-
1Academic Journal
المؤلفون: Herrlich, Horst, Tachtsis, Eleftherios
مصطلحات موضوعية: keyword:Axiom of Choice, keyword:weak axioms of choice, keyword:linear equations with coefficients in $\mathbb{Z}$, keyword:infinite systems of linear equations over $\mathbb{Z}$, keyword:non-trivial solution of a system in $\mathbb{Z}$, keyword:permutation models of $\mathsf{ZFA}$, keyword:symmetric models of $\mathsf{ZF}$, msc:03E25, msc:03E35
وصف الملف: application/pdf
Relation: mr:MR3666944; zbl:Zbl 06773717; reference:[1] Abian A.: Generalized completeness theorem and solvability of systems of Boolean polynomial equations.Z. Math. Log. Grundlagen Math. 16 (1970), 263–264. Zbl 0202.00704, MR 0277450, 10.1002/malq.19700160306; reference:[2] Blass A.: Ramsey's theorem in the hierarchy of choice principles.J. Symbolic Logic 42 (1977), 387–390. Zbl 0374.02037, MR 0465865, 10.2307/2272866; reference:[3] Herrlich H.: Axiom of Choice.Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006. Zbl 1102.03049, MR 2243715; reference:[4] Howard P., Rubin J.E.: The axiom of choice for well-ordered families and for families of well-orderable sets.J. Symbolic Logic 60 (1995), no. 4, 1115–1117. Zbl 0848.03026, MR 1367198, 10.2307/2275876; reference:[5] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059; reference:[6] Howard P., Solski J.: The strength of the $\Delta$-system lemma.Notre Dame J. Formal Logic 34 (1993), no. 1, 100–106. Zbl 0781.03037, MR 1213850, 10.1305/ndjfl/1093634567; reference:[7] Howard P., Tachtsis E.: On vector spaces over specific fields without choice.Math. Log. Quart. 59 (2013), no. 3, 128–146. Zbl 1278.03082, MR 3066735, 10.1002/malq.201200049; reference:[8] Jech T.J.: The Axiom of Choice.Studies in Logic and the Foundations of Mathematics, 75, North-Holland, Amsterdam, 1973; reprint: Dover Publications, Inc., New York, 2008. Zbl 0259.02052, MR 0396271; reference:[9] Jech T.J.: Set Theory.The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2003. Zbl 1007.03002, MR 1940513; reference:[10] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam, 1980. Zbl 0534.03026, MR 0597342