-
1Academic Journal
المؤلفون: Zhang, Guang-Jun, Zhang, Xiao-Dong
مصطلحات موضوعية: keyword:first Dirichlet eigenvalue, keyword:bicyclic graph, keyword:degree sequence, msc:05C35, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR2990185; zbl:Zbl 1265.05429; reference:[1] koğlu, T. Bıyı, Leydold, J.: Faber-Krahn type inequalities for trees.J. Comb. Theory, Ser. B 97 (2007), 159-174. MR 2290318, 10.1016/j.jctb.2006.04.005; reference:[2] Friedman, J.: Some geometric aspects of graphs and their eigenfunctions.Duke Math. J. 69 (1993), 487-525. Zbl 0785.05066, MR 1208809, 10.1215/S0012-7094-93-06921-9; reference:[3] Leydold, J.: The geometry of regular trees with the Faber-Krahn property.Discrete Math. 245 (2002), 155-172. Zbl 0999.05016, MR 1887936, 10.1016/S0012-365X(01)00139-X; reference:[4] Pruss, A. R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees.Duke Math. J. 91 (1998), 463-514. Zbl 0943.05056, MR 1604163, 10.1215/S0012-7094-98-09119-0; reference:[5] Zhang, G. J., Zhang, J., Zhang, X. D.: Faber-Krahn Type Inequality for Unicyclic Graphs.Linear and Multilinear Algebra, DOI:10.1080/03081087.2011.651722. 10.1080/03081087.2011.651722; reference:[6] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences.Discrete Math. 308 (2008), 3143-3150. Zbl 1156.05038, MR 2423396, 10.1016/j.disc.2007.06.017; reference:[7] Zhang, X. D.: The signless Laplacian spectral radius of graphs with given degree sequences.Discrete Appl. Math. 157 (2009), 2928-2937. Zbl 1213.05153, MR 2537494, 10.1016/j.dam.2009.02.022