يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"keyword:fuzzy random variable"', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3501164; zbl:Zbl 1374.60014; reference:[1] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some limit theorems for independent fuzzy random variables.Thaiwan J. Math. 12 (2014), 537-548. Zbl 1328.60081, MR 3291684; reference:[2] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some moment inequalities for fuzzy martingales and their applications.J. Uncertainty Anal. Appl. 2 (2014), 1-14. 10.1186/2195-5468-2-7; reference:[3] Aumann, R. J.: Integrals of set-valued functions.J. Math. Anal. Appl. 12 (1965), 1-12. Zbl 0163.06301, MR 0185073, 10.1016/0022-247x(65)90049-1; reference:[4] Cuzich, J., Gine, E., Zinn, J.: Laws of large numbers for quadratic forms, maxima of products and truncated sums of i.i.d. random variables.Ann. Probab. 23 (1995), 292-333. MR 1330772, 10.1214/aop/1176988388; reference:[5] Eghbal, N., Amini, M., Bozorgnia, A.: Some maximal inequalities for quadratic forms of negative superadditive dependence random variables.Stat. Probab. Lett. 80 (2010), 587-591. Zbl 1187.60020, MR 2595134, 10.1016/j.spl.2009.12.014; reference:[6] Eghbal, N., Amini, M., Bozorgnia, A.: On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables.Stat. Probab. Lett. 81 (2011), 1112-1120. Zbl 1228.60039, MR 2803752, 10.1016/j.spl.2011.03.005; reference:[7] Fei, W.: Regularity and stopping theorem for fuzzy martingales with continuous parameters.Inform. Sci. 169 (2005), 175-87. Zbl 1092.60019, MR 2114098, 10.1016/j.ins.2004.02.011; reference:[8] Fei, W., Wu, R., Shao, S.: Doobs stopping theorem for fuzzy (super, sub) martingales with discrete time.Fuzzy Set. Syst. 135 (2003), 377-390. Zbl 1020.60035, MR 1979606, 10.1016/s0165-0114(02)00213-0; reference:[9] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales.Fuzzy Set. Syst. 103 (1999), 435-441. Zbl 0939.60027, MR 1669281, 10.1016/s0165-0114(97)00180-2; reference:[10] Feng, Y.: An approach to generalize laws of large numbers for fuzzy random variables.Fuzzy Set. Syst. 128 (2002), 237-245. Zbl 1009.60020, MR 1908429, 10.1016/s0165-0114(01)00142-7; reference:[11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications.Fuzzy Set. Syst. 120 (2001), 487-497. Zbl 0984.60029, MR 1829266; reference:[12] Fu, Y., Wu, Q.: Almost sure central limit theoremfor LNQD sequences.J. Guilin University of Technology 30 (2010), 4, 637-639. 10.1016/j.ins.2008.01.005; reference:[13] Fu, K., Zhang, L.-X.: Strong limit theorems for random sets and fuzzy random sets with slowly varying weights.Inform. Sci. 178 (2008), 2648-2660. Zbl 1176.60020, MR 2414803, 10.1016/j.ins.2008.01.005; reference:[14] Gadidov, A.: Strong law of large numbers for multilinear forms.Ann. Probab. 26 (1998), 902-923. Zbl 0937.60016, MR 1626539, 10.1214/aop/1022855655; reference:[15] Gut, A.: Probability: A Graduate Course.Springer, New York 2005. Zbl 1267.60001, MR 2125120, 10.1007/b138932; reference:[16] Hoeffding, W.: Masstabinvariante Korrelationstheorie.Schriften des Matematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat 1940.; reference:[17] Hong, D.: A convergence of fuzzy random variables.Kybernetika 39 (2003), 275-280. Zbl 1249.60007, MR 1995730; reference:[18] Hong, D., Kim, K.: Weak law of large number for i.i.d. fuzzy random variables.Kybernetika 43 (2007), 87-96. MR 2343333; reference:[19] Joo, S. Y., Kim, Y. K., Kwon, J S.: On Chung's type law of large numbers for fuzzy random variables.Stat. Prob. Lett. 74 (2005), 67-75. Zbl 1082.60022, MR 2189077, 10.1016/j.spl.2005.04.030; reference:[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables.Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. Zbl 0605.60038, MR 0861082, 10.1098/rspa.1986.0091; reference:[21] Ko, M. H., Choi, Y. K., Choi, Y.-S.: Exponential probability inequality for linearly negative quadrant dependent random variables.Korean Math. Soc. Comm. 22 (2007), 1, 137-143. Zbl 1168.60336, MR 2286902, 10.4134/ckms.2007.22.1.137; reference:[22] Korner, R.: On the variance of fuzzy random variables.Fuzzy Set. Syst. 92 (1997), 83-93. Zbl 0936.60017, MR 1481018, 10.1016/s0165-0114(96)00169-8; reference:[23] Kwakernaak, H.: Fuzzy random variables I. Zbl 0438.60004; reference:[24] Miranda, E., Couso, I., Gil, P.: Random sets as imprecise random variables.J. Math. Anal. Appl. 307 (2005), 32-47. Zbl 1077.60011, MR 2138973, 10.1016/j.jmaa.2004.10.022; reference:[25] Miyakoshi, M., Shimbo, M.: A strong law of large numbers for fuzzy random variables.Fuzzy Set. Syst. 12 (1984), 133-142. Zbl 0551.60035, MR 0734945, 10.1016/0165-0114(84)90033-2; reference:[26] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis.SIAM, Philadelphia 2009. Zbl 1168.65002, MR 2482682, 10.1137/1.9780898717716; reference:[27] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables.Statist. Probab. 5 (1984), 127-140. MR 0789244, 10.1214/lnms/1215465639; reference:[28] Nguyen, H. T.: A note on the extension principle for fuzzy sets.J. Math. Anal. Appl. 64 (1978), 369-380. Zbl 0377.04004, MR 0480044, 10.1016/0022-247x(78)90045-8; reference:[29] Parchami, A., Mashinchi, M., Partovinia, V.: A consistent confidence interval for fuzzy capability index.Appl. Comput. Math. 7 (2008), 119-125. MR 2423023; reference:[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 402-422. Zbl 0605.60038, MR 0833596, 10.1515/9783110917833.452; reference:[31] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales.J. Math. Anal. Appl. 160 (1991), 107-122. Zbl 0737.60005, MR 1124080, 10.1016/0022-247x(91)90293-9; reference:[32] Ralescu, D. A.: Fuzzy random variables revisited.In: Math. Fuzzy Sets, Handbook Fuzzy Sets, Series 3 Kluwer, Boston 1999, pp. 701-710. Zbl 0971.60037, MR 1788914, 10.1007/978-1-4615-5079-2_16; reference:[33] Sadeghpour-Gildeh, B., Gien, D.: La distance-$D_{p,q}$ et le coeffcient de corrélation entre deux variables aléatoires floues.Actes de LFA'01, Monse-Belgium 2001, pp. 97-102.; reference:[34] Shanchao, Y.: Moment inequalities for sums of products of independent random variables.Stat. Probab. Lett. 76 (2006), 1994-2000. Zbl 1107.60307, MR 2329244, 10.1016/j.spl.2006.05.004; reference:[35] Stojakovic, M.: Fuzzy martingalesa simple form of fuzzy processes.Stochast. Anal. Appl. 14 (1996), 3, 355-367. MR 1393929, 10.1080/07362999608809443; reference:[36] Taylor, R. L., Seymour, L., Chen, Y.: Weak laws of large numbers for fuzzy random sets.Nonlinear Anal. 47 (2001), 1245-125. Zbl 1042.60502, MR 1970734, 10.1016/s0362-546x(01)00262-0; reference:[37] Viertl, R.: Statistical Methods for Fuzzy Data.John Wiley, Chichester 2011. Zbl 1101.62003, MR 2759969, 10.1002/9780470974414; reference:[38] Wang, J., Wu, Q.: Limiting behavior of the maximum of the partial sum for linearly negative quadrant dependent random variables under residual Ces` aro alpha-integrability assumption.J. Appl. Math. 2012 (2012), 1-10. MR 2898064, 10.1155/2012/735973; reference:[39] Wang, J. F., Zhang, L. X.: A Berry-Esseen theorem for weakly negatively dependent random variables and its applications.Acta Math. Hungar. 110 (2006), 4, 293-308. Zbl 1121.60024, MR 2213231, 10.1007/s10474-006-0024-x; reference:[40] Wu, H. C.: The laws of large numbers for fuzzy random variables.Fuzzy Sets Systems 116 (2000), 245-262. Zbl 0971.60035, MR 1788396, 10.1016/s0165-0114(98)00414-x; reference:[41] Zhang, C. H.: Strong law of large numbers for sums of products.Ann. Probab. 24 (1996), 1589-1615. Zbl 0868.60024, MR 1411507, 10.1214/aop/1065725194

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2807869; zbl:Zbl 1213.60102; reference:[1] Aumann, R. J.: Integrals of set-valued functions.J. Math. Anal. Appl. 12 (1965), 1–12. Zbl 0163.06301, MR 0185073, 10.1016/0022-247X(65)90049-1; reference:[2] Colubi, A., Domínguez-Menchero, J. S., López-Díaz, M., Ralescu, D. A.: A $D_E[0,1]$ representation of random upper semicontinuous functions.Proc. Amer. Math. Soc. 130 (2002) 3237–3242. Zbl 1005.28003, MR 1913001, 10.1090/S0002-9939-02-06429-8; reference:[3] Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications.World Scientific, Singapore 1994. Zbl 0873.54019, MR 1337027; reference:[4] Fei, W.: Existence and uniqueness of solution for fuzzy random differential equations with non-Lipschitz coefficients.Inform. Sci. 177 (2007) 4329–4337. Zbl 1129.60063, MR 2349040, 10.1016/j.ins.2007.03.004; reference:[5] Feng, Y.: Fuzzy stochastic differential systems.Fuzzy Sets Syst. 115 (2000), 351–363. Zbl 0964.60068, MR 1781454; reference:[6] Hiai, F., Umegaki, H.: Integrals, conditional expectation, and martingales of multivalued functions.J. Multivar. Anal. 7 (1977), 149–182. MR 0507504, 10.1016/0047-259X(77)90037-9; reference:[7] Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer Academic Publishers, Boston 1997. Zbl 0887.47001, MR 1485775; reference:[8] Kaleva, O.: Fuzzy differential equations.Fuzzy Sets Syst. 24 (1987), 301–317. Zbl 0646.34019, MR 0919058; reference:[9] Kim, J. H.: On fuzzy stochastic differential equations.J. Korean Math. Soc. 42 (2005), 153–169. Zbl 1071.60060, MR 2106287, 10.4134/JKMS.2005.42.1.153; reference:[10] Kisielewicz, M.: Differential Inclusions and Optimal Control.Kluwer Academic Publishers, Dordrecht 1991. MR 1135796; reference:[11] Lakshmikantham, V., Mohapatra, R. N.: Theory of Fuzzy Differential Equations and Inclusions.Taylor & Francis, London 2003. Zbl 1072.34001, MR 2052737; reference:[12] Li, Sh., Ren, A.: Representation theorems, set-valued and fuzzy set-valued Itô integral.Fuzzy Sets Syst. 158 (2007), 949–962. Zbl 1119.60039, MR 2321701; reference:[13] Malinowski, M.,T.: On random fuzzy differential equations.Fuzzy Sets Syst. 160 (2009), 3152–3165. Zbl 1184.34011, MR 2567099; reference:[14] Negoita, C. V., Ralescu, D. A.: Applications of Fuzzy Sets to System Analysis.Wiley, New York 1975. MR 0490082; reference:[15] Ogura, Y.: On stochastic differential equations with fuzzy set coefficients.In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 263–270.; reference:[16] Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications.Springer Verlag, Berlin 2003. Zbl 1025.60026, MR 0804391; reference:[17] Protter, Ph.: Stochastic Integration and Differential Equations: A New Approach.Springer Verlag, New York 1990. Zbl 0694.60047, MR 1037262; reference:[18] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions.J. Math. Anal. Appl. 91 (1983), 552–558. Zbl 0528.54009, MR 0690888, 10.1016/0022-247X(83)90169-5; reference:[19] Puri, M. L., Ralescu, D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409–422. Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4; reference:[20] Stojaković, M.: Fuzzy conditional expectation.Fuzzy Sets Syst. 52 (1992), 53–60. MR 1195201; reference:[21] Zhang, J.: Set-valued stochastic integrals with respect to a real valued martingale.In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 253–259.

  3. 3
    Academic Journal

    المؤلفون: Frič, Roman, Papčo, Martin

    وصف الملف: application/pdf

    Relation: mr:MR2797424; zbl:Zbl 1219.60006; reference:[1] Bugajski, S.: Statistical maps I.Basic properties. Math. Slovaca 51 (2001), 321–342. Zbl 1088.81021, MR 1842320; reference:[2] Bugajski, S.: Statistical maps II.Basic properties. Math. Slovaca 51 (2001), 343–361. Zbl 1088.81022, MR 1842321; reference:[3] Chovanec, F., Frič, R.: States as morphisms.Internat. J. Theoret. Phys. 49 (2010), 3050–3100. Zbl 1204.81011, MR 2738063, 10.1007/s10773-009-0234-4; reference:[4] Chovanec, F., Kôpka, F.: $D$-posets.In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures. (K. Engesser, D. M. Gabbay and D. Lehmann, eds.), Elsevier, Amsterdam 2007, pp. 367–428. Zbl 1139.81005, MR 2408886; reference:[5] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava 2000. MR 1861369; reference:[6] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ. 30 (2005), 21–34. Zbl 1150.60304, MR 2190245; reference:[7] Frič, R.: Statistical maps: a categorical approach.Math. Slovaca 57 (2007), 41–57. Zbl 1137.60300, MR 2357806, 10.2478/s12175-007-0013-8; reference:[8] Frič, R.: Extension of domains of states.Soft Comput. 13 (2009), 63–70. Zbl 1166.28006, 10.1007/s00500-008-0293-0; reference:[9] Frič, R.: Simplex-valued probability.Math. Slovaca 60 (2010), 607–614. Zbl 1249.06032, MR 2728526, 10.2478/s12175-010-0035-5; reference:[10] Frič, R.: States on bold algebras: Categorical aspects.J. Logic Comput. (To appear). DOI:10.1093/logcom/exp014 MR 2802938; reference:[11] Frič, R., Papčo, M.: On probability domains.Internat. J. Theoret. Phys. 49 (2010), 3092–3063. Zbl 1204.81012, 10.1007/s10773-009-0162-3; reference:[12] Frič, R., Papčo, M.: A categorical approach to probability theory.Studia Logica 94 (2010), 215–230. Zbl 1213.60021, MR 2602573, 10.1007/s11225-010-9232-z; reference:[13] Gudder, S.: Fuzzy probability theory.Demonstratio Math. 31 (1998), 235–254. Zbl 0984.60001, MR 1623780; reference:[14] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca 44 (1994), 21–34. MR 1290269; reference:[15] Mesiar, R.: Fuzzy sets and probability theory.Tatra Mt. Math. Publ. 1 (1992), 105–123. Zbl 0790.60005, MR 1230469; reference:[16] Papčo, M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ. 28 (2004), 125–140. Zbl 1112.06005, MR 2086282; reference:[17] Papčo, M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ. 30 (2005), 175–185. Zbl 1152.60302, MR 2190258; reference:[18] Papčo, M.: On effect algebras.Soft Comput. 12 (2007), 26–35. 10.1007/s00500-007-0171-1; reference:[19] Riečan, B., Mundici, D.: Probability on $MV$-algebras.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam 2002, pp. 869–910. Zbl 1017.28002, MR 1954631; reference:[20] Zadeh, L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl. 23 (1968), 421–427. Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4

  4. 4
    Academic Journal

    المؤلفون: Hong, Dug Hun, Kim, Kyung Tae

    وصف الملف: application/pdf

    Relation: mr:MR2343333; zbl:Zbl 1139.60013; reference:[1] Chow Y. S., Teicher H.: Probability Theory.Second edition. Springer–Verlag, New York 1998 Zbl 1049.60001; reference:[2] Goetscheland R., Voxman W.: Elementary fuzzy calculus.Fuzzy Sets and Systems 18 (1986), 31–43 MR 0825618, 10.1016/0165-0114(86)90026-6; reference:[3] Gut A.: An extension of the Kolmogorov–Feller weak law of large numbers with an application to the St.Petersburg game. J. Theoret. Probab. 17 (2004), 769–779 Zbl 1064.60037, MR 2091561, 10.1023/B:JOTP.0000040299.15416.0c; reference:[4] Hong D. H., Kim H. J.: Marcinkiewicz-type law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 64 (1994), 387–393 Zbl 0859.60003, MR 1289544, 10.1016/0165-0114(94)90161-9; reference:[5] Hong D. H.: A convergence of fuzzy random variables.Kybernetika 39 (2003), 275–280 MR 1995730; reference:[6] Inoue H.: A strong law of large numbers for fuzzy random sets.Fuzzy Sets and Systems 41 (1991), 285–291 Zbl 0737.60003, MR 1111975, 10.1016/0165-0114(91)90132-A; reference:[7] Joo S. Y., Lee S. S., Yoo Y. H.: A strong law of large numbers for stationary fuzzy random variables.J. Korean Statist. Soc. 30 (2001), 153–161 MR 1892638; reference:[8] Joo S. Y., Kim Y. K.: Kolmogorov’s strong law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 120 (2001), 499–503 Zbl 0981.60031, MR 1829267; reference:[9] Joo S. Y.: Week laws of large numbers for fuzzy random variables.Fuzzy Sets and Systems 147 (2004), 453–464 MR 2100837; reference:[10] Kim Y. K.: A strong law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 111 (2000), 319–323 MR 1748548; reference:[11] Klement E. P., Puri M. L., Ralescu D. A.: Limit theorems for fuzzy random variables.Proc. Roy. Soc. London Ser. A 407 (1986), 171–182 Zbl 0605.60038, MR 0861082; reference:[12] Kruse R.: The strong law of large numbers for fuzzy random variables.Inform. Sci. 28 (1982), 233–241 Zbl 0571.60039, MR 0717301, 10.1016/0020-0255(82)90049-4; reference:[13] Miyakoshi M., Shimbo M.: A strong law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 12 (1984), 133–142 Zbl 0551.60035, MR 0734945, 10.1016/0165-0114(84)90033-2; reference:[14] Molchanov I.: Strong laws of large numbers for random upper semicontinuous.J. Math. Anal. Appl. 235 (1999), 349–355 Zbl 0959.60003, MR 1758687, 10.1006/jmaa.1999.6403; reference:[15] Taylor R. L., Seymour, L., Chen Y.: Week laws of large numbers for fuzzy random sets.Nonlinear Anal. 47 (2001), 1245–1256 MR 1970734, 10.1016/S0362-546X(01)00262-0; reference:[16] Uemura T.: A law of large numbers for random sets.Fuzzy Sets and Systems 59 (1993), 181–188 Zbl 0788.60005, MR 1253840, 10.1016/0165-0114(93)90197-P

  5. 5
    Academic Journal

    المؤلفون: Hong, Dug Hun

    وصف الملف: application/pdf

    Relation: mr:MR1995730; zbl:Zbl 1249.60007; reference:[1] Artstein Z., Vitale R. A.: A strong law of large numbers for random compact sets.Ann. Probab. 13 (1985), 307–309 MR 0770645; reference:[2] Goetschel R., Voxman W.: Elementary fuzzy calculus.Fuzzy Sets and Systems 18 (1986), 31–43 Zbl 0626.26014, MR 0825618, 10.1016/0165-0114(86)90026-6; reference:[3] Hiai F.: Strong laws of large numbers for multivalued fuzzy random variables (Lecture Notes in Mathematics 1091).Springer–Verlag, Berlin 1984, pp. 160–172 MR 0785583, 10.1007/BFb0098809; reference:[4] Hong D. H., Kim H. J.: Marcinkiewicz-type law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 64 (1994), 387–393 Zbl 0859.60003, MR 1289544, 10.1016/0165-0114(94)90161-9; reference:[5] Inoue H.: A strong law of large numbers for fuzzy random sets.Fuzzy Sets and Systems 41 (1991), 285–291 Zbl 0737.60003, MR 1111975, 10.1016/0165-0114(91)90132-A; reference:[6] Joo S. Y., Lee S. S., Yoo Y. H.: A strong law of large numbers for stationary fuzzy random variables.J. Korean Statist. Soc. 30 (2001), 153–161 MR 1892638; reference:[7] Joo S. Y., Kim Y. K.: The Skorokhod topology on space of fuzzy numbers.Fuzzy Sets and Systems 111 (2000), 497–501 Zbl 0961.54024, MR 1748559, 10.1016/S0165-0114(98)00185-7; reference:[8] Kim Y. K.: A strong law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 111 (2000), 319–323 MR 1748548; reference:[9] Klement E. P., Puri M. L., Ralescu D. A.: Limit theorems for fuzzy random variables.Proc. Roy. Soc. London Ser. A 407 (1986), 171–182 Zbl 0605.60038, MR 0861082; reference:[10] Kruse R.: The strong law of large numbers for fuzzy random variables.Inform. Sci. 28 (1982), 233–241 Zbl 0571.60039, MR 0717301, 10.1016/0020-0255(82)90049-4; reference:[11] Miyakoshi M., Shimbo M.: A strong law of large numbers for fuzzy random variables.Fuzzy Sets and Systems 12 (1984), 133–142 Zbl 0551.60035, MR 0734945, 10.1016/0165-0114(84)90033-2; reference:[12] Molchanov I. S.: On strong law of large numbers for fuzzy random upper semi-continuous functions.J. Math. Anal. Appl. 235 (1999), 349–355 MR 1758687, 10.1006/jmaa.1999.6403; reference:[13] Puri M. L., Ralescu D. A.: Strong law of large numbers for Banach space valued random sets.Ann. Probab. 11 (1983), 222–224 Zbl 0508.60021, MR 0682812, 10.1214/aop/1176993671; reference:[14] Puri M. L., Ralescu D. A.: Limit theorems for random compact set in Banach space.Math. Proc. Cambridge Philos. Soc. 97 (1985), 403–409 MR 0764504; reference:[15] Puri M. L., Ralescu D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 402–422 Zbl 0605.60038, MR 0833596; reference:[16] Rao R. R.: The law of large numbers for $D[0,1]$-valued random variables.Theor. Probab. Appl. 8 (1963), 70–74 Zbl 0122.13303, 10.1137/1108005; reference:[17] Taylor R. L., Inoue H.: A strong law of large numbers for random sets in Banach spaces.Bull. Inst. Math., Academia Sinica 13 (1985), 403–409 Zbl 0585.60014, MR 0866575; reference:[18] Uemura T.: A law of large numbers for random sets.Fuzzy Sets and Systems 59 (1993), 181–188 Zbl 0788.60005, MR 1253840, 10.1016/0165-0114(93)90197-P

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1621507; zbl:Zbl 1274.62096; reference:[1] Bourguignon F.: Decomposable income inequality measures.Econometrica 47 (1979), 901–920 Zbl 0424.90013, MR 0537636, 10.2307/1914138; reference:[2] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part I: The unbiased estimation and applications. Kybernetika 25 (1989), 298–311 Zbl 0682.62087, MR 1015034; reference:[3] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part II: The asymptotic behaviour and the choice of sample size. Kybernetika 25 (1989), 312–319 Zbl 0682.62087, MR 1015035; reference:[4] Corral N., Gil M. A., López-García H.: The fuzzy hyperbolic inequality index of fuzzy random variables in finite populations.Mathware $\&$ Soft Computing 3 (1996), 329–339 Zbl 0859.60004, MR 1489755; reference:[5] Cox E.: The Fuzzy Systems Handbook.Academic Press, Cambridge 1994 Zbl 0847.68111; reference:[6] Gastwirth J. L., Nayak T. K., Krieger A. M.: Large sample theory for the bounds on the Gini and related indices of inequality estimated from grouped data.J. Business Econom. Statist. 4 (1986), 269–273; reference:[7] Gil M. A., Gil P.: On some information measures of degree ${\beta = 2}$; Estimation in simple–stage cluster sampling.Statist. Probab. Lett. 8 (1989), 157–162 Zbl 0677.62008, MR 1017883, 10.1016/0167-7152(89)90009-6; reference:[8] Gil M. A., Corral N., Casals M. R.: The likelihood ratio test for goodness of fit with fuzzy experimental observations.IEEE Trans. Systems Man Cybernet. 19 (1989), 771–779 10.1109/21.35340; reference:[9] Gil M. A., López–Díaz M.: Fundamentals and Bayesian analyses of decision problems with fuzzy–valued utilities.Internat. J. Approx. Reason. 15 (1996), 203–224 Zbl 0949.91504, MR 1415767, 10.1016/S0888-613X(96)00073-4; reference:[10] Gil M. A., Martínez I.: On the asymptotic optimum allocation in estimating inequality from complete data.Kybernetika 28 (1992), 325–332 Zbl 0771.62083, MR 1183623; reference:[11] Gil M. A., Pérez R., Gil P.: A family of measures of uncertainty involving utilities: definitions, properties, applications and statistical inferences.Metrika 36 (1989), 129–147 MR 1024002, 10.1007/BF02614085; reference:[12] Jang J.-S. R., Gulley N.: Fuzzy Logic Toolbox for Use with MATLAB.The Math Works Inc., Natick–Massachussets 1995; reference:[13] Kaufmann A., Gupta M. M.: Introduction to Fuzzy Arithmetic.Van Nostrand Reinhold Co., New York 1985 Zbl 0754.26012, MR 0796665; reference:[14] Mareš M.: Addition of rational fuzzy quantities: Disjunction–conjunction approach.Kybernetika 25 (1989), 104–116 MR 0995953; reference:[15] Mareš M.: Algebraic equivalences over fuzzy quantities.Kybernetika 25 (1992), 121–132 MR 1227746; reference:[16] Mareš M.: Computation over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525; reference:[17] Puri M. L., Ralescu D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409–422 Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4; reference:[18] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning.Inform. Sci. Part 1, 8 (1975), 199–249; Part 2, 8 (1975), 301–353; Part 3, 9 (1975), 43–80 Zbl 0404.68075, MR 0386371, 10.1016/0020-0255(75)90017-1