reachability, keyword:controllability, keyword:max-algebra, msc:15A80, msc:93B05, msc:93B18, msc:93C65
وصف الملف: application/pdf
Relation: mr:MR1705527; zbl:Zbl 1274.93036; reference:[1] G: Birkhoff: Lattice Theory.A.M.S. Coll. Pub. Vol. XXV, Providence 1967 MR 0227053; reference:[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266; reference:[3] Cunninghame–Green R. A.: Minimax Algebra.(Lecture Notes in Economics and Mathematical Systems 83.) Springer–Verlag, Berlin 1979 MR 0580321; reference:[4] Gaubert S.: Théorie des Systèmes linéaires dans les Dioïdes.Thèse. Ecole Nationale Supérieure des Mines de Paris 1992; reference:[5] Gazarik M. J., Kamen E. W.: Reachability and observability of linear system over Max–Plus.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 MR 1705526; reference:[6] Gondran M., Minoux M.: Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes.EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1977), 25–41; reference:[8] Prou J.-M.: Thèse.Ecole Centrale de Nantes 1997; reference:[9] Wagneur E.: Moduloïds and Pseudomodules.1. Dimension Theory. Discrete Math. 98 (1991), 57–73 Zbl 0757.06008, MR 1139597, 10.1016/0012-365X(91)90412-U
-
6Academic Journal
المؤلفون: Declerck, Philippe
مصطلحات موضوعية: keyword:synthesis problems, keyword:predictability, keyword:ARMA model, keyword:Dioid algebra, keyword:reachability of the objective, msc:93B25, msc:93B50, msc:93C30, msc:93C65, msc:93C83
وصف الملف: application/pdf
Relation: mr:MR1705528; zbl:Zbl 1274.93188; reference:[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.An Algebra for Discrete Event Systems. Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Bracker H.: Algorithms and Applications in Timed Discrete Event Systems.Ph.D thesis, Delft University of Technology, 1993; reference:[3] Brat G. P., Garg V. K.: A max–plus algebra of signals for the supervisory control of real–time discrete event systems.In: 9th Symposium of the IFAC on Information Control in Manufacturing, Nancy–Metz 1998; reference:[4] Cofer D. D., Garg V. K.: A timed model for the control of discrete event systems involving decisions in the max/plus algebra.In: Proc. 31st Conference on Decision and Control, Tucson 1992; reference:[5] Cofer D. D.: Control and Analysis of Real–Time Discrete Event Systems.Ph.D. Thesis, University of Texas, Austin 1995; reference:[6] Cofer D. D., Garg V. K.: Supervisory control of real–time discrete–event systems using lattice theory.IEEE Trans. Automat. Control 41 (1996), 2, 199–209 Zbl 0846.93005, MR 1375752, 10.1109/9.481519; reference:[7] Cohen G., Gaubert S., Quadrat J.-P.: From first to second–order theory of linear discrete event systems.In: 1st IFAC World Congress, Sydney 1993; reference:[8] Declerck, Ph.: “ARMA” model and admissible trajectories in timed event graphs.In: CESA’96, IMACS, IEEE–SMC, Lille 1996; reference:[9] Declerck, Ph.: Control synthesis using the state equations and the “ARMA” model in timed event graphs.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997; reference:[10] Declerck, Ph., Mares M.: Temporal control synthesis and failure recovery.In: 9th Symposium of the IFAC on Information Control in Manufacturing, Nancy–Metz 1998; reference:[11] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes.Ph.D Thesis, Ecole des Mines de Paris 1992; reference:[12] Gazarik M. J., Kamen E. W.: Reachability and observability of linear systems over max–plus.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 MR 1705526; reference:[13] Gondran M., Minoux M.: Graphes et algorithmes.Edition Eyrolles 1995 Zbl 1172.05001; reference:[14] Prou J.-M., Wagneur E.: Controllability in the max–algebra.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 13–24 MR 1705527
-
7Academic Journal
المؤلفون: Gazarik, Michael J., Kamen, Edward W.
مصطلحات موضوعية: keyword:reachability, keyword:observability, keyword:linear system, keyword:max-plus algebra, msc:15A80, msc:93B03, msc:93B05, msc:93B07, msc:93B25, msc:93C65, msc:93C83
وصف الملف: application/pdf
Relation: mr:MR1705526; zbl:Zbl 1274.93037; reference:[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Cofer D., Garg V.: Supervisory control of real–time discrete–event systems using lattice theory.IEEE Trans. Automat. Control 41 (1996), 199–209 Zbl 0846.93005, MR 1375752; reference:[3] Cohen G., Moller P., Quadrat J., Viot M.: Algebraic tools for the performance evaluation of discrete event systems.Proc. IEEE 77 (1989), 39–58; reference:[4] Cuninghame–Green R. A.: Minimax Algebra.Springer Verlag, New York 1979 Zbl 0739.90073, MR 0580321; reference:[5] Doustmohammadi A., Kamen E.: Direct generation of event–timing equations for generalized flow shop systems.In: Proceedings of the SPIE Photonics East 1995 Symposium, Philadelphia 1995, pp. 50–62; reference:[6] Gazarik M.: Monitoring and Control of Manufacturing Systems Based on the Max–plus Formulation.Ph.D. Thesis, Georgia Institute of Technology, Atlanta 1997; reference:[7] Gazarik M., Kamen E.: Reachability and observability of linear systems over max–plus.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997 MR 1705526; reference:[8] Kamen E. W.: An Equation–based approach to the control of discrete event systems with applications to manufacturing.In: International Conference on Control Theory and Its Applications, Jerusalem 1993; reference:[9] Olsder G., Roos C.: Cramer and Cayley–Hamilton in the max algebra.Linear Algebra Appl. 101 (1988), 87–108 Zbl 0659.15012, MR 0941298; reference:[10] Prou J.-M., Wagneur E.: Controllability in the Max-algebra.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 13–24 MR 1705527