يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"keyword:moments"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3301778; zbl:Zbl 06416866; reference:[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry.Lecture Notes in Math. 1892 (2007), 1-75. MR 2327290, 10.1007/978-3-540-38175-4_1; reference:[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes.C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. Zbl 1297.60031, MR 3186927; reference:[3] Kaucky, J.: Combinatorial Identities (in Czech).Veda, Bratislava 1975.; reference:[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities.Probab. Theory Relat. Fields 150 (2011), 663-690. Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5; reference:[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals.Adv. Appl. Probab. 46 (2014), 2, 348-364. MR 3215537, 10.1239/aap/1401369698; reference:[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc.Adv. Appl. Probab. 40 (2008), 321-347. MR 2431299, 10.1239/aap/1214950206; reference:[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Boca Raton 2004. MR 2004226; reference:[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams.Bocconi Univ. Press, Springer, Milan 2011. Zbl 1231.60003, MR 2791919; reference:[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space.Electron. J. Probab. 15 (2010), 48, 1487-1527. Zbl 1228.60031, MR 2727319; reference:[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes.Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817; reference:[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Springer, Berlin 2008. Zbl 1175.60003, MR 2455326

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3195009; zbl:Zbl 1291.62040; reference:[1] Adamidis, K., Loukas, S.: A lifetime distribution with decreasing failure rate.Statist. Probab. Lett. 39 (1998), 35-42. Zbl 0908.62096, MR 1649319, 10.1016/S0167-7152(98)00012-1; reference:[2] Bakouch, H. S., Ristic, M. M., Asgharzadeh, A., Esmaily, L., Al-Zahrani, B. M.: An exponentiated exponential binomial distribution with application.Statist. Probab. Lett. 82 (2012), 1067-1081. Zbl 1238.62011, MR 2915071, 10.1016/j.spl.2012.03.004; reference:[3] Barreto-Souza, W., Bakouch, H. S.: A new lifetime model with decreasing failure rate.Statistics 47 (2013), 465-476. MR 3043713, 10.1080/02331888.2011.595489; reference:[4] Barreto-Souza, W., Morais, A. L. de, Cordeiro, G. M.: The Weibull-geometric distribution.J. Statist. Comput. Simul. 81 (2011), 645-657. MR 2788571, 10.1080/00949650903436554; reference:[5] Chahkandi, M., Ganjali, M.: On some lifetime distributions with decreasing failure rate.Comput. Statist. Data Anal. 53 (2009), 4433-4440. MR 2744336, 10.1016/j.csda.2009.06.016; reference:[6] Ghitany, M. E., Al-Mutairi, D. K., Nadarajah, S.: Zero-truncated Poisson-Lindley distribution and its application.Math. Comput. Simul. 79 (2008), 279-287. Zbl 1153.62308, MR 2477530, 10.1016/j.matcom.2007.11.021; reference:[7] Gupta, P. L., Gupta, R. C.: On the moments of residual life in reliability and some characterization results.Comm. Statist.-Theory and Methods 12 (1983), 449-461. Zbl 0513.62017, MR 0697631, 10.1080/03610928308828471; reference:[8] Hosking, J. R. M.: L-moments: Analysis and estimation of distributions using linear combinations of order statistics.J. Royal Statist. Soc. B 52 (1990), 105-124. Zbl 0703.62018, MR 1049304; reference:[9] Kus, C.: A new lifetime distribution.Comp. Statist. Data Anal. 51 (2007), 4497-4509. Zbl 1162.62309, MR 2364461, 10.1016/j.csda.2006.07.017; reference:[10] Lu, W., Shi, D.: A new compounding life distribution: The Weibull-Poisson distribution.J. Appl. Statist. 39 (2012), 21-38. MR 2872325, 10.1080/02664763.2011.575126; reference:[11] McNeil, A. J.: Estimating the tails of loss severity distributions using extreme value theory.Astin Bull. 27 (1997), 117-137. 10.2143/AST.27.1.563210; reference:[12] Morais, A. L., Barreto-Souza, W.: A compound class of Weibull and power series distributions.Comput. Statist. Data Anal. 55 (2011), 1410-1425. MR 2741424, 10.1016/j.csda.2010.09.030; reference:[13] Mudholkar, G. S., Srivastava, D. K.: Exponentiated Weibull family for analyzing bathtub failure-rate data.IEEE Trans. Reliability 42 (1993), 299-302. Zbl 0800.62609, 10.1109/24.229504; reference:[14] Rényi, A.: On measures of entropy and information.In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I (1961), University of California Press, Berkeley, pp. 547-561. Zbl 0106.33001, MR 0132570; reference:[15] Tahmasbi, R., Rezaei, S.: A two-parameter lifetime distribution with decreasing failure rate.Comput. Statist. Data Anal. 52 (2008), 3889-3901. Zbl 1245.62128, MR 2432214, 10.1016/j.csda.2007.12.002

  3. 3
    Academic Journal

    المؤلفون: Duchoň, Miloslav

    وصف الملف: application/pdf

    Relation: mr:MR2905422; zbl:Zbl 1249.44009; reference:[1] Berg, Ch., Christensen, J. P. P., Ressel, P.: Harmonic Analysis on Semigroups.Springer-Verlag, Berlin, Germany (1954). MR 0747302; reference:[2] Bartle, R. G., Dunford, N., Schwartz, J. C.: Weak compactness and vector measures.Canad. J. Math. 7 (1955), 289-305. Zbl 0068.09301, MR 0070050, 10.4153/CJM-1955-032-1; reference:[3] Debieve, C.: Integration par rapport a une mesure vectorielle.Ann. de la Societé Scientif. de Bruxelles. 11 (1973), 165-185. Zbl 0268.28004, MR 0318440; reference:[4] Duchoň, M., Debieve, C.: Moments of vector-valued functions and measures.Tatra Mt. Math. Publ. 42 (2009), 199-210. MR 2543917; reference:[5] Dunford, N., Schwartz, J. T.: Linear Operators.Part I, Interscience, New York, USA (1966). Zbl 0146.12601; reference:[6] Hausdorff, F.: Summationsmethoden und Momentenfolgen II.Math. Z. 9 (1921), 280-299. MR 1544467, 10.1007/BF01279032; reference:[7] Hausdorff, F.: Momentprobleme fuer ein endliches Interval.Math. Z. 16 (1923), 220-248. MR 1544592, 10.1007/BF01175684; reference:[8] Lewis, D. R.: Integration with respect to vector measures.Pac. J. Math. 33 (1970), 157-165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157; reference:[9] Lorentz, G. G.: Bernstein Polynomials.Toronto University Press, Toronto, Canada (1953). Zbl 0051.05001, MR 0057370; reference:[10] Tweddle, I.: Weak compactness in locally convex spaces.Glasgow Math. J. 9 (1968), 123-127. Zbl 0159.41802, MR 0239395, 10.1017/S0017089500000409; reference:[11] Widder, D. V.: The Laplace Transform.Princeton University Press, Princeton, N.J. (1941). Zbl 0063.08245, MR 0005923

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2807861; zbl:Zbl 1209.62013; reference:[1] Buishand, T. A.: Stochastic Modelling of Daily Rainfall Sequences.Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977.; reference:[2] Choo, L., Walker, S. G.: A new approach to investigating spatial variations of disease.J. Roy. Statist. Soc. A 171 (2008), 395–405. MR 2427340, 10.1111/j.1467-985X.2007.00503.x; reference:[3] Christensen, A., Melgaard, H., Iwersen, J.: Environmental monitoring based on a hierarchical Poisson-gamma model.J. Quality Technology 35 (2003), 275–285.; reference:[4] Comtet, L.: Advanced Combinatorics.Reidel Publishing Company, Dordrecht 1974. Zbl 0283.05001, MR 0460128; reference:[5] Fisher, R. A., Cornish, E. A.: The percentile points of distributions having known cumulants.Technometrics 2 (1960), 209–225. Zbl 0095.13704, 10.1080/00401706.1960.10489895; reference:[6] Fukasawa, T., Basawa, I. V.: Estimation for a class of generalized state-space time series models.Statist. Probab. Lett. 60 (2002), 459–473. Zbl 1056.62098, MR 1947185, 10.1016/S0167-7152(02)00325-5; reference:[7] Galue, L.: A generalized hyper Poisson-gamma distribution associated with the $H$-function.Hadronic J. 30 (2007), 63–79. Zbl 1137.62004, MR 2356751; reference:[8] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and Products.Fourth edition. Academic Press, New York 1965.; reference:[9] Hadjicostas, P., Berry, S. M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model.Test 8 (1999), 147–166. Zbl 0945.62032, MR 1707655, 10.1007/BF02595867; reference:[10] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data.Biometrika 90 (2003), 355–366. Zbl 1034.62115, MR 1986652, 10.1093/biomet/90.2.355; reference:[11] Kendall, M., Stuart, A.: The Advanced Theory of Statistics.Volume 1. MacMillan, New York 1977. Zbl 0353.62013, MR 0467977; reference:[12] Cam, L. Le: A stochastic description of precipitation.In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. Zbl 0122.37005, MR 0135598; reference:[13] Nahmias, S., Demmy, W. S.: The logarithmic Poisson gamma-distribution – a model for leadtime demand.Naval Research Logistics 29 (1982), 667–677. Zbl 0538.90022, 10.1002/nav.3800290413; reference:[14] Ozturk, A.: On the study of a probability distribution for precipitation totals.J. Appl. Meteorology 20 (1981), 1499–1505. 10.1175/1520-0450(1981)0202.0.CO;2; reference:[15] Revfeim, K. J. A.: Comments “On the study of a probability distribution for precipitation totals”.J. Appl. Meteology 21 (1982), 97–100.; reference:[16] Revfeim, K. J. A.: A theoretically derived distribution for annual rainfall totals.Internat. J. Climatology 10 (1990), 647–650. 10.1002/joc.3370100607; reference:[17] Withers, C. S.: Asymptotic expansions for distributions and quantiles with power series cumulants.J. Roy. Statist. Soc. B 46 (1984), 389–396. Zbl 0586.62026, MR 0790623; reference:[18] Withers, C. S., Nadarajah, S.: Saddlepoint Expansions in Terms of Bell Polynomials.Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/.; reference:[19] Xia, N., Zhang, Z.-Z., Ying, Z.-L.: Convergence rate of the L-N estimator in Poisson-gamma models.Acta Math. Appl. Sinica 22 (2006), 639–654. Zbl 1104.62082, MR 2248528, 10.1007/s10255-006-0338-z

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2738966; zbl:Zbl 1224.44005; reference:[1] Asmussen, Søren: Applied probability and queues.Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Chichester etc.: John Wiley & Sons (1987). MR 0889893; reference:[2] Cramér, Harald: The elements of probability theory and some of its applications.New York: John Wiley & Sons. Stockholm: Almquist & Wiksell 281 (1954). MR 0067379; reference:[3] Zbăganu, Gheorghiţă: On iterated integrated tail.Preprint (2009). MR 2645119