-
1Academic Journal
المؤلفون: Brousek, Jan, Fraňková, Pavla, Vaněk, Petr
مصطلحات موضوعية: keyword:smoothed aggregation, keyword:improved convergence bound, msc:65F10, msc:65N12, msc:65N55
وصف الملف: application/pdf
Relation: mr:MR3556870; zbl:Zbl 06644036; reference:[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4; reference:[2] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775; reference:[3] Fraňková, P., Mandel, J., Vaněk, P.: Model analysis of BPX preconditioner based on smoothed aggregations.Appl. Math., Praha 60 (2015), 219-250. MR 3419960, 10.1007/s10492-015-0093-7; reference:[4] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 (1995), 1-20. Zbl 0824.65016, MR 1305645; reference:[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator.Appl. Math., Praha 37 (1992), 265-274. MR 1180605; reference:[6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 (2013), 369-388. Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2; reference:[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations.Numer. Math. 88 (2001), 559-579. MR 1835471, 10.1007/s211-001-8015-y; reference:[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112; reference:[9] Vaněk, P., Mandel, J., Brezina, R.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511