يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"keyword:leading principal submatrices"', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: reference:[1] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh: Inverse eigenvalue problem for a kind of acyclic matrices.Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2531-2539. MR 4008794, 10.1007/s40995-019-00737-x; reference:[2] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, Karbassi, S. M.: Inverse eigenvalue problem for matrices whose graph is a banana tree.J. Algorithms Comput. 50 (2018), 89-101.; reference:[3] Chen, W. Y., Li, X., Wang, C., Zhang, X.: Linear time algorithms to the minimum all-ones problem for unicyclic and bicyclic graphs.Workshop on Graphs and Combinatorial Optimization Electronic Notes Discrete Mathematics 17. Elsevier, Amsterdam (2004), 93-98. Zbl 1152.05373, MR 2159881, 10.1016/j.endm.2004.03.018; reference:[4] Chu, M. T.: Inverse eigenvalue problems.SIAM Rev. 40 (1998), 1-39. Zbl 0915.15008, MR 1612561, 10.1137/S00361445963039; reference:[5] Cvetković, D.: Applications of graph spectra: An introduction to the literature.Applications of Graph Spectra Zbornik Radova 13. Matematički Institut SANU, Beograd (2009), 7-31. Zbl 1265.05002, MR 2543252; reference:[6] Gladwell, G. M. L.: Inverse problems in vibration.Appl. Mech. Rev. 39 (1986), 1013-1018. Zbl 0588.73110, MR 0874749, 10.1115/1.3149517; reference:[7] Hadji, M., Chau, M.: On unicyclic graphs spectra: New results.IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES) IEEE, Paris (2016), 586-593. 10.1109/CSE-EUC-DCABES.2016.245; reference:[8] Haoer, R. S., Atan, K. A., Said, M. R., Khalaf, A. M., Hasni, R.: Zagreb-eccentricity indices of unicyclic graph with application to cycloalkanes.J. Comput. Theor. Nanosci. 13 (2016), 8870-8873. 10.1166/jctn.2016.6055; reference:[9] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290, 10.1017/CBO9780511810817; reference:[10] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: The case of generalized stars and double generalized stars.Linear Algebra Appl. 373 (2003), 311-330. Zbl 1035.15010, MR 2022294, 10.1016/S0024-3795(03)00582-2; reference:[11] Li, N.: A matrix inverse eigenvalue problem and its application.Linear Algebra Appl. 266 (1997), 143-152. Zbl 0901.15003, MR 1473198, 10.1016/S0024-3795(96)00639-8; reference:[12] Li, X., Magnant, C., Qin, Z.: Properly Colored Connectivity of Graphs.SpringerBriefs in Mathematics. Springer, Cham (2018). Zbl 1475.05002, MR 3793127, 10.1007/978-3-319-89617-5; reference:[13] Li, X., Wang, J.: On the ABC spectra radius of unicyclic graphs.Linear Algebra Appl. 596 (2020), 71-81. Zbl 1435.05130, MR 4075597, 10.1016/j.laa.2020.03.007; reference:[14] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems.Linear Algebra Appl. 254 (1997), 409-425. Zbl 0879.15007, MR 1436689, 10.1016/S0024-3795(96)00316-3; reference:[15] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices.Linear Algebra Appl. 416 (2006), 336-347. Zbl 1097.65053, MR 2242733, 10.1016/j.laa.2005.11.017; reference:[16] Pickmann, H., Egaña, J., Soto, R. L.: Extremal inverse eigenvalue problem for bordered diagonal matrices.Linear Algebra Appl. 427 (2007), 256-271. Zbl 1144.65026, MR 2351358, 10.1016/j.laa.2007.07.020; reference:[17] Pickmann, H., Egaña, J. C., Soto, R. L.: Two inverse eigenproblems for symmetric doubly arrow matrices.Electron. J. Linear Algebra 18 (2009), 700-718. Zbl 1189.65072, MR 2565881, 10.13001/1081-3810.1339; reference:[18] Pickmann-Soto, H., Arela-Pérez, S., Nina, H., Valero, E.: Inverse maximal eigenvalues problems for Leslie and doubly Leslie matrices.Linear Algebra Appl. 592 (2020), 93-112. Zbl 1436.15019, MR 4056072, 10.1016/j.laa.2020.01.019; reference:[19] Sharma, D., Sarma, B. K.: Extremal inverse eigenvalue problem for irreducible acyclic matrices.Appl. Math. Sci. Eng. 30 (2022), 192-209. MR 4451929, 10.1080/27690911.2022.2041631; reference:[20] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices.Mathematics 4 (2016), Article ID 12, 11 pages. Zbl 1382.65109, 10.3390/math4010012; reference:[21] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede.Spec. Matrices 6 (2018), 77-92. Zbl 1391.15098, MR 3764333, 10.1515/spma-2018-0008; reference:[22] Sharma, D., Sen, M.: The minimax inverse eigenvalue problem for matrices whose graph is a generalized star of depth 2.Linear Algebra Appl. 621 (2021), 334-344. Zbl 1462.05243, MR 4235267, 10.1016/j.laa.2021.03.021; reference:[23] Wei, Y., Dai, H.: An inverse eigenvalue problem for the finite element model of a vibrating rod.J. Comput. Appl. Math. 300 (2016), 172-182. Zbl 1382.74129, MR 3460292, 10.1016/j.cam.2015.12.038

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4064591; zbl:07177873; reference:[1] Andrade, E., Gomes, H., Robbiano, M.: Spectra and Randić spectra of caterpillar graphs and applications to the energy.MATCH Commun. Math. Comput. Chem. 77 (2017), 61-75. MR 3645367; reference:[2] Bu, C., Zhou, J., Li, H.: Spectral determination of some chemical graphs.Filomat 26 (2012), 1123-1131. Zbl 1289.05271, MR 3099573, 10.2298/FIL1206123B; reference:[3] Chu, M. T., Golub, G. H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2005). Zbl 1075.65058, MR 2263317, 10.1093/acprof:oso/9780198566649.001.0001; reference:[4] Duarte, A. L.: Construction of acyclic matrices from spectral data.Linear Algebra Appl. 113 (1989), 173-182. Zbl 0661.15024, MR 0978591, 10.1016/0024-3795(89)90295-4; reference:[5] Elhay, S., Gladwell, G. M. L., Golub, G. H., Ram, Y. M.: On some eigenvector-eigenvalue relations.SIAM J. Matrix Anal. Appl. 20 (1999), 563-574. Zbl 0929.15008, MR 1685042, 10.1137/S089547989631072X; reference:[6] Ghanbari, K., Parvizpour, F.: Generalized inverse eigenvalue problem with mixed eigendata.Linear Algebra Appl. 437 (2012), 2056-2063. Zbl 1262.15017, MR 2950471, 10.1016/j.laa.2012.05.020; reference:[7] Hogben, L.: Spectral graph theory and the inverse eigenvalue problem of a graph.Electron. J. Linear Algebra 14 (2005), 12-31. Zbl 1162.05333, MR 2202430, 10.13001/1081-3810.1174; reference:[8] Monfared, K. H., Shader, B. L.: Construction of matrices with a given graph and prescribed interlaced spectral data.Linear Algebra Appl. 438 (2013), 4348-4358. Zbl 1282.05141, MR 3034535, 10.1016/j.laa.2013.01.036; reference:[9] Nair, R., Shader, B. L.: Acyclic matrices with a small number of distinct eigenvalues.Linear Algebra Appl. 438 (2013), 4075-4089. Zbl 1282.05142, MR 3034516, 10.1016/j.laa.2012.08.029; reference:[10] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems.Linear Algebra Appl. 254 (1997), 409-425. Zbl 0879.15007, MR 1436689, 10.1016/S0024-3795(96)00316-3; reference:[11] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices.Linear Algebra Appl. 416 (2006), 336-347. Zbl 1097.65053, MR 2242733, 10.1016/j.laa.2005.11.017; reference:[12] Pickmann, H., Egaña, J., Soto, R. L.: Extremal inverse eigenvalue problem for bordered diagonal matrices.Linear Algebra Appl. 427 (2007), 256-271. Zbl 1144.65026, MR 2351358, 10.1016/j.laa.2007.07.020; reference:[13] Pivovarchik, V., Rozhenko, N., Tretter, C.: Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings.Linear Algebra Appl. 439 (2013), 2263-2292. Zbl 1286.34025, MR 3091304, 10.1016/j.laa.2013.07.003; reference:[14] Sen, M., Sharma, D.: Generalized inverse eigenvalue problem for matrices whose graph is a path.Linear Algebra Appl. 446 (2014), 224-236. Zbl 1286.65050, MR 3163141, 10.1016/j.laa.2013.12.035; reference:[15] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices.Mathematics 4 (2016), Article ID 12, 11 pages. Zbl 1382.65109, 10.3390/math4010012; reference:[16] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede.Spec. Matrices 6 (2018), 77-92. Zbl 1391.15098, MR 3764333, 10.1515/spma-2018-0008; reference:[17] Zhang, Y.: On the general algebraic inverse eigenvalue problems.J. Comput. Math. 22 (2004), 567-580. Zbl 1066.65044, MR 2072173