يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"keyword:hypergeometric function"', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3632998; zbl:Zbl 06738504; reference:[1] Aptekarev, A. I.: Multiple orthogonal polynomials.J. Comput. Appl. Math. 99 (1998), 423-447. Zbl 0958.42015, MR 1662713, 10.1016/S0377-0427(98)00175-7; reference:[2] Arvesú, J., Coussement, J., Assche, W. Van: Some discrete multiple orthogonal polynomials.J. Comput. Appl. Math. 153 (2003), 19-45. Zbl 1021.33006, MR 1985676, 10.1016/S0377-0427(02)00597-6; reference:[3] Cheikh, Y. Ben, Lamiri, I.: On obtaining dual sequences via inversion coefficients.Proc. of the 4th workshop on advanced special functions and solutions of PDE's Sabaudia, Italy, 2009, Lecture Notes of Seminario Interdisciplinare di Mathematica {\it 9} A. Cialdea et al. (2010), 41-56. Zbl 1216.44003; reference:[4] Cheikh, Y. Ben, Zaghouani, A.: $d$-orthogonality via generating functions.J. Comput. Appl. Math. 199 (2007), 2-22. Zbl 1119.42009, MR 2267527, 10.1016/j.cam.2005.01.051; reference:[5] Bouzeffour, F., Zagouhani, A.: $q$-oscillator algebra and $d$-orthogonal polynomials.J. Nonlinear Math. Phys. 20 (2013), 480-494. MR 3196458, 10.1080/14029251.2013.868262; reference:[6] Genest, V. X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states.J. Phys. A, Math. Theor. 47 (2014), Article ID 215204, 16 pages. Zbl 1296.33025, MR 3207168, 10.1088/1751-8113/47/21/215204; reference:[7] Genest, V. X., Vinet, L., Zhedanov, A.: $d$-orthogonal polynomials and $\frak {su}$ (2).J. Math. Anal. Appl. 390 (2012), 472-487. Zbl 1238.33004, MR 2890531, 10.1016/j.jmaa.2012.02.004; reference:[8] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-analogues.Springer Monographs in Mathematics, Springer, Berlin (2010). Zbl 1200.33012, MR 2656096, 10.1007/978-3-642-05014-5; reference:[9] Lamiri, I., Ouni, A.: $d$-orthogonality of some basic hypergeometric polynomials.Georgian Math. J. 20 (2013), 729-751. Zbl 1282.33027, MR 3139281, 10.1515/gmj-2013-0039; reference:[10] Maroni, P.: L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux.Ann. Fac. Sci. Toulouse, Math. (5) 11 French (1989), 105-139. Zbl 0707.42019, MR 1425747, 10.5802/afst.672; reference:[11] Plyushchay, M. S.: Deformed Heisenberg algebra with reflection.Nuclear Physics B 491 (1997), 619-634. Zbl 0937.81034, MR 1449322, 10.1016/S0550-3213(97)00065-5; reference:[12] Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillators calculus.Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and Its Applications Beersheva, Israel, 1992, Oper. Theory Adv. App. 73, Birkhäuser, Basel (1994), 369-396 A. Feintuch et al. Zbl 0826.33005, MR 1320555, 10.1007/978-3-0348-8522-5_15; reference:[13] Assche, W. Van, Coussement, E.: Some classical multiple orthogonal polynomials.J. Comput. Appl. Math. 127 (2001), 317-347. Zbl 0969.33005, MR 1808581, 10.1016/S0377-0427(00)00503-3; reference:[14] Iseghem, J. Van: Laplace transform inversion and Padé-type approximants.Appl. Numer. Math. 3 (1987), 529-538. Zbl 0634.65129, MR 0918793, 10.1016/S0377-0427(00)00503-3; reference:[15] Vinet, L., Zhedanov, A.: Automorphisms of the Heisenberg-Weyl algebra and $d$-orthogonal polynomials.J. Math. Phys. 50 (2009), Article No. 033511, 19 pages. Zbl 1202.33018, MR 2510916, 10.1063/1.3087425

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3165508; zbl:Zbl 06373955; reference:[1] Appell, P., Fériet, J. Kampé de: Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite.Gauthier-Villars Paris (1926).; reference:[2] Bedient, P. E.: Polynomials Related to Appell Functions of Two Variables.Ph.D. Thesis University of Michigan (1959). MR 2612826; reference:[3] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions Vol. I.Bateman Manuscript Project McGraw-Hill Book Co. New York (1953). Zbl 0051.30303; reference:[4] González, B., Matera, J., Srivastava, H. M.: Some $q$-generating functions and associated generalized hypergeometric polynomials.Math. Comput. Modelling 34 (2001), 133-175. MR 1834567, 10.1016/S0895-7177(01)00053-X; reference:[5] Khan, M. A., Khan, A. H., Singh, M.: Integral representations for the product of Krawtchouk, Meixner, Charlier and Gottlieb polynomials.Int. J. Math. Anal., Ruse 5 (2011), 199-206. Zbl 1235.42022, MR 2776557; reference:[6] Lin, S.-D., Chao, Y.-S., Srivastava, H. M.: Some families of hypergeometric polynomials and associated integral representations.J. Math. Anal. Appl. 294 (2004), 399-411. Zbl 1048.33012, MR 2061333, 10.1016/j.jmaa.2004.01.024; reference:[7] Lin, S.-D., Liu, S.-J., Lu, H.-C., Srivastava, H. M.: Integral representations for the generalized Bedient polynomials and the generalized Cesàro polynomials.Appl. Math. Comput. 218 (2011), 1330-1341. Zbl 1242.33022, MR 2831641, 10.1016/j.amc.2011.06.016; reference:[8] Lin, S.-D., Liu, S.-J., Srivastava, H. M.: Some families of hypergeometric polynomials and associated multiple integral representations.Integral Transforms Spec. Funct. 22 (2011), 403-414. Zbl 1258.33007, MR 2811972, 10.1080/10652469.2010.515055; reference:[9] Lin, S.-D., Srivastava, H. M., Wang, P.-Y.: Some families of hypergeometric transformations and generating relations.Math. Comput. Modelling 36 (2002), 445-459. Zbl 1042.33005, MR 1928601, 10.1016/S0895-7177(02)00175-9; reference:[10] Liu, S.-J., Chyan, C.-J., Lu, H.-C., Srivastava, H. M.: Multiple integral representations for some families of hypergeometric and other polynomials.Math. Comput. Modelling 54 (2011), 1420-1427. Zbl 1228.33002, MR 2812165, 10.1016/j.mcm.2011.04.013; reference:[11] Magnus, W., Oberhettinger, F., Soni, R. P.: Formulas and Theorems for the Special Functions of Mathematical Physics.3rd enlarged ed., Die Grundlehren der mathematischen Wissenschaften 52 Springer, Berlin (1966). Zbl 0143.08502, MR 0232968; reference:[12] Srivastava, H. M.: A contour integral involving Fox's $H$-function.Indian J. Math. 14 (1972), 1-6. Zbl 0226.33016, MR 0330548; reference:[13] Srivastava, H. M., Joshi, C. M.: Integral representation for the product of a class of generalized hypergeometric polynomials.Acad. R. Belg., Bull. Cl. Sci., V. Ser. 60 (1974), 919-926. Zbl 0288.33007, MR 0355131; reference:[14] Srivastava, H. M., Lin, S.-D., Liu, S.-J., Lu, H.-C.: Integral representations for the Lagrange polynomials, Shively's pseudo-Laguerre polynomials, and the generalized Bessel polynomials.Russ. J. Math. Phys. 19 (2012), 121-130. Zbl 1259.33013, MR 2892608, 10.1134/S1061920812010104; reference:[15] Srivastava, H. M., Manocha, H. L.: A Treatise on Generating Functions.Ellis Horwood Series in Mathematics and Its Applications Ellis Horwood Limited, Chichester (1984). Zbl 0535.33001, MR 0750112; reference:[16] Srivastava, H. M., Özarslan, M. A., Kaanoğlu, C.: Some families of generating functions for a certain class of three-variable polynomials.Integral Transforms Spec. Funct. 21 (2010), 885-896. Zbl 1223.33019, MR 2739383, 10.1080/10652469.2010.481439; reference:[17] Srivastava, H. M., Panda, R.: An integral representation for the product of two Jacobi polynomials.J. Lond. Math. Soc., II. Ser. 12 (1976), 419-425. Zbl 0304.33015, MR 0404726, 10.1112/jlms/s2-12.4.419; reference:[18] Szegö, G.: Orthogonal Polynomials.4th ed. American Mathematical Society Colloquium Publications Vol. 23 AMS, Providence (1975). Zbl 0305.42011, MR 0372517; reference:[19] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis.An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Repr. of the 4th ed. 1927 Cambridge University Press, Cambridge (1996). Zbl 0951.30002, MR 1424469

  3. 3
    Academic Journal

    المؤلفون: Thäle, Christoph

    وصف الملف: application/pdf

    Relation: mr:MR2741883; zbl:Zbl 1224.60015; reference:[1] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, New York, 1965, online version under http://www.math.ucla.edu/ cbm/aands/index.htm. Zbl 0643.33001, MR 1225604; reference:[2] Mecke J., Nagel W., Weiss V.: Length distributions of edges in planar stationary and isotropic STIT tessellations.J. Contemp. Math. Anal. 42 (2007), 28–43. Zbl 1155.60005, MR 2361580, 10.3103/S1068362307010025; reference:[3] Mecke J., Nagel W., Weiss V.: Some distributions for I-segments of planar random homogeneous STIT tessellations.Math. Nachr. (2010)(to appear). MR 2832660; reference:[4] Nagel W., Weiss V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration.Adv. in Appl. Probab. 37 (2005), 859–883. Zbl 1098.60012, MR 2193987, 10.1239/aap/1134587744; reference:[5] Schneider R., Weil W.: Stochastic and Integral Geometry.Springer, Berlin, 2008. Zbl 1175.60003, MR 2455326; reference:[6] Schreiber T., Thäle C.: Typical geometry, second-order properties and central limit theory for iteration stable tessellations.arXiv:1001.0990 [math.PR] (2010). MR 2796670; reference:[7] Thäle C.: Moments of the length of line segments in homogeneous planar STIT tessellations.Image Anal. Stereol. 28 (2009), 69–76. MR 2538063, 10.5566/ias.v28.p69-76

  4. 4
    Academic Journal

    المؤلفون: Symeonidis, Eleutherius

    وصف الملف: application/pdf

    Relation: mr:MR2025812; zbl:Zbl 1127.31302; reference:[1] Ahlfors L.V.: Möbius Transformations in Several Dimensions.Ordway Professorship Lectures in Mathematics, University of Minnesota, Minneapolis, 1981. Zbl 0663.30001, MR 0725161; reference:[2] Birkhoff G., Rota G.-C.: Ordinary Differential Equations.Third Edition, Wiley, New York, 1978. Zbl 0377.34001, MR 0507190; reference:[3] Courant R., Hilbert D.: Methods of Mathematical Physics.Volume I, First English Edition, Interscience, New York, 1953. Zbl 0788.00012, MR 0065391; reference:[4] Dörrie H.: Unendliche Reihen.R. Oldenbourg, Munich, 1951, also Sändig GmbH, Wiesbaden, 1989. MR 0046454; reference:[5] Fenchel W.: Elementary Geometry in Hyperbolic Space.de Gruyter, Berlin, 1989. Zbl 0674.51001, MR 1004006; reference:[6] Helgason S.: Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators, and Spherical Functions.Academic Press, Orlando, 1984. Zbl 0965.43007, MR 0754767; reference:[7] John F.: Partial Differential Equations.Third Edition, Springer, New York, 1978. MR 0514404; reference:[8] Lebedew N.N.: Spezielle Funktionen und ihre Anwendung.B.I.-Wissenschaftsverlag, Bibliographisches Institut, Zurich, 1973. MR 0350076; reference:[9] Miranda C.: Partial Differential Equations of Elliptic Type.Second Revised Edition, Springer, New York, 1970. Zbl 0198.14101, MR 0284700; reference:[10] Nikiforov A., Ouvarov V.: Eléments de la théorie des fonctions spéciales.Traduction française Editions Mir, Moscow, 1976. MR 0460738; reference:[11] Sigl R.: Ebene und sphärische Trigonometrie.Akademische Verlagsgesellschaft, Frankfurt, 1969. Zbl 0177.27403; reference:[12] Symeonidis E.: The Poisson Integral as an appropriate mean value.Analysis 19 (1999), 13-18. Zbl 0936.31006, MR 1690655; reference:[13] Symeonidis E.: The Poisson Integral for a disk in the hyperbolic plane.Exposition. Math. 17 (1999), 239-244. Zbl 0939.31003, MR 1706212; reference:[14] Symeonidis E.: The Dirichlet problem for a disk on the sphere $S^2$.Exposition. Math. 17 (1999), 365-370. MR 1734254; reference:[15] Tricomi F.G.: Vorlesungen über Orthogonalreihen.Second Revised Edition, Springer, Berlin, 1970. Zbl 0188.37403, MR 0261250; reference:[16] Vignati M: A geometric property of functions harmonic in a disk.El. Math. 47 (1992), 33-38. Zbl 0758.31001, MR 1158146; reference:[17] Vignati M.: On the factorization of Poisson integrals on spheres.preprint, Università degli studi di Milano, 1990.; reference:[18] Willmore T.J.: Riemannian Geometry.Oxford Science Publications, Oxford University Press, New York, 1993. Zbl 1117.53017, MR 1261641

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1440701; zbl:Zbl 0896.46028; reference:[1] Hayek N., González B.J.: The index $ _{2}F_{1}$-transform of generalized functions.Comment. Math. Univ. Carolinae 34.4 (1993), 657-671. MR 1263795; reference:[2] Hayek N., González B.J.: On the distributional index $ _{2}F_{1}$-transform.Math. Nachr. 165 (1994), 15-24. MR 1261360; reference:[3] Lisena B.: On the Generalized Kontorovich-Lebedev Transform.Rend. Math. Appl. (7) 9 (1989), 87-101. Zbl 0733.46019, MR 1044519; reference:[4] Prudnikov A.P., Brychkov Y.A., Marichev O.I.: Integrals and Series.vol. 3, Gordon and Breach Science Publishers, New York, 1990. Zbl 1103.33300, MR 1054647; reference:[5] Treves F.: Topological Vector Spaces, Distributions and Kernels.Academic Press, New York, 1967. Zbl 1111.46001, MR 0225131

  6. 6
    Academic Journal

    المؤلفون: Hayek, N., González, B. J.

    وصف الملف: application/pdf

    Relation: mr:MR1263795; zbl:Zbl 0793.46019; reference:[1] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Higher Transcendental Functions.vol. I, McGraw-Hill Book Co. Inc., New York, 1953. Zbl 0064.06302; reference:[2] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of Integral Transforms.vol. II, McGraw-Hill Book Co. Inc., New York, 1954. Zbl 0184.33704, MR 0065685; reference:[3] Glaeske H.N., Hess A.: On the Convolution Theorem of the Mehler-Fock-Transform for a Class of Generalized Functions (II).Math. Nachr. (1988), 119-129. Zbl 0649.46037, MR 0952467; reference:[4] Hayek N.: Estudio de la ecuación diferencial $xy'' + (\nu + 1)y' + y = 0$ y de sus aplicaciones.Collect. Mat. XVII (1966-67), 57-174. MR 0224876; reference:[5] Hayek N.: Sobre la transformación de Hankel.Actas de la VIII Reunión Anual de Matemáticos Espa noles, Madrid, 1968, pp. 47-60. MR 0420164; reference:[6] Hayek N., Negrin E.R., Gonzalez B.J.: Una clase de transformada índice relacionada con la de Olevskii.Actas XIV Jornadas Hispano-Lusas de Matemáticas (Puerto de la Cruz), vol. I, 1989, pp. 401-405. MR 1112907; reference:[7] Lebedev N.N.: Sur une formule d'inversion.Dokl. Akad. Nauk. SSSR 52 (1946), 655-658. MR 0021144; reference:[8] Mendez J.M.: La transformación integral de Hankel-Clifford.Tesis, Secretariado de Publicaciones, Univ. La Laguna, Col. Monog. N. 8, 1981.; reference:[9] Olver F.W.J.: Asymptotics and special functions.Academic Press, New York, 1967. Zbl 0982.41018, MR 0435697; reference:[10] Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroidales, Tome II.GauthierVillars, Paris, 1958. Zbl 0088.05102, MR 0101928; reference:[11] Schwartz L.: Théorie des distributions.Hermann & Cie., Paris, 1966. Zbl 0962.46025, MR 0209834; reference:[12] Van Der Pol B., Bremer H.: Operational Calculus.Cambridge University Press, New York, 1964.; reference:[13] Vu Kim Tuan, Marichev O.I., Yakubovich S.B.: Composition structure of integral transformations.Sov. Math. Dokl. 33 (1986), 166-170. Zbl 0604.44003; reference:[14] Zemanian A.H.: Generalized integral transformations.Interscience Publishers, New York, 1968. Zbl 0643.46029, MR 0423007; reference:[15] Zemanian A.H.: The Kantorovich-Lebedev transformation on distributions of compact support and its inversion.Math. Proc. Camb. Philos. Soc. 77 (1975), 139-143. MR 0355489