يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"keyword:jump processes"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3233552; zbl:Zbl 06362236; reference:[1] Bahlali, K., Khelfallah, N., Mezerdi, B.: Necessary and sufficient conditions for near-optimality in stochastic control of FBSDEs.Syst. Control Lett. 58 (2009), 857-864. Zbl 1191.93142, MR 2642755, 10.1016/j.sysconle.2009.10.005; reference:[2] Bellman, R.: Dynamic Programming. With a new introduction by Stuart Dreyfus. Reprint of the 1957 edition.Princeton Landmarks in Mathematics Princeton University Press, Princeton (2010). MR 2641641; reference:[3] Boel, R., Varaiya, P.: Optimal control of jump processes.SIAM J. Control Optim. 15 (1977), 92-119. Zbl 0358.93047, MR 0441521, 10.1137/0315008; reference:[4] Bouchard, B., Elie, R.: Discrete-time approximation of decoupled forward-backward SDE with jumps.Stochastic Processes Appl. 118 (2008), 53-75. Zbl 1136.60048, MR 2376252, 10.1016/j.spa.2007.03.010; reference:[5] Cadenillas, A.: A stochastic maximum principle for systems with jumps, with applications to finance.Syst. Control Lett. 47 (2002), 433-444. Zbl 1106.93342, MR 2008454, 10.1016/S0167-6911(02)00231-1; reference:[6] Ekeland, I.: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619, 10.1016/0022-247X(74)90025-0; reference:[7] Karoui, N. El, Peng, S. G., Quenez, M. C.: Backward stochastic differential equations in finance.Math. Finance 7 (1997), 1-71. Zbl 0884.90035, MR 1434407, 10.1111/1467-9965.00022; reference:[8] Karoui, N. El, Peng, S. G., Quenez, M. C.: A dynamic maximum principle for the optimization of recursive utilities under constraints.Ann. Appl. Probab. 11 (2001), 664-693. Zbl 1040.91038, MR 1865020, 10.1214/aoap/1015345345; reference:[9] Framstad, N. C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance.J. Optim. Theory. Appl. 121 (2004), 77-98; erratum ibid. 124 511-512 (2005). Zbl 1140.93496, MR 2062971, 10.1023/B:JOTA.0000026132.62934.96; reference:[10] Gabasov, R., Kirillova, F. M., Mordukhovich, B. Sh.: The $\varepsilon$-maximum principle for suboptimal controls.Sov. Math., Dokl. 27 (1983), 95-99 translation from Dokl. Akad. Nauk SSSR 268 525-529 (1983), Russian. MR 0691086; reference:[11] Hafayed, M., Abbas, S., Veverka, P.: On necessary and sufficient conditions for near-optimal singular stochastic controls.Optim. Lett. 7 (2013), 949-966. Zbl 1272.93129, MR 3057402, 10.1007/s11590-012-0484-6; reference:[12] Hafayed, M., Veverka, P., Abbas, S.: On maximum principle of near-optimality for diffusions with jumps, with application to consumption-investment problem.Differ. Equ. Dyn. Syst. 20 (2012), 111-125. Zbl 1261.49004, MR 2929755, 10.1007/s12591-012-0108-8; reference:[13] Huang, J., Li, X., Wang, G.: Near-optimal control problems for linear forward-backward stochastic systems.Automatica 46 (2010), 397-404. Zbl 1205.93165, MR 2877086, 10.1016/j.automatica.2009.11.016; reference:[14] Jeanblanc-Picqué, M., Pontier, M.: Optimal portfolio for a small investor in a market model with discontinuous prices.Appl. Math. Optimization 22 (1990), 287-310. Zbl 0715.90014, MR 1068184, 10.1007/BF01447332; reference:[15] Karatzas, I., Lehoczky, J. P., Shreve, S. E.: Optimal portfolio and consumption decisions for a "Small investor" on a finite horizon.SIAM J. Control Optim. 25 (1987), 1557-1586. Zbl 0644.93066, MR 0912456, 10.1137/0325086; reference:[16] Mordukhovich, B. Sh.: Approximation Methods in Problems of Optimization and Control.Russian Nauka Moskva (1988). Zbl 0643.49001, MR 0945143; reference:[17] Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Second edition.Universitext Springer, Berlin (2007). MR 2322248; reference:[18] Pan, L. P., Teo, K. L.: Near-optimal controls of class of Volterra integral systems.J. Optimization Theory Appl. 101 (1999), 355-373. MR 1684675, 10.1023/A:1021741627449; reference:[19] Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and application to optimal control.SIAM J. Control Optim. 37 (1999), 825-843. MR 1675098, 10.1137/S0363012996313549; reference:[20] Pontryagin, L. S., Boltanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.: The Mathematical Theory of Optimal Processes.Translation from the Russian Interscience Publishers, New York (1962).; reference:[21] Rishel, R.: A minimum principle for controlled jump processes.Control Theory, Numer. Meth., Computer Syst. Mod.; Internat. Symp. Rocquencourt 1974, Lecture Notes Econ. Math. Syst. 107 (1975), 493-508. Zbl 0313.93065, MR 0386829, 10.1007/978-3-642-46317-4_35; reference:[22] Shi, J.: Necessary conditions for optimal control of forward-backward stochastic systems with random jumps.Int. J. Stoch. Anal. 2012 Article ID 258674, 50 pp (2012). Zbl 1239.93132, MR 2909930; reference:[23] Shi, J., Wu, Z.: The maximum principle for fully coupled forward-backward stochastic control system.Acta Autom. Sin. 32 (2006), 161-169. MR 2230926; reference:[24] Shi, J., Wu, Z.: Maximum principle for fully coupled forward-backward stochastic control system with random jumps.Proceedings of the 26$^ th$ Chinese Control Conference, Zhangjiajie, Hunan, 2007, pp. 375-380. MR 2230926; reference:[25] Shi, J., Wu, Z.: Maximum principle for forward-backward stochastic control system with random jumps and applications to finance.J. Syst. Sci. Complex. 23 (2010), 219-231. Zbl 1197.93165, MR 2653585, 10.1007/s11424-010-7224-8; reference:[26] Situ, R.: A maximum principle for optimal controls of stochastic systems with random jumps.Proceedings of National Conference on Control Theory and its Applications Qingdao, China (1991).; reference:[27] Tang, S. L., Li, X. J.: Necessary conditions for optimal control of stochastic systems with random jumps.SIAM J. Control Optim. 32 (1994), 1447-1475. Zbl 0922.49021, MR 1288257, 10.1137/S0363012992233858; reference:[28] Xu, W.: Stochastic maximum principle for optimal control problem of forward and backward system.J. Aus. Math. Soc., Ser. B 37 (1995), 172-185. Zbl 0862.93067, MR 1359179, 10.1017/S0334270000007645; reference:[29] Yong, J.: Optimality variational principle for controlled forward-backward stochastic differential equations with mixed intial-terminal conditions.SIAM J. Control. Optim. 48 (2010), 4119-4156. MR 2645476, 10.1137/090763287; reference:[30] Yong, J., Zhou, X. Y.: Stochastic Controls. Hamiltonian Systems and HJB Equations.Applications of Mathematics 43 Springer, New York (1999). Zbl 0943.93002, MR 1696772; reference:[31] Zhou, X. Y.: Deterministic near-optimal control. I: Necessary and sufficient conditions for near-optimality.J. Optimization Theory Appl. 85 (1995), 473-488. Zbl 0826.49015, MR 1333798, 10.1007/BF02192237; reference:[32] Zhou, X. Y.: Deterministic near-optimal controls. II: Dynamic programming and viscosity solution approach.Math. Oper. Res. 21 (1996), 655-674. Zbl 0858.49023, MR 1403310, 10.1287/moor.21.3.655; reference:[33] Zhou, X. Y.: Stochastic near-optimal controls: Necessary and sufficient conditions for near-optimality.SIAM J. Control. Optim. 36 (1998), 929-947 (electronic). Zbl 0914.93073, MR 1613885, 10.1137/S0363012996302664; reference:[34] Zhou, X. Y., Li, D.: Continuous-time mean-variance portfolio selection: A stochastic LQ framework.Appl. Math. Optimization 42 (2000), 19-33. Zbl 0998.91023, MR 1751306