يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"keyword:observability inequality"', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Echarroudi, Younes

    وصف الملف: application/pdf

    Relation: mr:MR4628617; zbl:Zbl 07729581; reference:[1] Ainseba, B.: Exact and approximate controllability of the age and space population dynamics structured model.J. Math. Anal. Appl. 275 (2002), 562-574. Zbl 1005.92023, MR 1943766, 10.1016/S0022-247X(02)00238-X; reference:[2] Ainseba, B.: Corrigendum to ``Exact and approximate controllability of the age and space population dynamics structured model'' (J. Math. Anal. Appl. 275 (2) (2002), 562-574).J. Math. Anal. Appl. 393 (2012), 328. Zbl 1260.92095, MR 2921673, 10.1016/j.jmaa.2012.01.059; reference:[3] Ainseba, B., Aniţa, S.: Local exact controllability of the age-dependent population dynamics with diffusion.Abstr. Appl. Anal. 6 (2001), 357-368. Zbl 0995.93008, MR 1880930, 10.1155/S108533750100063X; reference:[4] Ainseba, B., Aniţa, S.: Internal exact controllability of the linear population dynamics with diffusion.Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. Zbl 1134.93311, MR 2108883; reference:[5] Ainseba, B., Aniţa, S.: Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system.Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. Zbl 1072.35090, MR 2126609, 10.1016/j.na.2004.09.055; reference:[6] Ainseba, B., Echarroudi, Y., Maniar, L.: Null controllability of a population dynamics with degenerate diffusion.Differ. Integral Equ. 26 (2013), 1397-1410. Zbl 1313.35193, MR 3129015; reference:[7] Ainseba, B., Langlais, M.: On a population dynamics control problem with age dependence and spatial structure.J. Math. Anal. Appl. 248 (2000), 455-474. Zbl 0964.93045, MR 1776023, 10.1006/jmaa.2000.6921; reference:[8] Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L.: Null controllability of degenerate parabolic cascade systems.Port. Math. (N.S.) 68 (2011), 345-367. Zbl 1231.35103, MR 2832802, 10.4171/PM/1895; reference:[9] Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability.J. Evol. Equ. 6 (2006), 161-204. Zbl 1103.35052, MR 2227693, 10.1007/s00028-006-0222-6; reference:[10] Aniţa, S.: Analysis and Control of Age-Dependent Population Dynamics.Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). Zbl 0960.92026, MR 1797596, 10.1007/978-94-015-9436-3; reference:[11] Apreutesei, N., Dimitriu, G.: On a prey-predator reaction-diffusion system with Holling type III functional response.J. Comput. Appl. Math. 235 (2010), 366-379. Zbl 1205.65274, MR 2677695, 10.1016/j.cam.2010.05.040; reference:[12] Barbu, V., Iannelli, M., Martcheva, M.: On the controllability of the Lotka-McKendrick model of population dynamics.J. Math. Anal. Appl. 253 (2001), 142-165. Zbl 0961.92024, MR 1804594, 10.1006/jmaa.2000.7075; reference:[13] Boutaayamou, I., Echarroudi, Y.: Null controllability of population dynamics with interior degeneracy.Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. Zbl 1370.35183, MR 3665593; reference:[14] Boutaayamou, I., Fragnelli, G.: A degenerate population system: Carleman estimates and controllability.Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. Zbl 1435.35398, MR 4052601, 10.1016/j.na.2019.111742; reference:[15] Boutaayamou, I., Salhi, J.: Null controllability for linear parabolic cascade systems with interior degeneracy.Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. Zbl 1353.35184, MR 3604750; reference:[16] Cabello, T., Gámez, M., Varga, Z.: An improvement of the Holling type III functional response in entomophagous species model.J. Biol. Syst. 15 (2007), 515-524. Zbl 1146.92326, 10.1142/S0218339007002325; reference:[17] Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval.Semigroup Forum 57 (1998), 1-36. Zbl 0915.47029, MR 1621852, 10.1007/PL00005959; reference:[18] Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains.Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. Zbl 1112.35335, MR 2276561; reference:[19] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic with drift.Netw. Heterog. Media 2 (2007), 695-715. Zbl 1140.93011, MR 2357764, 10.3934/nhm.2007.2.695; reference:[20] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form.J. Evol. Equ. 8 (2008), 583-616. Zbl 1176.35108, MR 2460930, 10.1007/s00028-008-0353-34; reference:[21] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Linear degenerate parabolic equations in bounded domains: Controllability and observability.Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. Zbl 1214.93021, MR 2241704, 10.1007/0-387-33882-9_15; reference:[22] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Regional controllability of semilinear degenerate parabolic equations in bounded domains.J. Math. Anal. Appl. 320 (2006), 804-818. Zbl 1177.93016, MR 2225996, 10.1016/j.jmaa.2005.07.006; reference:[23] Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of degenerate parabolic equations.Commun. Pure Appl. Anal. 3 (2004), 607-635. Zbl 1063.35092, MR 2106292, 10.3934/cpaa.2004.3.607; reference:[24] Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations.Adv. Differ. Equ. 10 (2005), 153-190. Zbl 1145.35408, MR 2106129; reference:[25] Dawes, J. H. P., Souza, M. O.: A derivation of Holling's type I, II and III functional responses in predator-prey systems.J. Theor. Biol. 327 (2013), 11-22. Zbl 1322.92056, MR 3046076, 10.1016/j.jtbi.2013.02.017; reference:[26] Echarroudi, Y., Maniar, L.: Null controllability of a model in population dynamics.Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. Zbl 06430755, MR 3291740; reference:[27] Echarroudi, Y., Maniar, L.: Null controllability of a degenerate cascade model in population dynamics.Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. Zbl 07464638, MR 4367456, 10.1007/978-3-030-77704-3_10; reference:[28] Fragnelli, G.: An age-dependent population equation with diffusion and delayed birth process.Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. Zbl 1084.92029, MR 2208054, 10.1155/IJMMS.2005.3273; reference:[29] Fragnelli, G.: Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates.Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. Zbl 1258.93025, MR 3010677, 10.3934/dcdss.2013.6.687; reference:[30] Fragnelli, G.: Carleman estimates and null controllability for a degenerate population model.J. Math. Pures Appl. (9) 115 (2018), 74-126. Zbl 1391.35238, MR 3808342, 10.1016/j.matpur.2018.01.003; reference:[31] Fragnelli, G.: Null controllability for a degenerate population model in divergence form via Carleman estimates.Adv. Nonlinear Anal. 9 (2020), 1102-1129. Zbl 1427.35141, MR 4019739, 10.1515/anona-2020-0034; reference:[32] Fragnelli, G., Idrissi, A., Maniar, L.: The asymptotic behavior of a population equation with diffusion and delayed birth process.Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. Zbl 1211.35046, MR 2291870, 10.3934/dcdsb.2007.7.735; reference:[33] Fragnelli, G., Martinez, P., Vancostenoble, J.: Qualitative properties of a population dynamics system describing pregnancy.Math. Models Methods Appl. Sci. 15 (2005), 507-554. Zbl 1092.92037, MR 2137524, 10.1142/S0218202505000455; reference:[34] Fragnelli, G., Mugnai, D.: Carleman estimates and observability inequalities for parabolic equations with interior degeneracy.Adv. Nonlinear Anal. 2 (2013), 339-378. Zbl 1282.35101, MR 3199737, 10.1515/anona-2013-0015; reference:[35] Fragnelli, G., Mugnai, D.: Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations.Mem. Am. Math. Soc. 1146 (2016), 88 pages. Zbl 1377.93043, MR 3498150, 10.1090/memo/1146; reference:[36] Fragnelli, G., Tonetto, L.: A population equation with diffusion.J. Math. Anal. Appl. 289 (2004), 90-99. Zbl 1109.34042, MR 2020529, 10.1016/j.jmaa.2003.08.047; reference:[37] Fursikov, A. V., Imanuvilov, O. Y.: Controllability of Evolutions Equations.Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). Zbl 0862.49004, MR 1406566; reference:[38] Hajjaj, A., Maniar, L., Salhi, J.: Carleman estimates and null controllability of degenerate/singular parabolic systems.Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. Zbl 1353.35186, MR 3578313; reference:[39] Hegoburu, N., Tucsnak, M.: Null controllability of the Lotka-Mckendrick system with spatial diffusion.Math. Control Relat. Fields 8 (2018), 707-720. Zbl 1417.92131, MR 3917460, 10.3934/mcrf.2018030; reference:[40] Jia, Y., Wu, J., Xu, H.-K.: Positive solutions of a Lotka-Volterra competition model with cross-diffusion.Comput. Math. Appl. 68 (2014), 1220-1228. Zbl 1367.92129, MR 3272537, 10.1016/j.camwa.2014.08.016; reference:[41] Juska, A., Gouveia, L., Gabriel, J., Koneck, S.: Negotiating bacteriological meat contamination standards in the US: The case of $\it E. Coli$ O157:H7.Sociologia Ruralis 40 (2000), 249-271. 10.1111/1467-9523.00146; reference:[42] Kooij, R. E., Zegeling, A.: A predator-prey model with Ivlev's functional response.J. Math. Anal. Appl. 198 (1996), 473-489. Zbl 0851.34030, MR 1376275, 10.1006/jmaa.1996.0093; reference:[43] Langlais, M.: A nonlinear problem in age-dependent population diffusion.SIAM J. Math. Anal. 16 (1985), 510-529. Zbl 0589.92013, MR 0783977, 10.1137/0516037; reference:[44] Liu, B., Zhang, Y., Chen, L.: Dynamics complexities of a Holling I predator-prey model concerning periodic biological and chemical control.Chaos Solitons Fractals 22 (2004), 123-134. Zbl 1058.92047, MR 2057553, 10.1016/j.chaos.2003.12.060; reference:[45] Liu, X., Huang, Q.: The dynamics of a harvested predator-prey system with Holling type IV functional response.Biosystems 169-170 (2018), 26-39. 10.1016/j.biosystems.2018.05.005; reference:[46] Mozorov, A. Y.: Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling.J. Theor. Biol. 265 (2010), 45-54. Zbl 1406.92676, MR 2981553, 10.1016/j.jtbi.2010.04.016; reference:[47] Pavel, L.: Classical solutions in Sobolev spaces for a class of hyperbolic Lotka-Volterra systems.SIAM J. Control Optim. 51 (2013), 2132-2151. Zbl 1275.35138, MR 3053572, 10.1137/090767303; reference:[48] Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case.J. Differ. Equations 247 (2009), 866-886. Zbl 1169.35328, MR 2528495, 10.1016/j.jde.2009.03.008; reference:[49] Piazzera, S.: An age-dependent population equation with delayed birth process.Math. Methods Appl. Sci. 27 (2004), 427-439. Zbl 1038.35145, MR 2034234, 10.1002/mma.462; reference:[50] Pozio, M. A., Tesei, A.: Degenerate parabolic problems in population dynamics.Japan J. Appl. Math. 2 (1985), 351-380. MR 0839335, 10.1007/BF03167082; reference:[51] Pugliese, A., Tonetto, L.: Well-posedness of an infinite system of partial differential equations modelling parasitic infection in age-structured host.J. Math. Anal. Appl. 284 (2003), 144-164. Zbl 1039.35130, MR 1996124, 10.1016/S0022-247X(03)00295-6; reference:[52] Rhandi, A., Schnaubelt, R.: Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$.Discrete Contin. Dyn. Syst. 5 (1999), 663-683. Zbl 1002.92016, MR 1696337, 10.3934/dcds.1999.5.663; reference:[53] Salhi, J.: Null controllability for a coupled system of degenerate/singular parabolic equations in nondivergence form.Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. Zbl 1413.35269, MR 3811494, 10.14232/ejqtde.2018.1.31; reference:[54] Seo, G., DeAngelis, D. L.: A predator-prey model with a Holling type I functional response including a predator mutual interference.J. Nonlinear Sci. 21 (2011), 811-833. Zbl 1238.92049, MR 2860930, 10.1007/s00332-011-9101-6; reference:[55] Skalski, G. T., Gilliam, J. F.: Functional responses with predator interference: Viable alternatives to the Holling type II model.Ecology 82 (2001), 3083-3092. 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2; reference:[56] Traore, O.: Null controllability of a nonlinear population dynamics problem.Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. Zbl 1127.93017, MR 2268531, 10.1155/IJMMS/2006/49279; reference:[57] Wang, W., Zhang, L., Wang, H., Li, Z.: Pattern formation of a predator-prey system with Ivlev-type functional response.Ecological Modelling 221 (2010), 131-140. MR 3075712, 10.1016/j.ecolmodel.2009.09.011; reference:[58] Webb, G. F.: Population models structured by age, size, and spatial position.Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. MR 2433574, 10.1007/978-3-540-78273-5_1; reference:[59] Zhang, Y., Xu, Z., Liu, B., Chen, L.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control.J. Biol. Syst. 13 (2005), 45-58. Zbl 1073.92061, 10.1142/S0218339005001392; reference:[60] Zhao, C., Wang, M., Zhao, P.: Optimal control of harvesting for age-dependent predator-prey system.Math. Comput. Modelling 42 (2005), 573-584. Zbl 1088.92063, MR 2173475, 10.1016/j.mcm.2004.07.019