يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"keyword:forcing"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Baillif, Mathieu

    وصف الملف: application/pdf

    Relation: mr:MR4506133; zbl:Zbl 07613031; reference:[1] Abraham U., Todorčević S.: Martin's axiom and first-countable $S$- and $L$-spaces.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 327–346. MR 0776627; reference:[2] Alas O. T., Junqueira L. R., Wilson R. G.: On linearly H-closed spaces.Topology Appl. 258 (2019), 161–171. MR 3924509, 10.1016/j.topol.2019.02.014; reference:[3] Baillif M.: Notes on linearly H-closed spaces and OD-selection principles.Topology Proc. 54 (2019), 109–124. MR 3892579; reference:[4] Balogh Z., Dow A., Fremlin D. H., Nyikos P. J.: Countable tightness and proper forcing.Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 295–298. MR 0940491, 10.1090/S0273-0979-1988-15649-2; reference:[5] Balogh Z., Gruenhage G.: Two more perfectly normal non-metrizable manifolds.Topology Appl. 151 (2005), no. 1–3, 260–272. MR 2139756, 10.1016/j.topol.2003.12.021; reference:[6] Bella A.: Observations on some cardinality bounds.Topology Appl. 228 (2017), 355–362. MR 3679094, 10.1016/j.topol.2017.06.007; reference:[7] Dow A., Tall F. D.: PFA(S)[S] and countably compact spaces.available in ArXiv 1607.04368 [math.LO] (2016), 24 pages. MR 3702781; reference:[8] Eisworth T., Nyikos P., Shelah S.: Gently killing S-spaces.Israel J. Math. 136 (2003), 189–220. MR 1998110, 10.1007/BF02807198; reference:[9] Larson P. B., Tall F. D.: Locally compact perfectly normal spaces may all be paracompact.Fund. Math. 210 (2010), no. 3, 285–300. MR 2733053, 10.4064/fm210-3-4; reference:[10] Larson P., Tall F. D.: On the hereditary paracompactness of locally compact, hereditarily normal spaces.Canad. Math. Bull. 57 (2014), no. 3, 579–584. MR 3239121, 10.4153/CMB-2014-010-3; reference:[11] Nyikos P.: The theory of nonmetrizable manifolds.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 633–684. MR 0776633; reference:[12] Nyikos P. J.: Applications of some strong set-theoretic axioms to locally compact $T_5$ and hereditarily scwH spaces.Fund. Math. 176 (2003), no. 1, 25–45. MR 1971471, 10.4064/fm176-1-3; reference:[13] Porter J. R., Woods R. G.: Feebly compact spaces, Martin's axiom and “diamond”.Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 9 (1984), no. 1, 105–121. MR 0781555; reference:[14] Roitman J.: Basic $S$ and $L$.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 295–326. Zbl 0594.54001, MR 0776626; reference:[15] Szentmiklóssy Z.: $S$-spaces and $L$-spaces under Martin's axiom.Topology, Vol. II, Proc. Fourth Colloq., Budapest, 1978, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980, pages 1139–1145. MR 0588860; reference:[16] Tall F. D.: PFA(S)[S] and the Arhangel'skiĭ–Tall problem.Topology Proc. 40 (2012), 99–108. MR 2817292; reference:[17] Tall F. D.: PFA(S)[S] for the masses.Topology Appl. 232 (2017), 13–21. MR 3720876, 10.1016/j.topol.2017.09.033; reference:[18] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, 1989. MR 0980949, 10.1090/conm/084

  2. 2
    Academic Journal

    المؤلفون: Iwasa, Akira

    وصف الملف: application/pdf

    Relation: mr:MR4445739; zbl:Zbl 07584115; reference:[1] Arens R.: Note on convergence in topology.Math. Mag. 23 (1950), 229–234. MR 0037500, 10.2307/3028991; reference:[2] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[3] Grunberg R., Junqueira L. R., Tall F. D.: Forcing and normality.Proc. of the International Conf. on Set-theoretic Topology and Its Applications, Part 2, Matsuyama, 1994, Topology Appl. 84 (1998), no. 1–3, 145–174. MR 1611214, 10.1016/S0166-8641(97)00089-8; reference:[4] Iwasa A.: Preservation of countable compactness and pseudocompactness by forcing.Topology Proc. 50 (2017), 1–11. MR 3488498; reference:[5] Iwasa A.: Preservation of a neighborhood base of a set by ccc forcings.Topology Proc. 52 (2018), 61–72. MR 3673209; reference:[6] Jech T.: Set Theory.The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[7] Juhász I., Weiss W.: Omitting the cardinality of the continuum in scattered spaces.Topology Appl. 31 (1989), no. 1, 19–27. MR 0984101, 10.1016/0166-8641(89)90095-3; reference:[8] Kunen K.: Set Theory: An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4093426; zbl:Zbl 07217155; reference:[1] Karagila A.: Do choice principles in all generic extensions imply AC in $V$?.Answer to a MathOverflow question, 2018.; reference:[2] Kunen K.: Set Theory: An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl 0534.03026, MR 0756630; reference:[3] Miller A. W.: Long Borel hierarchies.MLQ Math. Log. Q. 54 (2008), no. 3, 307–322. MR 2417803, 10.1002/malq.200710044

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3946665; zbl:Zbl 07088826; reference:[1] Bartoszyński T.: Combinatorial aspects of measure and category.Fund. Math. 127 (1987), no. 3, 225–239. MR 0917147, 10.4064/fm-127-3-225-239; reference:[2] Bartoszyński T., Judah H.: Set Theory, On the Structure of the Real Line.A. K. Peters, Wellesley, 1995. MR 1350295; reference:[3] Brendle J.: Larger cardinals in Cichoń's diagram.J. Symbolic Logic 56 (1991), no. 3, 795–810. MR 1129144, 10.2178/jsl/1183743728; reference:[4] Brendle J., Mejía D. A.: Rothberger gaps in fragmented ideals.Fund. Math. 227 (2014), no. 1, 35–68. MR 3247032, 10.4064/fm227-1-4; reference:[5] Cardona M. A., Mejía D. A.: On cardinal characteristics of Yorioka ideals.available at arXiv:1703.08634 [math.LO] (2018), 35 pages.; reference:[6] Engelking R., Karłowicz M.: Some theorems of set theory and their topological consequences.Fund. Math. 57 (1965), 275–285. MR 0196693, 10.4064/fm-57-3-275-285; reference:[7] Goldstern M., Kellner J., Shelah S.: Cichoń's maximum.available at arXiv:1708.03691 [math.LO] (2018), 21 pages.; reference:[8] Goldstern M., Mejía D. A., Shelah S.: The left side of Cichoń's diagram.Proc. Amer. Math. Soc. 144 (2016), no. 9, 4025–4042. MR 3513558, 10.1090/proc/13161; reference:[9] Horowitz H., Shelah S.: Saccharinity with ccc.available at arXiv:1610.02706 [math.LO] (2016), 23 pages.; reference:[10] Judah H., Shelah S.: The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing).J. Symbolic Logic 55 (1990), no. 3, 909–927. MR 1071305, 10.2307/2274464; reference:[11] Kamburelis A.: Iterations of Boolean algebras with measure.Arch. Math. Logic 29 (1989), no. 1, 21–28. MR 1022984, 10.1007/BF01630808; reference:[12] Kellner J., Tănasia A. R., Tonti F. E.: Compact cardinals and eight values in Cichoń's diagram.J. Symb. Log. 83 (2018), no. 2, 790–803. MR 3835089, 10.1017/jsl.2018.17; reference:[13] Mejía D. A.: Matrix iterations and Cichon's diagram.Arch. Math. Logic 52 (2013), no. 3–4, 261–278. MR 3047455, 10.1007/s00153-012-0315-6; reference:[14] Miller A. W.: A characterization of the least cardinal for which the Baire category theorem fails.Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR 0671224, 10.1090/S0002-9939-1982-0671224-2; reference:[15] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals.Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR 3151397, 10.1007/s00153-013-0354-7; reference:[16] Shelah S.: Covering of the null ideal may have countable cofinality.Fund. Math. 166 (2000), no. 1–2, 109–136. Zbl 0962.03046, MR 1804707

  5. 5
    Academic Journal

    المؤلفون: Zapletal, Jindřich

    وصف الملف: application/pdf

    Relation: mr:MR3914719; zbl:Zbl 06997369; reference:[1] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[2] Kanovei V.: Borel Equivalence Relations: Structure and Classification.University Lecture Series, 44, American Mathematical Society, Providence, 2008. MR 2441635, 10.1090/ulect/044/06; reference:[3] Zapletal J.: Forcing Idealized.Cambridge Tracts in Mathematics, 174, Cambridge University Press, Cambridge, 2008. Zbl 1140.03030, MR 2391923; reference:[4] Zapletal J.: Hypergraphs and proper forcing.available at arXiv:1710.10650 [math.LO] (2017), 64 pages.

  6. 6
    Academic Journal

    المؤلفون: Dow, Alan

    مصطلحات موضوعية: keyword:Lindelöf, keyword:forcing, msc:54A25, msc:54D20

    وصف الملف: application/pdf

    Relation: mr:MR3338734; zbl:Zbl 06433819; reference:[1] Arhangel’skii A.V., Ponomarev, V.I.: Fundamentals of General Topology: Problems and Exercises.Reidel, Dordrecht, 1984. MR 0785749; reference:[2] Devlin K.J.: Constructibility.Perspectives in Mathematical Logic, Springer, Berlin, 1984; MR 750828 (85k:03001). Zbl 0542.03029, MR 0750828; reference:[3] Engelking R.: General Topology.translated from the Polish by the author, Monografie Matematyczne, Tom 60 [Mathematical Monographs, Vol. 60], PWN---Polish Scientific Publishers, Warsaw, 1977; MR 0500780 (58 \#18316b). Zbl 0684.54001, MR 0500780; reference:[4] Gorelic I.: The Baire category and forcing large Lindelöf spaces with points $G_\delta$.Proc. Amer. Math. Soc. 118 (1993), no. 2, 603–607; MR 1132417 (93g:03046). MR 1132417; reference:[5] Juhász I.: Cardinal functions. II.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 63–109; MR 776621 (86j:54008). Zbl 0559.54004, MR 0776621; reference:[6] Juhász I.: Cardinal functions in topology---ten years later.second ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980; MR 576927 (82a:54002). Zbl 0479.54001, MR 0576927; reference:[7] Kanamori A.: The higher infinite. Large cardinals in set theory from their beginnings.second ed., Springer Monographs in Mathematics, Springer, Berlin, 2003; MR 1994835 (2004f:03092). Zbl 1154.03033, MR 1994835; reference:[8] Knight R.W.: A topological application of flat morasses.Fund. Math. 194 (2007), no. 1, 45–66; MR 2291716 (2008d:03048). Zbl 1126.03047, MR 2291716, 10.4064/fm194-1-3; reference:[9] Kunen K.: Set theory. An introduction to independence proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam-New York, 1980; MR 597342 (82f:03001). Zbl 0534.03026, MR 0597342; reference:[10] Tall F.D.: On the cardinality of Lindelöf spaces with points $G_\delta$.Topology Appl. 63 (1995), no. 1, 21–38; MR 1328616 (96i:54016). MR 1328616, 10.1016/0166-8641(95)90002-0

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3277752; zbl:Zbl 06391510; reference:[1] Balcar, B., Główczyński, W., Jech, T.: The sequential topology on complete Boolean algebras.Fundam. Math. 155 (1998), 59-78. Zbl 0910.28004, MR 1487988; reference:[2] Balcar, B., Jech, T., Pazák, T.: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann.Bull. Lond. Math. Soc. 37 (2005), 885-898. Zbl 1101.28003, MR 2186722, 10.1112/S0024609305004807; reference:[3] Balcar, B., Jech, T.: Weak distributivity, a problem of von Neumann and the mystery of measurability.Bull. Symb. Log. 12 (2006), 241-266. Zbl 1120.03028, MR 2223923, 10.2178/bsl/1146620061; reference:[4] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on $N$ covered by nowhere dense sets.Fundam. Math. 110 (1980), 11-24. Zbl 0568.54004, MR 0600576, 10.4064/fm-110-1-11-24; reference:[5] Engelking, R.: General Topology. Translated from the Polish.Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). MR 1039321; reference:[6] Farah, I.: Examples of $\varepsilon$-exhaustive pathological submeasures.Fundam. Math. 181 (2004), 257-272. Zbl 1069.28002, MR 2099603, 10.4064/fm181-3-4; reference:[7] Jech, T.: Set Theory.Perspectives in Mathematical Logic Springer, Berlin (1997). Zbl 0882.03045, MR 1492987; reference:[8] Kunen, K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics 102 North-Holland, Amsterdam (1980). Zbl 0443.03021, MR 0597342; reference:[9] Kurilić, M. S., Pavlović, A.: A posteriori convergence in complete Boolean algebras with the sequential topology.Ann. Pure Appl. Logic 148 (2007), 49-62. Zbl 1132.06008, MR 2352578, 10.1016/j.apal.2007.05.002; reference:[10] Kurilić, M. S., Pavlović, A.: Some forcing related convergence structures on complete Boolean algebras.Novi Sad J. Math. 40 (2010), 77-94. Zbl 1265.54131, MR 2827660; reference:[11] Kurilić, M. S., Pavlović, A.: The convergence of the sequences coding the ground model reals.Publ. Math. Debrecen 82 (2013), 277-292. MR 3034346, 10.5486/PMD.2013.5199; reference:[12] Kurilić, M. S., Todorčević, S.: Property $(\hbar)$ and cellularity of complete Boolean algebras.Arch. Math. Logic 48 (2009), 705-718. Zbl 1201.03044, MR 2563812, 10.1007/s00153-009-0144-4; reference:[13] Maharam, D.: An algebraic characterization of measure algebras.Ann. Math. (2) 48 (1947), 154-167. Zbl 0029.20401, MR 0018718, 10.2307/1969222; reference:[14] (ed.), R. D. Mauldin: The Scottish Book. Mathematics from the Scottish Café.Birkhäuser, Boston (1981). Zbl 0485.01013, MR 0666400; reference:[15] Talagrand, M.: Maharam's problem.C. R., Math., Acad. Sci. Paris 342 (2006), 501-503. Zbl 1099.28004, MR 2214604, 10.1016/j.crma.2006.01.026; reference:[16] Talagrand, M.: Maharam's problem.Ann. Math. (2) 168 (2008), 981-1009. Zbl 1185.28002, MR 2456888; reference:[17] Todorcevic, S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures.Fundam. Math. 183 (2004), 169-183. Zbl 1071.28004, MR 2127965, 10.4064/fm183-2-7; reference:[18] Douwen, E. K. van: The integers and topology.Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland, Amsterdam (1984), 111-167. MR 0776622; reference:[19] Velickovic, B.: ccc forcing and splitting reals.Isr. J. Math. 147 (2005), 209-220. Zbl 1118.03046, MR 2166361, 10.1007/BF02785365

  8. 8
    Academic Journal

    المؤلفون: Zapletal, Jindřich

    وصف الملف: application/pdf

    Relation: mr:MR2741884; zbl:Zbl 1224.03029; reference:[1] Foreman M.: Games played on Boolean algebras.J. Symbolic Logic 48 (1983), 714–723. Zbl 0536.03033, MR 0716633, 10.2307/2273464; reference:[2] Jech T.: Set Theory.Academic Press, San Diego, 1978. Zbl 1007.03002, MR 0506523; reference:[3] Jech T., Shelah S.: On countably closed complete boolean algebras.J. Symbolic Logic 61 (1996), 1380–1386, math.LO/9502203. Zbl 0871.06008, MR 1456113, 10.2307/2275822; reference:[4] Shelah S.: Proper and Improper Forcing.second edition, Springer, New York, 1998. Zbl 0889.03041, MR 1623206; reference:[5] Vojtáš P.: Game properties of Boolean algebras.Comment. Math. Univ. Carolin. 24 (1983), 349–369. MR 0711272

  9. 9
    Academic Journal

    المؤلفون: Farkas, Barnabás, Soukup, Lajos

    وصف الملف: application/pdf

    Relation: mr:MR2537837; zbl:Zbl 1212.03035; reference:[Fa] Farah I.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers.Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pp. Zbl 0966.03045, MR 1711328; reference:[Fr] Fremlin D.H.: Measure Theory. Set-theoretic Measure Theory.Torres Fremlin, Colchester, England, 2004; available at {\tt http://www.essex.ac.uk/maths/staff/fremlin/mt.html}.; reference:[Ku] Kunen K.: Set Theory, An Introduction to Independence Proofs.North Holland, Amsterdam, New York, Oxford, 1980. Zbl 0534.03026, MR 0597342; reference:[LaZh] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters.J. Symbolic Logic 63 (1998), no. 2, 584--592. Zbl 0911.04001, MR 1627310, 10.2307/2586852; reference:[LoVe] Louveau A., Veličković B.: Analytic ideals and cofinal types.Ann. Pure Appl. Logic 99 (1999), 171--195. MR 1708151, 10.1016/S0168-0072(98)00065-7; reference:[Ru] Rudin M.E.: Partial orders on the types of $\beta \omega $.Trans. Amer. Math. Soc. 155 (1971), 353--362. MR 0273581; reference:[So] Solecki S.: Analytic $P$-ideals and their applications.Ann. Pure Appl. Logic 99 (1999), 51--72. MR 1708146, 10.1016/S0168-0072(98)00051-7; reference:[Vo] Vojtáš P.: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis.Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619--643. MR 1234291

  10. 10
    Academic Journal

    المؤلفون: Zapletal, Jindřich

    وصف الملف: application/pdf

    Relation: mr:MR1903318; zbl:Zbl 1069.03037; reference:[B] Bartoszynski T., Judah H.: Set Theory: On the Structure of the Real Line.(1995), A K Peters Wellesley, Massachusetts. Zbl 0834.04001, MR 1350295; reference:[J] Jech T.: Set Theory.(1978), Academic Press New York. Zbl 0419.03028, MR 0506523; reference:[M] Martin D.A., Steel J.: A proof of projective determinacy.J. Amer. Math. Soc. (1989), 85 6582-6586. Zbl 0668.03021, MR 0959109; reference:[N] Neeman I., Zapletal J.: Proper forcings and absoluteness in $L(\Bbb R)$.Comment. Math. Univ. Carolinae (1998), 39 281-301. Zbl 0939.03054, MR 1651950; reference:[S] Solecki S.: Covering analytic sets by families of closed sets.J. Symbolic Logic 59 (1994), 1022-1031. Zbl 0808.03031, MR 1295987; reference:[W] Woodin W.H.: Supercompact cardinals, sets of reals and weakly homogeneous trees.Proc. Natl. Acad. Sci. USA 85 6587-6591 (1988). Zbl 0656.03037, MR 0959110; reference:[Z1] Zapletal J.: Isolating cardinal invariants.J. Math. Logic accepted. Zbl 1025.03046; reference:[Z2] Zapletal J.: Countable support iteration revisited.J. Math. Logic submitted.

  11. 11
    Academic Journal

    المؤلفون: Chartrand, Gary, Zhang, Ping

    وصف الملف: application/pdf

    Relation: mr:MR1869463; zbl:Zbl 0995.05046; reference:[cz:kg] P. Buczkowski, G. Chartrand, C. Poisson, P. Zhang: On $k$-dimensional graphs and their bases. Submitted.; reference:[ce:rg] G. Chartrand, L. Eroh, M. Johnson: Resolvability in graphs and the metric dimension of a graph.(to appear).; reference:[chz:geo] G. Chartrand, F. Harary, P. Zhang: On the geodetic number of a graph.(to appear). MR 1871701; reference:[cpz:res] G. Chartrand, C. Poisson, P. Zhang: Resolvability and the upper dimension of graphs.(to appear). MR 1763834; reference:[crz:ddd1] G. Chartrand, M. Raines, P. Zhang: The directed distance dimension of oriented graphs.Math. Bohem. 125 (2000), 155–168. MR 1768804; reference:[crz:ddd2] G. Chartrand, M. Raines, P. Zhang: On the dimension of oriented graphs.(to appear). MR 1863436; reference:[cz:dgeo] G. Chartrand, P. Zhang: The geodetic number of an oriented graph.European J. Combin. 21 (2000), 181–189. MR 1742433, 10.1006/eujc.1999.0301; reference:[cz:fgeo] G. Chartrand, P. Zhang: The forcing geodetic number of a graph.Discuss. Math. Graph Theory 19 (1999), 45–58. MR 1704390, 10.7151/dmgt.1084; reference:[eh:chr] C. Ellis, F. Harary: The chromatic forcing number of a graph.(to appear).; reference:[h:sur] F. Harary: A survey of forcing parameters in graph theory. Preprint.; reference:[hm:md] F. Harary, R. A. Melter: On the metric dimension of a graph.Ars Combin. 2 (1976), 191–195. MR 0457289; reference:[hp:rec] F. Harary, M. Plantholt: The graph reconstruction number.J. Graph Theory 9 (1985), 451–454. MR 0890233, 10.1002/jgt.3190090403; reference:[pz:ug] C. Poisson, P. Zhang: The dimension of unicyclic graphs. Submitted.(to appear).; reference:[s:lt] P. J. Slater: Leaves of trees.Congress. Numer. 14 (1975), 549–559. Zbl 0316.05102, MR 0422062; reference:[s:dr] P. J. Slater: Dominating and reference sets in graphs.J. Math. Phys. Sci. 22 (1988), 445–455. MR 0966610

  12. 12
    Academic Journal

    المؤلفون: Chartrand, Gary, Zhang, Ping

    وصف الملف: application/pdf

    Relation: mr:MR1864046; zbl:Zbl 0995.05044; reference:[bh:dg] F. Buckley and F. Harary: Distance in Graphs.Addison-Wesley, Redwood City, CA, 1990. MR 1045632; reference:[cwz:cn] G. Chartrand, C. E. Wall, and P. Zhang: The convexity number of a graph.(to appear). MR 1913663; reference:[cz:cs] G. Chartrand and P. Zhang: $H$-convex graphs.Math. Bohem. 126 (2001), 209–220. MR 1826483; reference:[hn:cg] F. Harary and J. Nieminen: Convexity in graphs.J. Differential Geom. 16 (1981), 185–190. MR 0638785, 10.4310/jdg/1214436096; reference:[m] H. M. Mulder: The Interval Function of a Graph.Mathematisch Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838; reference:[n1] L. Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44 (119) (1994), 173–178. MR 1257943; reference:[n2] L. Nebeský: Characterizing of the interval function of a connected graph.Math. Bohem. 123 (1998), 137–144. MR 1673965

  13. 13
    Academic Journal

    المؤلفون: Soukup, L.

    وصف الملف: application/pdf

    Relation: mr:MR1715212; zbl:Zbl 1060.03071; reference:[1] Hajnal A., Nagy Zs., Soukup L.: On the number of non-isomorphic subgraphs of certain graphs without large cliques and independent subsets.``A Tribute to Paul Erdös '', ed. A. Baker, B. Bollobás, A. Hajnal, Cambridge University Press, 1990, pp.223-248. MR 1117016; reference:[2] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523; reference:[3] Kierstead H.A., Nyikos P.J.: Hypergraphs with finitely many isomorphism subtypes.Trans. Amer. Math. Soc. 312 (1989), 699-718. Zbl 0725.05063, MR 0988883; reference:[4] Shelah S., Soukup L.: On the number of non-isomorphic subgraphs.Israel J. Math 86 (1994), 1-3 349-371. Zbl 0797.03051, MR 1276143

  14. 14
    Academic Journal

    المؤلفون: Farah, Ilijas

    وصف الملف: application/pdf

    Relation: mr:MR1440716; zbl:Zbl 0887.03037; reference:[1] Abraham U., Rubin M., Shelah S.: On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph_1$-dense real order types.Ann. of Pure and Appl. Logic 29 (1985), 123-206. MR 0801036; reference:[2] Baumgartner J.: All $\aleph_1$-dense sets of reals can be isomorphic.Fundamenta Mathematicae 79 (1973), 100-106. Zbl 0274.02037, MR 0317934; reference:[3] Devlin K., Johnsbråten H.: The Souslin Problem.Springer Lecture Notes in Mathematics, # 405 (1974). MR 0384542; reference:[4] Dordal P.L.: Towers in $[ømega]^ømega$ and $^ømegaømega$.Ann. of Pure and Appl. Logic 247-277 (1989), 45.3. MR 1032832; reference:[5] Fremlin D.: Consequences of Martin's Axiom.Cambridge University Press (1984). Zbl 0551.03033; reference:[6] Gruenhage G.: Cosmicity of cometrizable spaces.Trans. AMS 313 (1989), 301-315. Zbl 0667.54012, MR 0992600; reference:[7] Todorčević S.: Partition Problems in Topology.AMS Providence, Rhode Island (1989). MR 0980949; reference:[8] Todorčević S.: Oscillations of sets of integers.to appear. MR 1601383; reference:[9] Veličković B.: OCA and automorphisms of $\Cal P(ømega)/fin$.Topology Appl. 49 (1993), 1-13. MR 1202874; reference:[10] Weese M.: personal communication.

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1396168; zbl:Zbl 0862.54003; reference:[1] Ciesielski K.: On the netweigth of subspaces.Fund. Math. 117 (1983), 1 37-46. MR 0712211; reference:[2] Hajnal A., Juhász I.: Weakly separated subspaces and networks.Logic '78, Studies in Logic, 97, 235-245. MR 0567672; reference:[3] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523; reference:[4] Juhász I.: Cardinal Functions - Ten Years Later.Math. Center Tracts 123, Amsterdam, 1980. MR 0576927; reference:[5] Juhász I., Soukup L., Szentmiklóssy Z.: What makes a space have large weight?.Topology and its Applications 57 (1994), 271-285. MR 1278028; reference:[6] Shelah S.: private communication.; reference:[7] Tkačenko M.G.: Chains and cardinals.Dokl. Akad. Nauk. SSSR 239 (1978), 3 546-549. MR 0500798; reference:[8] Todorčevič S.: Partition Problems in Topology.Contemporary Mathematics, vol. 84, Providence, 1989. MR 0980949

  16. 16
    Academic Journal

    المؤلفون: Gorelic, Isaac

    وصف الملف: application/pdf

    Relation: mr:MR1286586; zbl:Zbl 0815.54015; reference:[1] Shelah S.: On some problems in general topology.preprint, 1978. Zbl 0847.54004, MR 1367138; reference:[2] Juhász I.: Cardinal Functions II.in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984. MR 0776621; reference:[3] Hajnal A., Juhàsz I.: Lindelöf spaces à la Shelah.Coll. Mat. Soc. Bolyai, Budapest, 1978.; reference:[4] Gorelic I.: The Baire Category and forcing large Lindelöf spaces with points $G_\delta$.Proceedings Amer. Math. Soc. 118 (1993), 603-607. MR 1132417; reference:[5] Juhász I.: Cardinal Functions.in: M. Hušek and J. van Mill, eds., Recent Progress in General Topology, North-Holland, 1992. MR 1229134; reference:[6] Przymusinski T.C.: Normality and paracompactness in finite and countable cartesian products.Fund. Math. 105 (1980), 87-104. Zbl 0438.54021, MR 0561584; reference:[7] Kunen K.: Set Theory.North-Holland, Amsterdam, 1980. Zbl 0960.03033, MR 0597342

  17. 17
    Academic Journal

    المؤلفون: Sgall, Jiří, Sochor, Antonín

    وصف الملف: application/pdf

    Relation: mr:MR1137795; zbl:Zbl 0751.03026; reference:[A] Adamowicz Z.: Constructible semi-lattices of degrees of constructibility.In: Set Theory and Hierarchy Theory V, Lecture Notes in Mathematics 619, p. 1-43. Zbl 0369.02042, MR 0505487; reference:[L] Lévy A.: Definability in axiomatic set theory II.In: Mathematical Logic and Foundations of Set Theory, ed. by Y. Bar-Hillel, North-Holland, 1970. MR 0268037; reference:[S 1982] Sochor A.: Metamathematics of the alternative set theory II.Comment. Math. Univ. Carolinae 23 (1982), 55-79. Zbl 0493.03030, MR 0653351; reference:[S 1985] Sochor A.: Constructibility and shiftings of view.Comment. Math. Univ. Carolinae 26 (1985), 477-498. Zbl 0583.03040, MR 0817822; reference:[Sg] Sgall J.: Forcing in the alternative set theory I.Comment. Math. Univ. Carolinae 32 (1991), 323-337. Zbl 0751.03025, MR 1137794; reference:[V] Vopěnka P.: Mathematics in the Alternative Set Theory.Leipzig, 1979. MR 0581368

  18. 18
    Academic Journal

    المؤلفون: Sgall, Jiří

    وصف الملف: application/pdf

    Relation: mr:MR1137794; zbl:Zbl 0751.03025; reference:[S 1979] Sochor A.: Metamathematics of the Alternative set theory I.Comment. Math. Univ. Carolinae 20 (1979), 697-722. Zbl 0433.03028, MR 0555184; reference:[S 1982] Sochor A.: Metamathematics of the Alternative set theory II.Comment. Math. Univ. Carolinae 23 (1982), 55-79. Zbl 0493.03030, MR 0653351; reference:[S 1985] Sochor A.: Constructibility and shiftings of view.Comment. Math. Univ. Carolinae 26 (1985), 477-498. Zbl 0583.03040, MR 0817822; reference:[S 1991] Sochor A.: Scheme of choice in higher order arithmetics.to appear.; reference:[V] Vopěnka P.: Mathematics in the Alternative Set Theory.Leipzig, 1979. MR 0581368

  19. 19
    Academic Journal

    المؤلفون: Repický, Miroslav

    مصطلحات موضوعية: keyword:forcing, keyword:unbounded family, msc:03E40

    وصف الملف: application/pdf

    Relation: mr:MR1118292; zbl:Zbl 0736.03017; reference:[1] Bartoszyński T.: Additivity of measure implies additivity of category.Trans. Amer. Math. Soc.209-213 (1984),281, 1. MR 0719666; reference:[2] Bukovský L.: $\nabla$-models and distributivity in Boolean algebras.Comment. Math. Univ. Carol.595-612 (1968),9, 4. MR 0262129; reference:[3] Bukovský L., Recław I., Repický M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions.Topology Appl.\toappear.; reference:[4] Cichoń J., Pawlikowski J.: On ideals of subsets of the plane and on Cohen real.J. Symb. Logic 560-569 (1986),51, 3. MR 0853839; reference:[5] Fremlin D. H.: Cichoń's diagram.Publ. Math. Univ. Pierre Marie Curie 66 Semin. Initiation Anal. 23eme Anee-1983/84 Exp. No. 5, 13p.(1984). Zbl 0559.03029; reference:[6] Ihoda J., Shelah S.: The Lebesgue measure and the Baire property: Laver's reals, preservation theorem for forcing, completing a chart of Kunen-Miller.preprint.; reference:[7] Jech T.: Set Theory.Academic Press, 1978. Zbl 1007.03002, MR 0506523; reference:[8] Kamburelis A.: Iterations of Boolean algebras with measure.Arch. Math. Logic21-28 (1989),29. Zbl 0687.03032, MR 1022984; reference:[9] Krawczyk A.: $B(m)+A(c)\nrightarrow A(m)$.preprint.; reference:[10] Miller A. W.: Some properties of measure and category.Trans. Amer. Math. Soc.93-114 (1981), 266. Zbl 0472.03040, MR 0613787; reference:[11] Raisonier J., Stern J.: The strength of measurability hypothesis.Israel J. Math.337-349 (1985),50, 4. MR 0800191; reference:[12] Repický M.: Porous sets and additivity of Lebesgue measure.Real Analysis Exchange, 1989-1990. MR 1042544; reference:[13] Truss J.K.: Sets having caliber $\aleph_1$.Proc. Logic Colloquium `76, Studies in Logic 595-612 (1977),87. MR 0476513