-
1Academic Journal
مصطلحات موضوعية: keyword:homogenization, keyword:$H$-convergence, keyword:perforated domain, keyword:linear elasticity, keyword:eigenvalue problem, msc:35B27, msc:35B40, msc:47A75, msc:74B05
وصف الملف: application/pdf
Relation: mr:MR4299881; zbl:07396174; reference:[1] Briane, M.: Homogenization in general periodically perforated domains by a spectral approach.Calc. Var. Partial Differ. Equ. 15 (2002), 1-24. Zbl 1028.35018, MR 1920712, 10.1007/s005260100115; reference:[2] Briane, M., Damlamian, A., Donato, P.: $H$-convergence in perforated domains.Nonlinear Partial Differential Equations and Their Applications Pitman Research Notes in Mathematics Series 391. Longman, Harlow (1998), 62-100. Zbl 0943.35005, MR 1773075; reference:[3] Cancedda, A.: Spectral homogenization for a Robin-Neumann problem.Boll. Unione Mat. Ital. 10 (2017), 199-222. Zbl 1377.35092, MR 3655025, 10.1007/s40574-016-0075-z; reference:[4] Cioranescu, D., Paulin, J. Saint Jean: Homogenization of Reticuled Structures.Applied Mathematical Sciences 136. Springer, New York (1999). Zbl 0929.35002, MR 1676922, 10.1007/978-1-4612-2158-6; reference:[5] Damlamian, A., Donato, P.: Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?.ESAIM, Control Optim. Calc. Var. 8 (2002), 555-585. Zbl 1073.35020, MR 1932963, 10.1051/cocv:2002046; reference:[6] Douanla, H.: Homogenization of Steklov spectral problems with indefinite density function in perforated domains.Acta Appl. Math. 123 (2013), 261-284. Zbl 1263.35022, MR 3010234, 10.1007/s10440-012-9765-4; reference:[7] Hajji, M. El: Homogenization of linearized elasticity systems with traction condition in perforated domains.Electron. J. Differ. Equ. 1999 (1999), Article ID 41, 11 pages. Zbl 0952.74060, MR 1713600; reference:[8] Hajji, M. El, Donato, P.: $H^0$-convergence for the linearized elasticity system.Asymptotic Anal. 21 (1999), 161-186. Zbl 0942.74057, MR 1723547; reference:[9] Francfort, G. A., Murat, F.: Homogenization and optimal bounds in linear elasticity.Arch. Ration. Mech. Anal. 94 (1986), 307-334. Zbl 0604.73013, MR 0846892, 10.1007/BF00280908; reference:[10] Georgelin, C.: Contribution à l'étude de quelques problèmes en élasticité tridimensionnelle: Thèse de Doctorat.Université de Paris IV, Paris (1989), French.; reference:[11] Haddadou, H.: Iterated homogenization for the linearized elasticity by $H^{0}_{e}$-convergence.Ric. Mat. 54 (2005), 137-163. Zbl 1387.35034, MR 2290210; reference:[12] Haddadou, H.: A property of the $H$-convergence for elasticity in perforated domains.Electron. J. Differ. Equ. 137 (2006), Article ID 137, 11 pages. Zbl 1128.35017, MR 2276562; reference:[13] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer, Berlin (1994). Zbl 0838.35001, MR 1329546, 10.1007/978-3-642-84659-5; reference:[14] Kesavan, S.: Homogenization of elliptic eigenvalue problems I.Appl. Math. Optim. 5 (1979), 153-167. Zbl 0415.35061, MR 0533617, 10.1007/BF01442551; reference:[15] Léné, F.: Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement.C. R. Acad. Sci., Paris, Sér. A 286 (1978), 75-78 French. Zbl 0372.73001, MR 0486458; reference:[16] Murat, F., Tartar, L.: $H$-convergence.Topics in the Mathematical Modelling of Composite Materials Progress in Nonlinear Differential Equations and Their Applications 31. Birkhäuser, Boston (1997), 21-43. Zbl 0920.35019, MR 1493039, 10.1007/978-1-4612-2032-9_3; reference:[17] Nandakumar, A. K.: Homogenization of eigenvalue problems of elasticity in perforated domains.Asymptotic Anal. 9 (1994), 337-358. Zbl 0814.35135, MR 1301169, 10.3233/ASY-1994-9403; reference:[18] Oleinik, O. A., Shamaev, A. S., Yosifian, G. A.: Mathematical Problems in Elasticity and Homogenization.Studies in Mathematics and Its Applications 26. North-Holland, Amsterdam (1992). Zbl 0768.73003, MR 1195131, 10.1016/s0168-2024(08)x7009-2; reference:[19] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. Zbl 0174.42101, MR 0240443; reference:[20] Suslina, T. A.: Spectral approach to homogenization of elliptic operators in a perforated space.Rev. Math. Phys. 30 (2018), Article ID 1840016, 57 pages. Zbl 1411.35029, MR 3846431, 10.1142/S0129055X18400160; reference:[21] Tartar, L.: Problèmes d'homogénéisation dans les équations aux dérivées partielles.Cours Peccot, Collège de France, Paris (1977), French.; reference:[22] Tartar, L.: The General Theory of Homogenization: A Personalized Introduction.Lecture Notes of the Unione Matematica Italiana 7. Springer, Berlin (2009). Zbl 1188.35004, MR 2582099, 10.1007/978-3-642-05195-1; reference:[23] Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains.Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 239-271. Zbl 0486.35063, MR 0635561, 10.1007/BF02838079
-
2Academic Journal
المؤلفون: Valášek, Jan, Sváček, Petr, Horáček, Jaromír
مصطلحات موضوعية: keyword:flow-induced vibration, keyword:2D incompressible Navier-Stokes equations, keyword:linear elasticity, keyword:inlet boundary conditions, keyword:flutter instability, msc:65N12, msc:65N30, msc:76D05
وصف الملف: application/pdf
Relation: mr:MR3936969; zbl:Zbl 07088738; reference:[1] Babuška, I.: The finite element method with penalty.Math. Comput. 27 (1973), 221-228. Zbl 0299.65057, MR 0351118, 10.2307/2005611; reference:[2] Bodnár, T., Galdi, G. P., Nečasová, Š., (eds.): Fluid-Structure Interaction and Biomedical Applications.Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014). Zbl 1300.76003, MR 3223031, 10.1007/978-3-0348-0822-4; reference:[3] Braack, M., Mucha, P. B.: Directional do-nothing condition for the Navier-Stokes equations.J. Comput. Math. 32 (2014), 507-521. Zbl 1324.76015, MR 3258025, 10.4208/jcm.1405-4347; reference:[4] Curnier, A.: Computational Methods in Solid Mechanics.Solid Mechanics and Its Applications 29 Kluwer Academic Publishers Group, Dordrecht (1994). Zbl 0815.73003, MR 1311022, 10.1007/978-94-011-1112-6; reference:[5] Daily, D. J., Thomson, S. L.: Acoustically-coupled flow-induced vibration of a computational vocal fold model.Comput. Struct. 116 (2013), 50-58. 10.1016/j.compstruc.2012.10.022; reference:[6] Davis, T. A.: Direct Methods for Sparse Linear Systems.Fundamentals of Algorithms 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006). Zbl 1119.65021, MR 2270673, 10.1137/1.9780898718881; reference:[7] Diez, N. G., Belfroid, S., Golliard, J., (eds.): Flow-Induced Vibration & Noise. Proceedings of 11th International Conference on Flow Induced Vibration & Noise.TNO, Delft, The Hague, The Netherlands (2016).; reference:[8] Dowell, E. H.: A Modern Course in Aeroelasticity.Solid Mechanics and Its Applications 217, Springer, Cham (2004). Zbl 1297.74001, MR 3306893, 10.1007/978-3-319-09453-3; reference:[9] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures.J. Comput. Appl. Math. 254 (2013), 17-30. Zbl 1290.65089, MR 3061063, 10.1016/j.cam.2013.03.028; reference:[10] Feistauer, M., Sváček, P., Horáček, J.: Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds.Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014), 321-393. Zbl 06482614, MR 3329021, 10.1007/978-3-0348-0822-4_5; reference:[11] Formaggia, L., Parolini, N., Pischedda, M., Riccobene, C.: Geometrical multi-scale modeling of liquid packaging system: an example of scientific cross-fertilization.19th European Conference on Mathematics for Industry 6 pages (2016). 10.15304/cc.2016.968; reference:[12] Gelhard, T., Lube, G., Olshanskii, M. A., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows.J. Comput. Appl. Math. 177 (2005), 243-267. Zbl 1063.76054, MR 2125317, 10.1016/j.cam.2004.09.017; reference:[13] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Cham (1986),\99999DOI99999 10.1007/978-3-642-61623-5 \goodbreak. Zbl 0585.65077, MR 0851383; reference:[14] Horáček, J., Radolf, V. V., Bula, V., Košina, J.: Experimental modelling of phonation using artificial models of human vocal folds and vocal tracts.V. Fuis Engineering Mechanics 2017 Brno University of Technology, Faculty of Mechanical Engineering (2017), 382-385.; reference:[15] Horáček, J., Šidlof, P., Švec, J. G.: Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces.J. Fluids Struct. 20 (2005), 853-869. 10.1016/j.jfluidstructs.2005.05.003; reference:[16] Horáček, J., Švec, J. G.: Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold.J. Fluids Struct. 16 (2002), 931-955. 10.1006/jfls.2002.0454; reference:[17] Horáček, J., Švec, J. G.: Instability boundaries of a vocal fold modelled as a flexibly supported rigid body vibrating in a channel conveying fluid.ASME 2002 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers (2002), 1043-1054. 10.1115/imece2002-32199; reference:[18] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge University Press, Cambridge (1987). Zbl 0628.65098, MR 0925005; reference:[19] Kaltenbacher, M., Zörner, S., Hüppe, A.: On the importance of strong fluid-solid coupling with application to human phonation.Prog. Comput. Fluid Dyn. 14 (2014), 2-13. Zbl 1400.76041, 10.1504/PCFD.2014.059195; reference:[20] Link, G., Kaltenbacher, M., Breuer, M., Döllinger, M.: A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation.Comput. Methods Appl. Mech. Eng. 198 (2009), 3321-3334. Zbl 1230.74188, MR 2571347, 10.1016/j.cma.2009.06.009; reference:[21] Sadeghi, H., Kniesburges, S., Kaltenbacher, M., Schützenberger, A., Döllinger, M.: Computational models of laryngeal aerodynamics: Potentials and numerical costs.Journal of Voice (2018). 10.1016/j.jvoice.2018.01.001; reference:[22] Seo, J. H., Mittal, R.: A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries.J. Comput. Phys. 230 (2011), 1000-1019. Zbl 1391.76698, MR 2753346, 10.1016/j.jcp.2010.10.017; reference:[23] Šidlof, P., Kolář, J., Peukert, P.: Flow-induced vibration of a long flexible sheet in tangential flow.D. Šimurda, T. Bodnár Topical Problems of Fluid Mechanics 2018 Institute of Thermomechanics, The Czech Academy of Sciences, Praha (2018), 251-256. 10.14311/tpfm.2018.034; reference:[24] Slaughter, W. S.: The Linearized Theory of Elasticity.Birkhäuser, Boston (2002). Zbl 0999.74002, MR 1902598, 10.1007/978-1-4612-0093-2; reference:[25] Sváček, P., Horáček, J.: Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model.Commun. Comput. Phys. 12 (2012), 789-806. 10.4208/cicp.011010.280611s; reference:[26] Sváček, P., Horáček, J.: Finite element approximation of flow induced vibrations of human vocal folds model: effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset.Appl. Math. Comput. 319 (2018), 178-194. MR 3717682, 10.1016/j.amc.2017.02.026; reference:[27] Takashi, N., Hughes, T. J. R.: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body.Comput. Methods Appl. Mech. Eng. 95 (1992), 115-138. Zbl 0756.76047, 10.1016/0045-7825(92)90085-X; reference:[28] Valášek, J., Kaltenbacher, M., Sváček, P.: On the application of acoustic analogies in the numerical simulation of human phonation process.Flow, Turbul. Combust. (2018), 1-15. 10.1007/s10494-018-9900-z; reference:[29] Valášek, J., Sváček, P., Horáček, J.: Numerical solution of fluid-structure interaction represented by human vocal folds in airflow.EPJ Web of Conferences 114 (2016), Article No. 02130, 6 pages. 10.1051/epjconf/201611402130; reference:[30] Valášek, J., Sváček, P., Horáček, J.: On finite element approximation of flow induced vibration of elastic structure.Programs and Algorithms of Numerical Mathematics 18. Proceedings of the 18th Seminar (PANM), 2016 Institute of Mathematics, Czech Academy of Sciences, Praha (2017), 144-153. Zbl 06994472, MR 3791877, 10.21136/panm.2016.17; reference:[31] Venkatramani, J., Nair, V., Sujith, R. I., Gupta, S., Sarkar, S.: Multi-fractality in aeroelastic response as a precursor to flutter.J. Sound Vib. 386 (2017), 390-406. 10.1016/j.jsv.2016.10.004; reference:[32] Zorner, S.: Numerical Simulation Method for a Precise Calculation of the Human Phonation Under Realistic Conditions.Ph.D. Thesis, Technische Uuniversität Wien (2013).
-
3Academic Journal
المؤلفون: Heinemann, Christian, Kraus, Christiane
مصطلحات موضوعية: keyword:Cahn-Hilliard system, keyword:phase separation, keyword:complete damage, keyword:elliptic-parabolic degenerating system, keyword:linear elasticity, keyword:energetic solution, keyword:weak solution, keyword:doubly nonlinear differential inclusion, keyword:existence result, keyword:rate-dependent system, msc:34A12, msc:35A01, msc:35D30, msc:35J50, msc:35K55, msc:35K65, msc:35K85, msc:35K92, msc:35M30, msc:49S05, msc:74A45, msc:74G25, msc:82B26
وصف الملف: application/pdf
Relation: mr:MR3238842; zbl:Zbl 06362261; reference:[1] Bartkowiak, L., Pawłow, I.: The Cahn-Hilliard-Gurtin system coupled with elasticity.Control Cybern. 34 1005-1043 (2005). Zbl 1119.35099, MR 2256463; reference:[2] Bonetti, E., Colli, P., Dreyer, W., Gilardi, G., Schimperna, G., Sprekels, J.: On a model for phase separation in binary alloys driven by mechanical effects.Physica D 165 48-65 (2002). Zbl 1008.74066, MR 1910617, 10.1016/S0167-2789(02)00373-1; reference:[3] Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials.J. Differ. Equations 218 91-116 (2005). Zbl 1078.74048, MR 2174968, 10.1016/j.jde.2005.04.015; reference:[4] Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strains.Z. Angew. Math. Phys. 60 205-236 (2009). Zbl 1238.74005, MR 2486153, 10.1007/s00033-007-7064-0; reference:[5] Carrive, M., Miranville, A., Piétrus, A.: The Cahn-Hilliard equation for deformable elastic continua.Adv. Math. Sci. Appl. 10 539-569 (2000). Zbl 0987.35156, MR 1807441; reference:[6] Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power.Int. J. Solids Struct. 33 1083-1103 (1996). MR 1370124, 10.1016/0020-7683(95)00074-7; reference:[7] Garcke, H.: On Mathematical Models for Phase Separation in Elastically Stressed Solids. Habilitation thesis.University Bonn (2000).; reference:[8] Gurtin, M. E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.Physica D 92 178-192 (1996). Zbl 0885.35121, MR 1387065, 10.1016/0167-2789(95)00173-5; reference:[9] Heinemann, C., Kraus, C.: Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage.Adv. Math. Sci. Appl. 21 321-359 (2011). Zbl 1253.35179, MR 2953122; reference:[10] Heinemann, C., Kraus, C.: Existence results for diffuse interface models describing phase separation and damage.Eur. J. Appl. Math. 24 179-211 (2013). Zbl 1290.35265, MR 3031777, 10.1017/S095679251200037X; reference:[11] Heinemann, C., Kraus, C.: A degenerating Cahn-Hilliard system coupled with complete damage processes.WIAS preprint no. 1759, 23 pages (2012). MR 3280841; reference:[12] Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model.Math. Models Methods Appl. Sci. 23 565-616 (2013). Zbl 1262.74030, MR 3021776, 10.1142/S021820251250056X; reference:[13] Mielke, A.: Complete-damage evolution based on energies and stresses.Discrete Contin. Dyn. Syst., Ser. S 4 423-439 (2011). Zbl 1209.74010, MR 2746382, 10.3934/dcdss.2011.4.423; reference:[14] Mielke, A., Roubíček, T., Zeman, J.: Complete damage in elastic and viscoelastic media and its energetics.Comput. Methods Appl. Mech. Eng. 199 1242-1253 (2010). Zbl 1227.74058, MR 2601392, 10.1016/j.cma.2009.09.020; reference:[15] Nor, F. M., Keat, L. W., Kamsah, N., Tamin, M. N.: Damage mechanics model for interface fracture process in solder interconnects.10th Electronics Packaging Technology Conference 821-827 (2008).; reference:[16] Rocca, E., Rossi, R.: A degenerating PDE system for phase transitions and damage.Math. Models Methods Appl. Sci., arXiv:1205.3578v1 (2012), 53 pages. MR 3192591; reference:[17] Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain-existence and regularity results.ZAMM, Z. Angew. Math. Mech. 90 88-112 (2010). Zbl 1191.35159, MR 2640367, 10.1002/zamm.200900243
-
4Academic Journal
المؤلفون: Ainsworth, Mark, Mihai, L. Angela
مصطلحات موضوعية: keyword:linear elasticity, keyword:equilibrium problems, keyword:variational inequality, keyword:complementarity problems, keyword:masonry structures, msc:49J40, msc:74B10, msc:74G15, msc:74L99, msc:90C33
وصف الملف: application/pdf
Relation: mr:MR2212309; zbl:Zbl 1164.74355; reference:[1] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Scientific Computing Series.Academic Press, New York, 1979. MR 0544666; reference:[2] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Vol. 15.Springer-Verlag, New York, 1994. MR 1278258, 10.1007/978-1-4757-4338-8_7; reference:[3] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, Vol. 219.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262; reference:[4] G. Fichera: Encyclopedia of physics.Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constraints, Volume VI a/2, S. Flügge (ed.), Springer-Verlag, Berlin, 1972, pp. 347–427.; reference:[5] P. E. Gill, W. Murray, and M. H. Wright: Practical Optimization.Academic Press, London, 1981. MR 0634376; reference:[6] R. Glowinski, J.-L. Lions, and R. Trémolières: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, Vol. 8.North-Holland, Amsterdam-New York-Oxford, 1981, English version edition. MR 0635927; reference:[7] R. L. Graves: A principal pivoting simplex algorithm for linear and quadratic programming.Oper. Res. 15 (1967), 482–494. Zbl 0154.19604, MR 0211756, 10.1287/opre.15.3.482; reference:[8] M. Hintermüller, K. Ito, and K. Kunisch: The primal-dual active set strategy as a semismooth Newton method.SIAM J. Optim. 13 (2003), 865–888. MR 1972219; reference:[9] M. Hintermüller, V. A. Kovtunenko, and K. Kunisch: The primal-dual active set method for a crack problem with non-penetration.IMA J. Appl. Math. 69 (2004), 1–26. MR 2029355, 10.1093/imamat/69.1.1; reference:[10] M. Hintermüller, V. A. Kovtunenko, and K. Kunisch: Generalized Newton methods for crack problems with nonpenetration condition.Numer. Methods Partial Differential Equations 21 (2005), 586–610. MR 2128598, 10.1002/num.20053; reference:[11] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences, Vol. 66.Springer-Verlag, Berlin-Heidelberg-New York, 1988. MR 0952855; reference:[12] I. Hlaváček, J. Nedoma: On a solution of a generalized semi-coercive contact problem in thermo-elasticity.Math. Comput. Simul. 60 (2002), 1–17. MR 1916897, 10.1016/S0378-4754(01)00433-5; reference:[13] N. Kikuchi, J. T. Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied Mathematics, Vol. 8.SIAM, Philadelphia, 1988. MR 0961258; reference:[14] C. L. Lawson, R. J. Hanson: Solving Least Squares Problems. Series in Automatic Computation.Prentice-Hall, Englewood Cliffs, 1974. MR 0366019; reference:[15] K. G. Murty: Complementarity, Linear and Nonlinear Programming.Heldermann-Verlag, Berlin, 1988. Zbl 0634.90037, MR 0949214; reference:[16] L. F. Portugal, J. J. Judice, and L. N. Vicente: A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables.Math. Comput. 63 (1994), 625–643. MR 1250776, 10.1090/S0025-5718-1994-1250776-4; reference:[17] V. V. Prasolov: Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, Vol. 134.AMS, Providence, 1994. MR 1277174, 10.1090/mmono/134; reference:[18] S. J. Wright: Primal-Dual Interior-Point Methods.SIAM, Philadelphia, 1997. Zbl 0863.65031, MR 1422257
-
5Academic Journal
المؤلفون: Hünlich, Rolf, Naumann, Joachim
مصطلحات موضوعية: keyword:boundary value problems, keyword:linear elasticity, keyword:law of interaction, keyword:principle of virtual displacements, keyword:principal of minimum potential energy, msc:35Q20, msc:46N05, msc:73C35, msc:74B99, msc:74H99
وصف الملف: application/pdf
Relation: mr:MR0489538; zbl:Zbl 0401.73025; reference:[1] A. Brondsted, R. T. Rockafellar: On the subdifferentiability of convex functions.Proc. Amer. Math. Soc., 16 (1965), 605-611. MR 0178103, 10.1090/S0002-9939-1965-0178103-8; reference:[2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Dunod, Paris 1972. MR 0464857; reference:[3] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei, Memorie (Cl. Sci. fis., mat. e nat.), serie 8, vol. 7 (1964), 91-140. Zbl 0146.21204, MR 0178631; reference:[4] G. Fichera: Boundary value problems of elasticity with unilateral constraints.In: Handbuch der Physik (Herausg.: S. Flügge), Band VI a/2, Springer, 1972.; reference:[5] H. Gajewski K. Gröger, K. Zacharias: Nichtlineare Operatorgleichurgen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin 1974. MR 0636412; reference:[6] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions.Apl. Mat., 12 (1967), 425 - 447. MR 0231575; reference:[7] I. Hlaváček, J. Nečas: On inequalities of Korn's type. I: Boundary value problems for elliptic systems of partial differential equations. II: Applications to linear elasticity.Arch. Rat. Mech. Anal. 36 (1970), 305-311, 312-334.; reference:[8] A. D. loffe, V. M. Tikhomirov: The theory of extremum problems.(Russian). Moscow, 1974.; reference:[9] F. Lené: Sur les matériaux élastiques à énergie de déformation non quadratique.J. Méc., 13 (1974), 499-534. MR 0375890; reference:[10] J. J. Moreau: Fonctionelles convexes.College de France, 1966- 1967. MR 0390443; reference:[11] J. J. Moreau: On unilateral constraints, friction and plasticity.In: New variational techniques in mathematical physics. C. I. M. E., Ed. Cremonese, Roma 1974, 173-322. MR 0513445; reference:[12] J. J. Moreau: La convexité en statique.In: Analyse convexe et ses applications (ed. by J. P. Aubin), Lecture Notes Econ. and Math. Systems, No. 102 (1974), 141 - 167. Zbl 0302.70001; reference:[13] J. J. Moreau: La notion de sur-potentiel et les liasions unilaterales en élastostatique.12th Intern. Congr. Appl. Mech.; reference:[14] B. Nayroles: Quelques applications variationnelles de la théorie des functions duales à la mécanique de solides.J. Méc., 10 (1971), 263-289. MR 0280053; reference:[15] B. Nayroles: Duality and convexity in solid equilibrium problems.Laboratoire Méc. et d'Acoustique, C. N. R. S., Marseille 1974.; reference:[16] B. Nayroles: Point de vue algebrique. Convexité et integrandes convexes en mécanique des solides.In: New variational techniques in mathematical physics. C. T. M. E., Ed. Cremonese, Roma 1974, 325-404.; reference:[17] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584; reference:[18] R. T. Rockafellar: Extension of Fenchel's duality theorem for convex functions.Duke Math. J., 33 (1966), 81-90. Zbl 0138.09301, MR 0187062, 10.1215/S0012-7094-66-03312-6