يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:half-line"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Benbaziz, Zakia, Djebali, Smail

    وصف الملف: application/pdf

    Relation: mr:MR4221836; zbl:07250712; reference:[1] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht (2001). Zbl 0988.34002, MR 1845855, 10.1007/978-94-010-0718-4; reference:[2] Chen, S., Zhang, Y.: Singular boundary value problems on a half-line.J. Math. Anal. Appl. 195 (1995), 449-468. Zbl 0852.34019, MR 1354555, 10.1006/jmaa.1995.1367; reference:[3] Corduneanu, C.: Integral Equations and Stability of Feedback Systems.Mathematics in Science and Engineering 104. Academic Press, New York (1973). Zbl 0273.45001, MR 0358245, 10.1016/s0076-5392(08)x6099-0; reference:[4] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line.Comput. Math. Appl. 55 (2008), 2940-2952. Zbl 1142.34316, MR 2401442, 10.1016/j.camwa.2007.11.023; reference:[5] Djebali, S., Saifi, O.: Third order BVPs with $\phi$-Laplacian operators on $[0,+\infty)$.Afr. Diaspora J. Math. 16 (2013), 1-17. Zbl 1283.34019, MR 3091711; reference:[6] Guo, D. J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889, 10.1016/c2013-0-10750-7; reference:[7] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line.Acta Appl. Math. 111 (2010), 27-43. Zbl 1203.34038, MR 2653048, 10.1007/s10440-009-9528-z; reference:[8] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line.Appl. Math. Comput. 144 (2003), 543-556. Zbl 1036.34027, MR 1994092, 10.1016/S0096-3003(02)00431-9; reference:[9] Wei, Z.: A necessary and sufficient condition for the existence of positive solutions of singular super-linear $m$-point boundary value problems.Appl. Math. Comput. 179 (2006), 67-78. Zbl 1166.34305, MR 2260858, 10.1016/j.amc.2005.11.077; reference:[10] Wei, Z.: Some necessary and sufficient conditions for existence of positive solutions for third order singular super-linear multi-point boundary value problems.J. Appl. Math. Comput. 46 (2014), 407-422. Zbl 1311.34052, MR 3252121, 10.1007/s12190-014-0756-7; reference:[11] Yan, B., O'Regan, D., Agarwal, R. P.: Unbounded positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals.Funkc. Ekvacioj, Ser. Int. 51 (2008), 81-106. Zbl 1158.34011, MR 2427544, 10.1619/fesi.51.81

  2. 2
    Academic Journal

    المؤلفون: Carrasco, Hugo, Minhós, Feliz

    وصف الملف: application/pdf

    Relation: mr:MR3737117; zbl:Zbl 06837078; reference:[1] Agarwal R.P., O'Regan D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publisher, Glasgow, 2001. Zbl 0988.34002, MR 1845855; reference:[2] Boucherif A.: Second order boundary value problems with integral boundary conditions.Nonlinear Anal. 70 (2009) no. 1, 364–371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007; reference:[3] Cabada A., Fialho J., Minhós F.: Non ordered lower and upper solutions to fourth order functional BVP.Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218. MR 2987401; reference:[4] Cabada A., Minhós F.: Fully nonlinear fourth-order equations with functional boundary conditions.J. Math. Anal. Appl. 340 (2008), 239–251. Zbl 1138.34008, MR 2376151, 10.1016/j.jmaa.2007.08.026; reference:[5] Corduneanu C.: Integral Equations and Applications.Cambridge University Press, Cambridge, 1991. Zbl 1156.45001, MR 1109491; reference:[6] Feng H., Ji D., Ge W.: Existence and uniqueness of solutions for a fourth-order boundary value problem.Nonlinear Anal. 70 (2009), 3761–3566. MR 2502764, 10.1016/j.na.2008.07.013; reference:[7] Fialho J., Minhós F.: Higher order functional boundary value problems without monotone assumptions.Bound. Value Probl. 2013, 2013:81. Zbl 1293.34027, MR 3055842; reference:[8] Fu D., Ding W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces.Adv. Difference Equ. 2013, 2013:65. MR 3044690; reference:[9] Graef J., Kong L., Minhós F., Fialho J.: On the lower and upper solution method for higher order functional boundary value problems.Appl. Anal. Discrete Math. 5 (2011), no. 1, 133–146. Zbl 1289.34054, MR 2809041, 10.2298/AADM110221010G; reference:[10] Graef J., Kong L., Minhós F.: Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions.Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383. MR 2775180, 10.1007/s12591-010-0071-1; reference:[11] Han J., Liu Y., Zhao J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations.Appl. Math. Comput. 218 (2012), 5002–5009. MR 2870024; reference:[12] Jiang J., Liu L., Wu Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions.Appl. Math. Comput. 215 (2009), 1573–1582. MR 2571646; reference:[13] Kong L., Wong J.: Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions.J. Math. Anal. Appl. 367 (2010), 588–611. Zbl 1197.34035, MR 2607284, 10.1016/j.jmaa.2010.01.063; reference:[14] Lu H., Sun L., Sun J.: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed.Bound. Value Probl. 2012, 2012:56. MR 2942969; reference:[15] Minhós F., Fialho J.: On the solvability of some fourth-order equations with functional boundary conditions.Discrete Contin. Dyn. Syst., 2009, suppl., 564–573. Zbl 1192.34023, MR 2648180; reference:[16] Pei M., Chang S., Oh Y.S.: Solvability of right focal boundary value problems with superlinear growth conditions.Bound. Value Probl. 2012, 2012:60. MR 2965952; reference:[17] Yoruk F., Aykut Hamal N.: Second-order boundary value problems with integral boundary conditions on the real line.Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13. Zbl 1292.34017, MR 3159428; reference:[18] Wang M.X., Cabada A., Nieto J.J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58 (1993), 221–235. Zbl 0789.34027, MR 1244394, 10.4064/ap-58-3-221-235; reference:[19] Zeidler E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems.Springer, New York, 1986. Zbl 0583.47050, MR 0816732; reference:[20] Zhang Z., Zhang C.: Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids.Nonlinear Anal. 102 (2014), 1–13. Zbl 1292.76005, MR 3182794; reference:[21] Zhu S., Wu Q., Cheng X.: Numerical solution of the Falkner-Skan equation based on quasilinearization.Appl. Math. Comput. 215 (2009), 2472–2485. MR 2563461

  3. 3
    Academic Journal

    المؤلفون: Djebali, Smaïl, Saifi, Ouiza

    وصف الملف: application/pdf

    Relation: mr:MR3475111; zbl:Zbl 06562207; reference:[1] Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications.Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, 2001. Zbl 0960.54027, MR 1825411, 10.1017/CBO9780511543005.008; reference:[2] Agarwal, R.P., O’Regan, D.: Infinite Interval Problems for Differential, Difference, and Integral Equations.Kluwer Academic Publishers, Dordrecht, 2001. Zbl 0988.34002, MR 1845855; reference:[3] Corduneanu, C.: Integral Equations and Stability of Feedback Systems.vol. 104, Academic Press, New York, 1973. Zbl 0273.45001, MR 0358245; reference:[4] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line.Comput. Math. Appl. 55 (112) (2008), 2940–2952. Zbl 1142.34316, MR 2401442, 10.1016/j.camwa.2007.11.023; reference:[5] Djebali, S., Mebarki, K.: On the singular generalized Fisher-like equation with derivative depending nonlinearity.Appl. Math. Comput. 205 (1) (2008), 336–351. Zbl 1183.34039, MR 2466638, 10.1016/j.amc.2008.08.009; reference:[6] Djebali, S., Mebarki, K.: Multiple unbounded positive solutions for three-point bvps with sign-changing nonlinearities on the positive half-line.Acta Appl. Math. 109 (2) (2010), 361–388. Zbl 1195.34042, MR 2585794, 10.1007/s10440-008-9322-3; reference:[7] Djebali, S., Saifi, O.: Positive solutions for singular $\phi $-Laplacian BVPs on the positive half-line.EJQTDE (56) (2009), 24pp. Zbl 1201.34040, MR 2546349; reference:[8] Djebali, S., Saifi, O.: Positive solutions for singular BVPs on the positive half-line with sign changing and derivative depending nonlinearity.Acta Appl. Math. 110 (2) (2010), 639–665. MR 2610584, 10.1007/s10440-009-9466-9; reference:[9] Djebali, S., Saifi, O.: Upper and lower solution method for singular $\phi -$Laplacian BVPs with derivative depending nonlinearity on $[0,+\infty )$.Commun. Appl. Anal. 14 (4) (2010), 463–480. MR 2757411; reference:[10] Djebali, S., Saifi, O.: Third order BVPs with $\phi $-Laplacian operators on $[0,+\infty )$.Afr. Diaspora J. Math. 16 (1) (2013), 1–17. Zbl 1283.34019, MR 3091711; reference:[11] Djebali, S., Saifi, O.: Upper and lower solutions for $\phi $-Laplacian third-order BVPs on the half-line.Cubo 16 (1) (2014), 105–116. Zbl 1319.34038, MR 3185792, 10.4067/S0719-06462014000100010; reference:[12] Guo, Y., Yu, C., Wang, J.: Existence of three positive solutions for $m$-point boundary value problems on infinite intervals.Nonlinear Anal. 71 (3–4) (2009), 717–722. Zbl 1172.34310, MR 2527493, 10.1016/j.na.2008.10.126; reference:[13] Han, G., Li, F.: Multiple solutions of some fourth-order boundary value problems.Nonlinear Anal. 66 (11) (2007), 2591–2603. Zbl 1126.34013, MR 2312608, 10.1016/j.na.2006.03.042; reference:[14] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary-value problem with dependence on the first order derivative on the half-line.Acta Appl. Math. 111 (1) (2010), 27–43. Zbl 1203.34038, MR 2653048, 10.1007/s10440-009-9528-z; reference:[15] Tian, Y., Ge, W., Shan, W.: Positive solutions for three-point boundary value problem on the half-line.Comput. Math. Appl. 53 (7) (2007), 1029–1039. Zbl 1131.34019, MR 2331357, 10.1016/j.camwa.2006.08.035; reference:[16] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line.Appl. Math. Comput. 147 (3) (2004), 629–644. Zbl 1045.34009, MR 2011077, 10.1016/S0096-3003(02)00801-9; reference:[17] Yan, B., O’Regan, D., Agarwal, R.P.: Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals.Acta Appl. Math. 103 (1) (2008), 19–57. Zbl 1158.34011, MR 2415171; reference:[18] Yang, Y., Zhang, J.: Existence of solutions for some fourth-order boundary value problems with parameters.Nonlinear Anal. 69 (4) (2008), 1364–1375. Zbl 1166.34012, MR 2426697, 10.1016/j.na.2007.06.035; reference:[19] Yang, Y., Zhang, J.: Nontrivial solutions for some fourth order boundary value problems with parameters.Nonlinear Anal. 70 (11) (2009), 3966–3977. Zbl 1171.34006, MR 2515313, 10.1016/j.na.2008.08.005