يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:operators"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Ko, Eungil, Nam, Hae-Won, Yang, Youngoh

    وصف الملف: application/pdf

    Relation: mr:MR2280808; zbl:Zbl 1164.47319; reference:[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080; reference:[2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819; reference:[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272; reference:[4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044; reference:[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289; reference:[6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778; reference:[7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507; reference:[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409; reference:[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502; reference:[11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569; reference:[12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952; reference:[13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001; reference:[14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982.; reference:[15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779; reference:[16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5; reference:[18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222; reference:[19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504; reference:[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441; reference:[21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966; reference:[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971.; reference:[23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959

  2. 2
    Academic Journal

    المؤلفون: Agratini, Octavian, Rus, Ioan A.

    وصف الملف: application/pdf

    Relation: mr:MR2025820; zbl:Zbl 1096.41015; reference:[1] Agratini O.: Binomial polynomials and their applications in Approximation Theory.Conferenze del Seminario di Matematica dell'Universita di Bari 281, Roma, 2001, pp.1-22. Zbl 1008.05010, MR 1850829; reference:[2] Altomare F., Campiti M.: Korovkin-Type Approximation Theory and its Applications.de Gruyter Series Studies in Mathematics, Vol.17, Walter de Gruyter, Berlin-New York, 1994. Zbl 0924.41001, MR 1292247; reference:[3] Cheney E.W., Sharma A.: On a generalization of Bernstein polynomials.Riv. Mat. Univ. Parma (2) 5 (1964), 77-84. Zbl 0146.08202, MR 0198074; reference:[4] Kelisky R.P., Rivlin T.J.: Iterates of Bernstein polynomials.Pacific J. Math. 21 (1967), 511-520. Zbl 0177.31302, MR 0212457; reference:[5] Lupaş A.: Approximation operators of binomial type.New developments in approximation theory (Dortmund, 1998), pp.175-198, International Series of Numerical Mathematics, Vol.132, Birkhäuser Verlag Basel/Switzerland, 1999. MR 1724919; reference:[6] Mastroianni G., Occorsio M.R.: Una generalizzatione dell'operatore di Stancu.Rend. Accad. Sci. Fis. Mat. Napoli (4) 45 (1978), 495-511. MR 0549902; reference:[7] Popoviciu T.: Remarques sur les polynômes binomiaux.Bul. Soc. Sci. Cluj (Roumanie) 6 (1931), 146-148 (also reproduced in Mathematica (Cluj) 6 (1932), 8-10). Zbl 0002.39801; reference:[8] Rota G.-C., Kahaner D., Odlyzko A.: On the Foundations of Combinatorial Theory. VIII. Finite operator calculus.J. Math. Anal. Appl. 42 (1973), 685-760. Zbl 0267.05004, MR 0345826; reference:[9] Rus I.A.: Weakly Picard mappings.Comment. Math. Univ. Carolinae 34 (1993), 4 769-773. Zbl 0787.54045, MR 1263804; reference:[10] Rus I.A.: Picard operators and applications.Seminar on Fixed Point Theory, Babeş-Bolyai Univ., Cluj-Napoca, 1996. Zbl 1031.47035; reference:[11] Rus I.A.: Generalized Contractions and Applications.University Press, Cluj-Napoca, 2001. Zbl 0968.54029, MR 1947742; reference:[12] Sablonniere P.: Positive Bernstein-Sheffer operators.J. Approx. Theory 83 (1995), 330-341. Zbl 0835.41024, MR 1361533; reference:[13] Stancu D.D.: Approximation of functions by a new class of linear polynomial operators.Rev. Roumaine Math. Pures Appl. 13 (1968), 8 1173-1194. Zbl 0167.05001, MR 0238001; reference:[14] Stancu D.D., Occorsio M.R.: On approximation by binomial operators of Tiberiu Popoviciu type.Rev. Anal. Numér. Théor. Approx. 27 (1998), 1 167-181. Zbl 1007.41016, MR 1818225

  3. 3
    Academic Journal

    المؤلفون: Franců, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1065003; zbl:Zbl 0724.47025; reference:[1] K. Deimling: Nonlinear functional analysis.Springer 1985. Zbl 0559.47040, MR 0787404; reference:[2] P. Doktor: Modern methods of solving partial differential equations.(Czech), Lecture Notes, SPN, Prague, 1976.; reference:[3] S. Fučík: Solvability of nonlinear equations and boundary value problems.D. Reidel Publ. Соmр., Dordrecht; JČSMF, Prague, 1980. MR 0620638; reference:[4] S. Fučík A. Kufner: Nonlinear differential equations;.Czech edition - SNTL, Prague 1978; English translation - Elsevier, Amsterdam 1980. MR 0558764; reference:[5] S. Fučík J. Milota: Mathematical analysis II.(Czech), Lecture Notes, SPN, Prague 1980.; reference:[6] S. Fučík J. Nečas J. Souček V. Souček: Spectral analysis of nonlinear operators.Lecture Notes in Math. 346, Springer, Berlin 1973; JCSMF, Prague 1973. MR 0467421; reference:[7] R. I. Kačurovskij: Nonlinear monotone operators in Banach spaces.(Russian), Uspechi Mat. Nauk 23 (1968), 2, 121-168. MR 0226455; reference:[8] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, New York 1980; Russian translation - Mir, Moscow 1983. MR 0738631; reference:[9] A. N. Kolmogorov S. V. Fomin: Introductory real analysis.(Russian), Moscow 1954, English translation - Prentice Hall, New York 1970, Czech translation - SNTL, Prague 1975. MR 0267052; reference:[10] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102; reference:[11] J. Nečas: Introduction to the theory of nonlinear elliptic equations.Teubner-Texte zur Math. 52, Leipzig, 1983. MR 0731261; reference:[12] D. Pascali S. Sburlan: Nonlinear mappings of monotone type.Editura Academiei, Bucuresti 1978. MR 0531036; reference:[13] A. Pultr: Subspaces of Euclidean spaces.(Czech), Matematický seminář - 22, SNTL, Prague 1987.; reference:[14] E. Zeidler: Lectures on nonlinear functional analysis II - Monotone operators.(German), Teubner-Texte zur Math. 9, Leipzig 1977; Revised extended English translation: Nonlinear functional analysis and its application II, Springer, New York (to appear). MR 0628004; reference:[15] J. Nečas: Nonlinear elliptic equations.(French), Czech. Math. J. 19 (1969), 252-274.; reference:[16] M. Feistauer A. Ženíšek: Compactness method in the finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147-163. MR 0923708, 10.1007/BF01398687