-
1Academic Journal
المؤلفون: Arhangel'skii, A. V.
مصطلحات موضوعية: keyword:dense subspace, keyword:perfect space, keyword:Moore space, keyword:Čech-complete, keyword:$p$-space, keyword:$\sigma $-disjoint base, keyword:uniform base, keyword:pseudocompact, keyword:point-countable base, keyword:pseudo-$\omega _1$-compact, msc:54A25, msc:54B05
وصف الملف: application/pdf
Relation: mr:MR3434227; zbl:Zbl 06537722; reference:[1] Arhangel'skiĭ A.V.: Some metrization theorems.Uspekhi Mat. Nauk 18 (1963), no. 5, 139–145 (in Russian). MR 0156318; reference:[2] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67(109) (1965), 55–88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889; reference:[3] Arhangel'skii A.V.: A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 121–139. Zbl 1289.54085, MR 3067699; reference:[4] Arhangel'skii A.V., Choban M.M.: Spaces with sharp bases and with other special bases of countable order.Topology Appl. 159 (2012), no. 5, 1578-1590. Zbl 1245.54025, MR 2891424, 10.1016/j.topol.2011.03.015; reference:[5] Arhangel'skii A.V., Tokgöz S.: Paracompactness and remainders: around Henriksen-Isbell's Theorem.Questions Answers Gen. Topology 32 (2014), 5–15. Zbl 1305.54032, MR 3222525; reference:[6] van Douwen E.K., Tall F., Weiss W.: Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH.Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl 0356.54020, MR 0514998; reference:[7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[8] Filippov V.V.: On feathered paracompacta.Dokl. Akad. Nauk SSSR 178 (1968), no. 3, 555–558. Zbl 0167.21103, MR 0227935; reference:[9] Gruenhage G.: Metrizable spaces and generalizations.in: M. Hušek and J. van Mill, Eds., Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, Chapter 8, pp. 203–221. Zbl 1029.54036, MR 1969999; reference:[10] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces.Topology Appl. 63 (1995), 69–77. Zbl 0864.54001, MR 1328620, 10.1016/0166-8641(95)90009-8; reference:[11] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, II.Topology Appl. 71 (1996), 179–191. Zbl 0864.54001, MR 1399555, 10.1016/0166-8641(95)00082-8; reference:[12] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114 (2001), 285–293. Zbl 1012.54002, MR 1838327, 10.1016/S0166-8641(00)00043-2; reference:[13] Kuratowski K.: Topology, vol. 1.PWN, Warszawa, 1966.; reference:[14] Michael E.A., Rudin M.E.: Another note on Eberlein compacta.Pacific J. Math. 72 (1977), no. 2, 497–499. MR 0478093, 10.2140/pjm.1977.72.497; reference:[15] Oka S.: Dimension of finite unions of metric spaces.Math. Japon. 24 (1979), 351–362. Zbl 0429.54017, MR 0557465
-
2Academic Journal
المؤلفون: Hirata, Yasushi
مصطلحات موضوعية: keyword:extent, keyword:Lindelöf degree, keyword:$G_\delta $-diagonal, keyword:point-countable base, msc:03E10, msc:54A25, msc:54D20
وصف الملف: application/pdf
Relation: mr:MR3311580; zbl:Zbl 06433808; reference:[1] Aull C.E.: A generalization of a theorem of Aquaro.Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl 0255.54015, MR 0372817, 10.1017/S0004972700042933; reference:[2] Creed G.D.: Concerning semi-stratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47; reference:[3] Gruenhage G.: Generalized metric spaces.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl 0794.54034, MR 0776629; reference:[4] Hajnal A., Juhász I.: Discrete subspaces of topological spaces II.Indag. Math. 31 (1969), 18–30. Zbl 0169.53901, MR 0264585, 10.1016/1385-7258(69)90022-5; reference:[5] Hajnal A., Juhász I.: Some remarks on a property of topological cardinal functions.Acta. Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl 0184.26401, MR 0242103, 10.1007/BF01894566; reference:[6] Hirata Y., Yajima Y.: The sup = max problem for the extent of generalized metric spaces.Comment. Math. Univ. Carolin. (The special issue devoted to Čech) 54 (2013), no. 2, 245–257. Zbl 1289.54024, MR 3067707; reference:[7] Hodel R.E.: Cardinal functions I.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620; reference:[8] Kunen K.: Luzin spaces.Topology Proc. 1 (1976), 191–199. Zbl 0389.54004, MR 0450063; reference:[9] Kunen K.: Set Theory. An Introduction to Independence Proofs.North-Holland, Amsterdam, 1980. Zbl 0534.03026, MR 0597342; reference:[10] Roitman J.: The spread of regular spaces.Gen. Topology Appl. 8 (1978), 85–91. Zbl 0398.54001, MR 0493957, 10.1016/0016-660X(78)90020-X; reference:[11] Yajima Y.: private communication.
-
3Academic Journal
المؤلفون: Arhangel'skii, A. V., Buzyakova, R. Z.
مصطلحات موضوعية: keyword:$D$-space, keyword:point-countable base, keyword:extent, keyword:metrizable space, keyword:Lindelöf space, msc:54D20, msc:54E35, msc:54F99
وصف الملف: application/pdf
Relation: mr:MR2045787; zbl:Zbl 1090.54017; reference:[1] Arens R., Dugundji J.: Remark on the concept of compactness.Portugal. Math. 9 (1950), 141-143. Zbl 0039.18602, MR 0038642; reference:[2] Arhangel'skii A.V., Buzyakova R.Z.: On some properties of linearly Lindelöf spaces.Topology Proc. 23 (1998), 1-11. Zbl 0964.54018, MR 1800756; reference:[3] Balogh Z., Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties.Topology Appl. 84 (1998), 91-103. Zbl 0991.54032, MR 1611277; reference:[4] Boone J.R.: On irreducible spaces, 2.Pacific J. Math. 62.2 (1976), 351-357. MR 0418037; reference:[5] Borges C.R., Wehrly A.C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448; reference:[6] Burke D.K.: Covering properties.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0569.54022, MR 0776628; reference:[7] Buzyakova R.Z.: On $D$-property of strong $\Sigma $-spaces.Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. Zbl 1090.54018, MR 1920524; reference:[8] de Caux P.: A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact.Topology Proc. 1 (1976), 66-77. Zbl 0397.54019; reference:[9] Christian U.: Concerning certain minimal cover refinable spaces.Fund. Math. 76 (1972), 213-222. MR 0372818; reference:[10] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81.2 (1979), 371-377. Zbl 0409.54011, MR 0547605; reference:[11] van Douwen E.K., Wicke H.H.: A real, weird topology on reals.Houston J. Math. 13.1 (1977), 141-152. MR 0433414; reference:[12] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, 2.Topology Appl. 71.2 (1996), 179-191. MR 1399555; reference:[13] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327; reference:[14] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72 (1977), 497-499. Zbl 0344.54018, MR 0478093; reference:[15] Ostaszewski A.J.: Compact $\sigma $-metric spaces are sequential.Proc. Amer. Math. Soc. 68 (1978), 339-343. MR 0467677; reference:[16] Rudin M.E.: Dowker spaces.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0566.54009, MR 0776636; reference:[17] Tkachenko M.G.: On compactness of countably compact spaces having additional structure.Trans. Moscow Math. Soc. 2 (1984), 149-167.; reference:[18] Wicke H.H., Worrell J.M., Jr.: Point-countability and compactness.Proc. Amer. Math. Soc. 55 (1976), 427-431. Zbl 0323.54013, MR 0400166; reference:[19] Worrell J.M., Wicke H.H.: Characterizations of developable spaces.Canad. J. Math. 17 (1965), 820-830. MR 0182945; reference:[20] Worrell J.M., Jr., Wicke H.H.: A covering property which implies isocompactness. 1.Proc. Amer. Math. Soc. 79.2 (1980), 331-334. MR 0565365