يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"keyword:operator of type $(S)_{+}$"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1777470; zbl:Zbl 1079.35519; reference:[1] J. Appell, P. Zabrejko: Superposition Operators.Cambridge Univ. Press, Cambridge, U.K., 1990. MR 1066204; reference:[2] R. Ash: Real Analysis and Probability.Academic Press, New York, 1972. MR 0435320; reference:[3] E. Avgerinos, N. S. Papageorgiou: Solutions and periodic solutions for nonlinear evolution equations with nonmonotone perturbations.Z. Anal. Anwendungen 17 (1998), 859–875. MR 1669909, 10.4171/ZAA/855; reference:[4] M. Balloti: Aronszajn’s theorem for a parabolic partial differential equation.Nonlinear Anal. 9 (1985), 1183–1187. MR 0813652, 10.1016/0362-546X(85)90029-X; reference:[5] H. Brezis: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055; reference:[6] T. Cardinali, A. Fiacca, N. S. Papageorgiou: Extremal solutions for nonlinear parabolic problems with discintinuities.Monatsh. Math. 124 (1997), 119–131. MR 1462858, 10.1007/BF01300615; reference:[7] K.–C. Chang: The obstacle problem and partial differntial equations with discontinuous nonlinearities.Comm. Pure Appl. Math. 33 (1980), 117–146. MR 0562547, 10.1002/cpa.3160330203; reference:[8] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590; reference:[9] F. S. DeBlasi: Characterizations of certain classes of semicontinuous multifunctions by continuous approximations.J. Math. Anal. Appl. 106 (1985), 1–18. MR 0780314, 10.1016/0022-247X(85)90126-X; reference:[10] F. S. DeBlasi, J. Myjak: On the solution set for differential inclusions.Bull. Polish Acad. Sci. 33 (1985), 17–23.; reference:[11] F. S. DeBlasi, J. Myjak: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9–31. MR 0834135, 10.2140/pjm.1986.123.9; reference:[12] J. Deuel, P. Hess: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. MR 0492636, 10.1007/BF02760403; reference:[13] J. Diestel, J. Uhl: Vector Measures.Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). MR 0453964; reference:[14] E. Feireisl: A note on uniqueness for parabolic problems with discontinuous nonlinearities.Nonlinear Anal. 16 (1991), 1053–1056. Zbl 0736.35060, MR 1107003, 10.1016/0362-546X(91)90106-B; reference:[15] A. F. Filippov: Differential Equations with Discontinuous Righthand Sides.Kluwer, Dordrecht, 1988. MR 1028776; reference:[16] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443; reference:[17] S. Heikkila, S. Hu: On fixed points of multifunctions in ordered spaces.Appl. Anal. 51 (1993), 115–127. MR 1278995, 10.1080/00036819308840206; reference:[18] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker Inc., New York, 1994. MR 1280028; reference:[19] N. Hirano: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. Amer. Math. Soc. 120 (1994), 185–192. Zbl 0795.34051, MR 1174494, 10.1090/S0002-9939-1994-1174494-8; reference:[20] S. Hu, N. S. Papageorgiou: On the topological regularity of the solution of differential inclusions with constraints.J. Differential Equations 107 (1994), 280–289. MR 1264523, 10.1006/jdeq.1994.1013; reference:[21] D. Hyman: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91–97. Zbl 0174.25804, MR 0253303, 10.4064/fm-64-1-91-97; reference:[22] N. Kikuchi: Kneser’s property for $\frac{\partial u}{\partial t}=\Delta u+\sqrt{u}$.Keio Math. Seminar Reports 3 (1978), 45–48. MR 0510129; reference:[23] E. Klein, A. Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692; reference:[24] A. Kufner, O. John, S. Fučík: Function Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1977. MR 0482102; reference:[25] K. Kuratowski: Topology II.Academic Press, New York, 1968.; reference:[26] J.–M. Lasry, R. Robert: Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques.C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. MR 0436196; reference:[27] J.–L. Lions: Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires.Dunod, Paris, 1969. MR 0259693; reference:[28] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Internat. J. Math. Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516; reference:[29] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations.Math. Japon. 32 (1987), 437–464. Zbl 0634.28005, MR 0914749; reference:[30] N. S. Papageorgiou: On Fatou’s lemma and parametric integrals for set–valued functions.J. Math. Anal. Appl. 187 (1994), 809–825. Zbl 0814.28005, MR 1298822, 10.1006/jmaa.1994.1391; reference:[31] N. S. Papageorgiou: On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities.J. Math. Anal. Appl 205 (1997), 434–453. Zbl 0901.35043, MR 1428358, 10.1006/jmaa.1997.5208; reference:[32] N. S. Papageorgiou, N. Shahzad: Existence and strong relaxation theorems for nonlinear evolution inclusions.Yokohama Math. J. 43 (1995), 73–88. MR 1414183; reference:[33] J.–P. Puel: Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. Zbl 0331.35027, MR 0399654; reference:[34] J. Rauch: Discontinuous semilinear differential equations and multiple-valued maps.Proc. Amer. Math. Soc. 64 (1977), 277–282. Zbl 0413.35031, MR 0442453, 10.1090/S0002-9939-1977-0442453-6; reference:[35] D. H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems.Indiana Univ. Math. J. 21 (1972), 979–1000. Zbl 0223.35038, MR 0299921, 10.1512/iumj.1972.21.21079; reference:[36] B.–A. Ton: Nonlinear evolution equations in Banach spaces.J. Differential Equations 9 (1971), 608–618. Zbl 0227.47043, MR 0300172, 10.1016/0022-0396(71)90027-1; reference:[37] I. Vrabie: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. Amer. Math. Soc. 109 (1990), 653–661. Zbl 0701.34074, MR 1015686, 10.1090/S0002-9939-1990-1015686-4; reference:[38] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer-Verlag, New York, 1990. Zbl 0684.47029, MR 0816732

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1725842; zbl:Zbl 1046.35054; reference:[1] Aizicovici S., Papageorgiou N. S.: Infinite dimensional parametric optimal control problems.Math. Nachr. 162 (1993), 17–38. Zbl 0807.49001, MR 1239573; reference:[2] Boccardo L., Murat F., Puel J.-P.: Existence results for some quasilinear parabolic problems.Nonlin. Anal-TMA 13 (1989), 373–392. MR 0987375; reference:[3] Carl S.: On the existence of extremal weak solutions for a class of quasilinear parabolic problems.Diff. Integ. Eqns 6 (1993), 1493–1505. Zbl 0805.35057, MR 1235207; reference:[4] Carl S.: Enclosure of solution for quasilinear dynamic hemivariational inequalities.Nonlin. World 3 (1996), 281–298. MR 1411356; reference:[5] Chang K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. 80 (1981), 102–129. MR 0614246; reference:[6] Chipot M., Rodrigues, J-E.: Comparison and stability of solutions to a class of quasilinear parabolic problems.Proc. Royal Soc. Edinburgh 110 A (1988), 275–285. Zbl 0669.35052, MR 0974743; reference:[7] Costa D. G., Goncalves J. V. A.: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. 153 ( 1990), 470–485. Zbl 0717.49007, MR 1080660; reference:[8] Dancer E. N., Sweers G.: On the existence of maximal weak solution for a semilinear elliptic equation.Diff. Integr. Eqns 2 (1989), 533–540. MR 0996759; reference:[9] Deuel J., Hess P.: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. Zbl 0372.35045, MR 0492636; reference:[10] Dunford N., Schwartz J.: Linear Operators I.Wiley, New York (1958).; reference:[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775; reference:[12] Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions.CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660; reference:[13] Halidias N., Papageorgiou N. S.: Second order multivalued boundary value problems.Archivum Math. (Brno) 34 (1998), 267–284. Zbl 0915.34021, MR 1645320; reference:[14] Kandilakis D., Papageorgiou N. S.: Nonlinear periodic parabolic problems with nonmonotone discontinuities.Proc. Edinburgh Math. Soc. 41 (1998), 117–132. Zbl 0909.35074, MR 1604345; reference:[15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018; reference:[16] Lions J.-L.: Quelques Methodes de Resolution des Problems aux Limits Non-Lineaires.Dunod, Paris (1969). MR 0259693; reference:[17] Miettinen M.: Approximation of hemivariational inequalities and optimal control problem.Univ. of Jyvaskyla, Math. Department, Finland, Report 59 (1993). MR 1248824; reference:[18] Miettinen M.: A parabolic hemivariational inequality.Nonl. Anal-TMA 26 (1996), 725–734. Zbl 0858.35072, MR 1362746; reference:[19] Mokrane A.: Existence of bounded solutions for some nonlinear parabolic equations.Proc. Royal Soc. Edinburgh 107 (1987), 313–326. MR 0924524; reference:[20] Panagiotopoulos P. D.: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer Verlag, New York, Berlin (1994). MR 1385670; reference:[21] Rauch J.: Discontinuous semilinear differential equations and multiple-valued maps.Proc. AMS 64 (1977), 272–282. Zbl 0413.35031, MR 0442453; reference:[22] Stuart C.: Maximal and minimal solutions of elliptic equations with discontinuous nonlinearities.Math. Zeitschrift 163 (1978), 239–249. MR 0513729; reference:[23] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, New York (1990). Zbl 0684.47029