يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"keyword:operator matrix"', وقت الاستعلام: 0.29s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Bakherad, Mojtaba

    وصف الملف: application/pdf

    Relation: mr:MR3881891; zbl:Zbl 07031692; reference:[1] Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for $n\times n$ operator matrices.Linear Algebra Appl. 468 (2015), 18-26. Zbl 1316.47005, MR 3293237, 10.1016/j.laa.2013.09.049; reference:[2] Berezin, F. A.: Covariant and contravariant symbols of operators.Math. USSR, Izv. 6(1972) (1973), 1117-1151. English. Russian original translation from Russian Izv. Akad. Nauk SSSR, Ser. Mat. 36 1972 1134-1167. Zbl 0259.47004, MR 0350504, 10.1070/IM1972v006n05ABEH001913; reference:[3] Berezin, F. A.: Quantization.Math. USSR, Izv. 8 (1974), 1109-1165. English. Russian original translation from Izv. Akad. Nauk SSSR, Ser. Mat. 38 1974 1116-1175. Zbl 0312.53049, MR 0395610, 10.1070/IM1974v008n05ABEH002140; reference:[4] Gustafson, K. E., Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices.Universitext, Springer, New York (1997). Zbl 0874.47003, MR 1417493, 10.1007/978-1-4613-8498-4; reference:[5] Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices.To appear in J. Math. Inequal. Available at ArXiv 1706.05040 [math.FA]. MR 3811602; reference:[6] Halmos, P. R.: A Hilbert Space Problem Book.Graduate Texts in Mathematics 19, Encyclopedia of Mathematics and Its Applications 17, Springer, New York (1982). Zbl 0496.47001, MR 0675952, 10.1007/978-1-4684-9330-6; reference:[7] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press, Cambridge (1991). Zbl 0729.15001, MR 1091716, 10.1017/CBO9780511840371; reference:[8] Hou, J. C., Du, H. K.: Norm inequalities of positive operator matrices.Integral Equations Operator Theory 22 (1995), 281-294. Zbl 0839.47004, MR 1337376, 10.1007/BF01378777; reference:[9] Karaev, M. T.: On the Berezin symbol.J. Math. Sci., New York 115 (2003), 2135-2140. English. Russian original translation from Zap. Nauchn. Semin. POMI 270 2000 80-89. Zbl 1025.47015, MR 1795640, 10.1023/A:1022828602917; reference:[10] Karaev, M. T.: Functional analysis proofs of Abel's theorems.Proc. Am. Math. Soc. 132 (2004), 2327-2329. Zbl 1099.40003, MR 2052409, 10.1090/S0002-9939-04-07354-X; reference:[11] Karaev, M. T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces.J. Funct. Anal. 238 (2006), 181-192. Zbl 1102.47018, MR 2253012, 10.1016/j.jfa.2006.04.030; reference:[12] Karaev, M. T., Saltan, S.: Some results on Berezin symbols.Complex Variables, Theory Appl. 50 (2005), 185-193. Zbl 1202.47031, MR 2123954, 10.1080/02781070500032861; reference:[13] Kittaneh, F.: Notes on some inequalitis for Hilbert space operators.Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. Zbl 0655.47009, MR 0944864, 10.2977/prims/1195175202; reference:[14] Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols.Nonselfadjoint Operators and Related Topics A. Feintuch et al. Oper. Theory, Adv. Appl. 73, Birkhäuser, Basel (1994), 362-368. Zbl 0874.47013, MR 1320554, 10.1007/978-3-0348-8522-5_14; reference:[15] Sheikhhosseini, A., Moslehian, M. S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young's inequality.J. Math. Anal. Appl. 445 (2017), 1516-1529. Zbl 1358.47010, MR 3545256, 10.1016/j.jmaa.2016.03.079; reference:[16] Zhu, K.: Operator Theory in Function Spaces.Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). Zbl 0706.47019, MR 1074007

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3831481; zbl:Zbl 06890409; reference:[1] Aiena, P., Trapani, C., Triolo, S.: SVEP and local spectral radius formula for unbounded operators.Filomat 28 (2014), 263-273. Zbl 06704755, MR 3360003, 10.2298/FIL1402263A; reference:[2] Bai, Q., Huang, J., Chen, A.: Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices.Linear Multilinear Algebra 64 (2016), 1583-1594. Zbl 06605447, MR 3503370, 10.1080/03081087.2015.1111290; reference:[3] Barraa, M., Boumazgour, M.: A note on the spectrum of an upper triangular operator matrix.Proc. Am. Math. Soc. 131 (2003), 3083-3088. Zbl 1050.47005, MR 1993217, 10.1090/S0002-9939-03-06862-X; reference:[4] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectra of upper triangular operator matrices.Proc. Am. Math. Soc. 133 (2005), 3013-3020. Zbl 1067.47005, MR 2159780, 10.1090/S0002-9939-05-07812-3; reference:[5] Bermudez, T., Gonzalez, M.: On the boundedness of the local resolvent function.Integral Equations Oper. Theory 34 (1999), 1-8. Zbl 0931.47003, MR 1690283, 10.1007/BF01332488; reference:[6] Bračič, J., Müller, V.: On bounded local resolvents.Integral Equations Oper. Theory 55 (2006), 477-486. Zbl 1113.47003, MR 2250159, 10.1007/s00020-005-1402-4; reference:[7] Du, H., Jin, P.: Perturbation of spectrums of $2\times 2$ operator matrices.Proc. Am. Math. Soc. 121 (1994), 761-766. Zbl 0814.47016, MR 1185266, 10.2307/2160273; reference:[8] Elbjaoui, H., Zerouali, E. H.: Local spectral theory for $2\times2$ operator matrices.Int. J. Math. Math. Sci. 2003 (2003), 2667-2672. Zbl 1060.47003, MR 2005905, 10.1155/S0161171203012043; reference:[9] Eschmeier, J., Prunaru, B.: Invariant subspaces and localizable spectrum.Integral Equations Oper. Theory 42 (2002), 461-471. Zbl 1010.47006, MR 1885444, 10.1007/BF01270923; reference:[10] González, M.: An example of a bounded local resolvent.Operator Theory, Operator Algebras and Related Topics. Proc. 16th Int. Conf. Operator Theory, Timişoara, 1996 Theta Found., Bucharest (1997), 159-162. Zbl 0943.47002, MR 1728418; reference:[11] Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of $2\times 2$ upper triangular operator matrices.Proc. Am. Math. Soc. 128 (2000), 119-123. Zbl 0944.47004, MR 1618686, 10.1090/S0002-9939-99-04965-5; reference:[12] Houimdi, M., Zguitti, H.: Local spectral properties of a square matrix of operators.Acta Math. Vietnam 25 (2000), 137-144 (in French). Zbl 0970.47003, MR 1770883; reference:[13] Neumann, M. M.: On local spectral properties of operators on Banach spaces.Int. Workshop on Operator Theory, Cefalù, Italy, 1997 (P. Aiena et al., eds.) Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, (2) {\it 56} (1998), 15-25. Zbl 0929.47001, MR 1710819; reference:[14] Zerouali, E. H., Zguitti, H.: Perturbation of spectra of operator matrices and local spectral theory.J. Math. Anal. Appl. 324 (2006), 992-1005. Zbl 1105.47006, MR 2265096, 10.1016/j.jmaa.2005.12.065; reference:[15] Zhong, W.: Method of separation of variables and Hamiltonian system.Comput. Struct. Mech. Appl. 8 (1991), 229-240 (in Chinese).