يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"keyword:metrizability"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3661054; zbl:Zbl 06738532; reference:[1] Bácsó, S., Szilasi, Z.: On the projective theory of sprays.Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 26 (2010), 171-207. Zbl 1240.53047, MR 2754415; reference:[2] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A.: Exterior Differential Systems.Mathematical Sciences Research Institute Publications 18, Springer, New York (1991). Zbl 0726.58002, MR 1083148, 10.1007/978-1-4613-9714-4; reference:[3] Bucataru, I., Milkovszki, T., Muzsnay, Z.: Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces.Mediterr. J. Math. (2016), 4567-4580. Zbl 1356.53021, MR 3564521, 10.1007/s00009-016-0762-0; reference:[4] Bucataru, I., Muzsnay, Z.: Projective metrizability and formal integrability.SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 7 (2011), Paper 114, 22 pages. Zbl 1244.49072, MR 2861227, 10.3842/SIGMA.2011.114; reference:[5] Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability: parameterization-rigidity of the geodesics.Int. J. Math. 23 (2012), 1250099, 15 pages. Zbl 1263.53070, MR 2959445, 10.1142/S0129167X12500991; reference:[6] Crampin, M.: Isotropic and R-flat sprays.Houston J. Math. 33 (2007), 451-459. Zbl 1125.53012, MR 2308989; reference:[7] Crampin, M.: On the inverse problem for sprays.Publ. Math. 70 (2007), 319-335. Zbl 1127.53015, MR 2310654; reference:[8] Crampin, M.: Some remarks on the Finslerian version of Hilbert's fourth problem.Houston J. Math. 37 (2011), 369-391. Zbl 1228.53085, MR 2794554; reference:[9] Crampin, M., Mestdag, T., Saunders, D. J.: The multiplier approach to the projective Finsler metrizability problem.Differ. Geom. Appl. 30 (2012), 604-621. Zbl 1257.53105, MR 2996856, 10.1016/j.difgeo.2012.07.004; reference:[10] Crampin, M., Mestdag, T., Saunders, D. J.: Hilbert forms for a Finsler metrizable projective class of sprays.Differ. Geom. Appl. 31 (2013), 63-79. Zbl 1262.53064, MR 3010078, 10.1016/j.difgeo.2012.10.012; reference:[11] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations.Differ. Geom. Appl. 45 (2016), 148-179. Zbl 1333.37070, MR 3457392, 10.1016/j.difgeo.2016.01.005; reference:[12] Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms.Nederl. Akad. Wet., Proc., Ser. A. 59 (1956), 338-359. Zbl 0079.37502, MR 0082554; reference:[13] Grifone, J., Muzsnay, Z.: Variational Principles for Second-Order Differential Equations. Application of the Spencer Theory to Characterize Variational Sprays.World Scientific Publishing, Singapore (2000). Zbl 1023.49027, MR 1769337, 10.1142/9789812813596; reference:[14] Klein, J., Voutier, A.: Formes extérieures génératrices de sprays.Ann. Inst. Fourier 18 French (1968), 241-260. Zbl 0181.49902, MR 0247599, 10.5802/aif.282; reference:[15] Matveev, V. S.: On projective equivalence and pointwise projective relation of Randers metrics.Int. J. Math. 23 (2012), 1250093, 14 pages. Zbl 1253.53018, MR 2959439, 10.1142/S0129167X12500930; reference:[16] Mestdag, T.: Finsler geodesics of Lagrangian systems through Routh reduction.Mediterr. J. Math. 13 (2016), 825-839. Zbl 1338.53103, MR 3483865, 10.1007/s00009-014-0505-z; reference:[17] Muzsnay, Z.: The Euler-Lagrange PDE and Finsler metrizability.Houston J. Math. 32 (2006), 79-98. Zbl 1113.53049, MR 2202354; reference:[18] Rapcsák, A.: Über die bahntreuen Abbildungen metrischer Räume.Publ. Math. German 8 (1961), 285-290. Zbl 0101.39901, MR 0138079; reference:[19] Sarlet, W., Thompson, G., Prince, G. E.: The inverse problem of the calculus of variations: The use of geometrical calculus in Douglas's analysis.Trans. Am. Math. Soc. 354 (2002), 2897-2919. Zbl 1038.37044, MR 1895208, 10.1090/S0002-9947-02-02994-X; reference:[20] Shen, Z.: Differential Geometry of Spray and Finsler Spaces.Kluwer Academic Publishers, Dordrecht (2001). Zbl 1009.53004, MR 1967666, 10.1007/978-94-015-9727-2; reference:[21] Szilasi, J., Lovas, R. L., Kertész, D. C.: Connections, Sprays and Finsler Structures.World Scientific Publishing, Hackensack (2014). Zbl 06171673, MR 3156183; reference:[22] Szilasi, J., Vattamány, S.: On the Finsler-metrizabilities of spray manifolds.Period. Math. Hung. 44 (2002), 81-100. Zbl 0997.53056, MR 1892276, 10.1023/A:1014928103275

  2. 2
    Academic Journal

    المؤلفون: Arhangel'skii, A. V.

    وصف الملف: application/pdf

    Relation: mr:MR2433629; zbl:Zbl 1212.54086; reference:[1] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67 (109) (1965), 55-88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39. MR 0190889; reference:[2] Arhangel'skii A.V.: Classes of topological groups.Russian Math. Surveys 36 (3) (1981), 151-174. MR 0622722, 10.1070/RM1981v036n03ABEH004249; reference:[3] Arhangel'skii A.V.: Some connections between properties of topological groups and of their remainders.Moscow Univ. Math. Bull. 54:3 (1999), 1-6. MR 1711899; reference:[4] Arhangel'skii A.V.: Topological invariants in algebraic environment.in: Recent Progress in General Topology 2, eds. M. Hušek, Jan van Mill, North-Holland, Amsterdam, 2002, pp.1-57. Zbl 1030.54026, MR 1969992; reference:[5] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79-90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015; reference:[6] Arhangel'skii A.V.: More on remainders close to metrizable spaces.Topology Appl. 154 (2007), 1084-1088. Zbl 1144.54001, MR 2298623, 10.1016/j.topol.2006.10.008; reference:[7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[8] Filippov V.V.: On perfect images of paracompact $p$-spaces.Soviet Math. Dokl. 176 (1967), 533-536. MR 0222853; reference:[9] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83-106. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2; reference:[10] Tkachenko M.G.: The Suslin property in free topological groups over compact spaces (Russian).Mat. Zametki 34 (1983), 601-607; English translation: Math. Notes 34 (1983), 790-793. MR 0722229; reference:[11] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients.McGraw-Hill, New York, 1981.

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2338097; zbl:Zbl 1199.54152; reference:[1] Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), 35-46. Zbl 0164.14903, MR 0228983; reference:[2] Benyamini Y., Rudin M.E., Wage M.: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70.2 (1977), 309-324. Zbl 0374.46011, MR 0625889; reference:[3] Benyamini Y., Starbird T.: Embedding weakly compact sets into Hilbert space.Israel J. Math. 23 (1976), 137-141. Zbl 0325.46023, MR 0397372; reference:[4] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1988. Zbl 0684.54001, MR 1039321; reference:[5] Gruenhage G.: Covering properties on $X^{2}\backslash \Delta $, $W$-sets, and compact subsets of $\Sigma $-products.Topology Appl. 17 (1984), 287-304. Zbl 0547.54016, MR 0752278; reference:[6] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327; reference:[7] Juhász I.: Cardinal Functions in Topology - Ten Years After.Mathematical Centre Tracts 123, Amsterdam, 1983. MR 0576927; reference:[8] Lindenstrauss J.: Weakly compact sets, their topological properties and the Banach spaces they generate.Annals of Math. Studies 69, Princeton University Press, Princeton, 1972, pp.235-273. Zbl 0232.46019, MR 0417761; reference:[9] Michael E., Rudin M.E.: A note on Eberlein compacts.Pacific J. Math. 72.2 (1977), 487-495. Zbl 0345.54020, MR 0478092; reference:[10] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72.2 (1977), 497-499. Zbl 0344.54018, MR 0478093; reference:[11] Rosenthal H.P.: The heredity problem for weakly compactly generated Banach spaces.Compositio Math. 28 (1974), 83-111. Zbl 0298.46013, MR 0417762; reference:[12] Yakovlev N.N.: On bicompacta in $\Sigma $-products and related spaces.Comment. Math. Univ. Carolin. 21.2 (1980), 263-283. Zbl 0436.54019, MR 0580682

  4. 4
    Academic Journal

    المؤلفون: Heindorf, Lutz

    وصف الملف: application/pdf

    Relation: mr:MR1440712; zbl:Zbl 0887.06007; reference:[1] Bonnet R.: Subalgebras.Chapter 10 in vol. 2 of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. MR 0991598; reference:[2] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780; reference:[3] Gruenhage G.: Covering properties on $X^2\setminus \Delta$, W-sets, and compact subsets of $\Sigma$-products.Topology and its Applications 17 (1978), 287-304. MR 0752278; reference:[4] Jech T.: A note on countable Boolean algebras.Algebra Universalis 14 (1982), 257-262. Zbl 0488.06007, MR 0635004; reference:[5] Koppelberg S.: General theory of Boolean algebras.vol 1. of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. MR 0991565; reference:[6] Remmel J.B.: Complementation in the lattice of subalgebras of a Boolean algebra.Algebra Universalis 10 (1980), 48-64. Zbl 0432.06010, MR 0552156

  5. 5
    Academic Journal

    المؤلفون: Kaiser, Tomáš

    وصف الملف: application/pdf

    Relation: mr:MR1399010; zbl:Zbl 0847.54025; reference:[1] Isbell J.R.: Atomless parts of spaces.Math. Scand. 31 (1972), 5-32. Zbl 0246.54028, MR 0358725; reference:[2] Johnstone P.T.: Stone Spaces.Cambridge University Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074; reference:[3] Kelley J.L.: General Topology.Van Nostrand, Princeton, 1955. Zbl 0518.54001, MR 0070144; reference:[4] Pultr A.: Notes on an extension of the structure of frame.Discrete Mathematics 108 (1992), 107-114. Zbl 0759.06011, MR 1189833; reference:[5] Pultr A.: Pointless uniformities I. Complete regularity.Comment. Math. Univ. Carolinae 25 (1984), 91-104. Zbl 0543.54023, MR 0749118; reference:[6] Pultr A.: Pointless uniformities II. (Dia)metrization.Comment. Math. Univ. Carolinae 25 (1984), 105-120. MR 0749119; reference:[7] Pultr A.: Remarks on metrizable locales.Proc. 12th Winter School, Suppl. ai Rend. Circ. Mat. Palermo (2) 6 (1984), 247-258. Zbl 0565.54001, MR 0782722; reference:[8] Pultr A., Úlehla J.: Notes on characterization of paracompact frames.Comment. Math. Univ. Carolinae 30.2 (1989), 377-384. MR 1014137; reference:[9] Stone A.H.: Paracompactness and product spaces.Bull. Amer. Math. Soc. 54 (1948), 977-982. Zbl 0032.31403, MR 0026802; reference:[10] Sun Shu-Hao: On paracompact locales and metric locales.Comment. Math. Univ. Carolinae 30 (1989), 101-107. MR 0995708; reference:[11] Tukey J.W.: Convergence and uniformity in topology.Ann. of Math. Studies 2 (1940). Zbl 0025.09102, MR 0002515