يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"keyword:hypercyclic"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3360435; zbl:Zbl 06486955; reference:[1] Ansari, S. I.: Hypercyclic and cyclic vectors.J. Funct. Anal. 128 (1995), 374-383. Zbl 0853.47013, MR 1319961, 10.1006/jfan.1995.1036; reference:[2] Bayart, F., Matheron, É.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179 Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318; reference:[3] Guerrero, J. Becerra, Rodríguez-Palacios, A.: Transitivity of the norm on Banach spaces.Extr. Math. 17 (2002), 1-58. MR 1914238; reference:[4] Bonet, J., Lindström, M., Wolf, E.: Isometric weighted composition operators on weighted Banach spaces of type $H^\infty$.Proc. Am. Math. Soc. 136 (2008), 4267-4273. Zbl 1154.47017, MR 2431039, 10.1090/S0002-9939-08-09631-7; reference:[5] Bourdon, P. S., Feldman, N. S.: Somewhere dense orbits are everywhere dense.Indiana Univ. Math. J. 52 (2003), 811-819. Zbl 1049.47002, MR 1986898, 10.1512/iumj.2003.52.2303; reference:[6] Conejero, J. A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup.J. Funct. Anal. 244 (2007), 342-348. Zbl 1123.47010, MR 2294487, 10.1016/j.jfa.2006.12.008; reference:[7] Conway, J. B.: Functions of One Complex Variable.Graduate Texts in Mathematics 11 Springer, New York (1978). MR 0503901, 10.1007/978-1-4612-6313-5; reference:[8] Copson, E. T.: Asymptotic Expansions.Cambridge Tracts in Mathematics and Mathematical Physics 55 Cambridge University Press, New York (1965). Zbl 0123.26001, MR 0168979; reference:[9] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces.Monographs and Surveys in Pure and Applied Mathematics 138 Chapman and Hall/CRC, Boca Raton (2007). MR 2361284; reference:[10] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 1: Function Spaces.Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). MR 1957004; reference:[11] Geng, L.-G., Zhou, Z.-H., Dong, X.-T.: Isometric composition operators on weighted Dirichlet-type spaces.J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages. Zbl 1273.47049, MR 2916341; reference:[12] Greim, P., Jamison, J. E., Kamińska, A.: Almost transitivity of some function spaces.Math. Proc. Camb. Philos. Soc. 116 (1994), 475-488 corrigendum ibid. 121 191 (1997). MR 1291754, 10.1017/S0305004100072753; reference:[13] Hornor, W., Jamison, J. E.: Isometries of some Banach spaces of analytic functions.Integral Equations Oper. Theory 41 (2001), 410-425. Zbl 0995.46012, MR 1857800, 10.1007/BF01202102; reference:[14] Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries.Isr. J. Math. 64 (1988), 49-56. Zbl 0682.46010, MR 0981748, 10.1007/BF02767369; reference:[15] Kitai, C.: Invariant Closed Sets for Linear Operators.ProQuest LLC, Ann Arbor University of Toronto Toronto, Canada (1982). MR 2632793; reference:[16] León-Saavedra, F., Müller, V.: Rotations of hypercyclic and supercyclic operators.Integral Equations Oper. Theory 50 (2004), 385-391. Zbl 1079.47013, MR 2104261, 10.1007/s00020-003-1299-8; reference:[17] Martín, M. J., Vukotić, D.: Isometries of some classical function spaces among the composition operators.Recent Advances in Operator-Related Function Theory, Proc. Conf., Dublin, Ireland, 2004 A. L. Matheson et al. Contemp. Math. 393 American Mathematical Society, Providence (2006), 133-138. Zbl 1121.47018, MR 2198376; reference:[18] Novinger, W. P., Oberlin, D. M.: Linear isometries of some normed spaces of analytic functions.Can. J. Math. 37 (1985), 62-74. Zbl 0581.46045, MR 0777039, 10.4153/CJM-1985-005-3; reference:[19] Rolewicz, S.: On orbits of elements.Stud. Math. 32 (1969), 17-22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22

  2. 2
    Academic Journal

    المؤلفون: Bayart, F., Matheron, É., Moreau, P.

    وصف الملف: application/pdf

    Relation: mr:MR2432820; zbl:Zbl 1210.47022; reference:[1] Bayart F.: Porosity and hypercyclic vectors.Proc. Amer. Math. Soc. 133 (2005), 11 3309-3316. MR 2161154, 10.1090/S0002-9939-05-07842-1; reference:[2] Bonilla A., Grosse-Erdmann K.-G.: Frequently hypercyclic operators and vectors.Ergodic Theory Dynam. Systems 27 (2007), 2 383-404. Zbl 1119.47011, MR 2308137; reference:[3] Christensen J.P.R.: On sets of Haar measure zero in abelian Polish groups.Israel J. Math. 13 (1972), 255-260. MR 0326293, 10.1007/BF02762799; reference:[4] Dolženko E.P.: Boundary properties of arbitrary functions.Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14. MR 0217297; reference:[5] Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds.J. Funct. Anal. 98 (1991), 2 229-269. Zbl 0732.47016, MR 1111569, 10.1016/0022-1236(91)90078-J; reference:[6] Grosse-Erdmann K.-G.: Universal families and hypercyclic operators.Bull. Amer. Math. Soc. 36 (1999), 345-381. Zbl 0933.47003, MR 1685272, 10.1090/S0273-0979-99-00788-0; reference:[7] Ott W., Yorke J.A.: Prevalence.Bull. Amer. Math. Soc. 42 (2005), 263-290. Zbl 1111.28014, MR 2149086, 10.1090/S0273-0979-05-01060-8; reference:[8] Salas H.: Hypercyclic weighted shifts.Trans. Amer. Math. Soc. 347 (1995), 3 993-1004. Zbl 0822.47030, MR 1249890, 10.1090/S0002-9947-1995-1249890-6; reference:[9] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987-1988), 2 314-350. MR 0943561; reference:[10] Zajíček L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731

  3. 3
    Academic Journal

    المؤلفون: Yousefi, B., Haghkhah, S.

    وصف الملف: application/pdf

    Relation: mr:MR2356938; zbl:Zbl 1174.47312; reference:[1] J. Bes: Three problems on hypercyclic operators.PhD. Thesis, Kent State University, 1998.; reference:[2] J. Bes, A. Peris: Hereditarily hypercyclic operators.J. Funct. Anal. 167 (1999), 94–112. MR 1710637, 10.1006/jfan.1999.3437; reference:[3] P. S. Bourdon: Orbits of hyponormal operators.Mich. Math. J. 44 (1997), 345–353. Zbl 0896.47020, MR 1460419, 10.1307/mmj/1029005709; reference:[4] P. S. Bourdon, J. H. Shapiro: Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc. 125.Am. Math. Soc., Providence, 1997. MR 1396955; reference:[5] P. S. Bourdon, J. H. Shapiro: Hypercyclic operators that commute with the Bergman backward shift.Trans. Am. Math. Soc 352 (2000), 5293–5316. MR 1778507, 10.1090/S0002-9947-00-02648-9; reference:[6] R. M. Gethner, J. H. Shapiro: Universal vectors for operators on spaces of holomorphic functions.Proc. Am. Math. Soc. 100 (1987), 281–288. MR 0884467, 10.1090/S0002-9939-1987-0884467-4; reference:[7] G. Godefroy, J. H. Shapiro: Operators with dense, invariant cyclic vector manifolds.J. Funct. Anal. 98 (1991), 229–269. MR 1111569, 10.1016/0022-1236(91)90078-J; reference:[8] K. Goswin, G. Erdmann: Universal families and hypercyclic operators.Bull. Am. Math. Soc. 35 (1999), 345–381. MR 1685272; reference:[9] D. A. Herrero: Limits of hypercyclic and supercyclic operators.J. Funct. Anal. 99 (1991), 179–190. Zbl 0758.47016, MR 1120920, 10.1016/0022-1236(91)90058-D; reference:[10] C. Kitai: Invariant closed sets for linear operators.Thesis, University of Toronto, Toronto, 1982.; reference:[11] C. Read: The invariant subspace problem for a class of Banach spaces. 2. Hypercyclic operators.Isr. J. Math. 63 (1988), 1–40. MR 0959046, 10.1007/BF02765019; reference:[12] S. Rolewicz: On orbits of elements.Stud. Math. 32 (1969), 17–22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22; reference:[13] H. N. Salas: Hypercyclic weighted shifts.Trans. Am. Math. Soc. 347 (1995), 993–1004. Zbl 0822.47030, MR 1249890, 10.1090/S0002-9947-1995-1249890-6; reference:[14] A. L. Shields, L. J. Wallen: The commutants of certain Hilbert space operators.Indiana Univ. Math. J. 20 (1971), 777–788. MR 0287352, 10.1512/iumj.1971.20.20062; reference:[15] B. Yousefi, H. Rezaei: Hypercyclicity on the algebra of Hilbert-Schmidt operators.Result. Math. 46 (2004), 174–180. MR 2093472, 10.1007/BF03322879; reference:[16] B. Yousefi, H. Rezaei: Some necessary and sufficient conditions for Hypercyclicity Criterion.Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. MR 2142466, 10.1007/BF02829627

  4. 4
    Academic Journal

    المؤلفون: Ko, Eungil, Nam, Hae-Won, Yang, Youngoh

    وصف الملف: application/pdf

    Relation: mr:MR2280808; zbl:Zbl 1164.47319; reference:[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080; reference:[2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819; reference:[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272; reference:[4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044; reference:[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289; reference:[6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778; reference:[7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507; reference:[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409; reference:[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502; reference:[11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569; reference:[12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952; reference:[13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001; reference:[14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982.; reference:[15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779; reference:[16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5; reference:[18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222; reference:[19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504; reference:[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441; reference:[21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966; reference:[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971.; reference:[23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959