يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"keyword:finite difference method"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Academic Journal

    المؤلفون: Luo, Yuesheng, Xing, Ruixue, Li, Xiaole

    وصف الملف: application/pdf

    Relation: mr:MR4299883; zbl:07396176; reference:[1] Brango, C. Banquet: The symmetric regularized-long-wave equation: Well-posedness and nonlinear stability.Physica D 241 (2012), 125-133. Zbl 1252.35130, 10.1016/j.physd.2011.10.007; reference:[2] Bhardwaj, D., Shankar, R.: A computational method for regularized long wave equation.Comput. Math. Appl. 40 (2000), 1397-1404. Zbl 0965.65108, MR 1803919, 10.1016/S0898-1221(00)00248-0; reference:[3] Bhowmik, S. K., Karakoc, S. B. G.: Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method.Numer. Methods Partial Differ. Equations 35 (2019), 2236-2257. Zbl 1431.65169, MR 4022940, 10.1002/num.22410; reference:[4] Cai, J.: Multisymplectic numerical method for the regularized long-wave equation.Comput. Phys. Commun. 180 (2009), 1821-1831. Zbl 1197.65144, MR 2678455, 10.1016/j.cpc.2009.05.009; reference:[5] Chegini, N. G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines.Nonlinear Dyn. 69 (2012), 459-471. Zbl 1258.65076, MR 2929885, 10.1007/s11071-011-0277-y; reference:[6] Chertovskih, R., Chian, A. C.-L., Podvigina, O., Rempel, E. L., Zheligovsky, V.: Existence, uniqueness, and analyticity of space-periodic solutions to the regularized long-wave equation.Adv. Differ. Equ. 19 (2014), 725-754. Zbl 1292.35227, MR 3252900; reference:[7] Dogan, A.: Numerical solution of RLW equation using linear finite elements within Galerkin's method.Appl. Math. Modelling 26 (2002), 771-783. Zbl 1016.76046, 10.1016/S0307-904X(01)00084-1; reference:[8] Eilbeck, J. C., McGuire, G. R.: Numerical study of the regularized long-wave equation. I: Numerical methods.J. Comput. Phys. 19 (1975), 43-57. Zbl 0325.65054, MR 0400907, 10.1016/0021-9991(75)90115-1; reference:[9] Fang, S., Guo, B., Qiu, H.: The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations.Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 61-68. Zbl 1221.35362, MR 2458711, 10.1016/j.cnsns.2007.07.001; reference:[10] Gardner, L. R. T., Gardner, G. A., Dag, I.: A $B$-spline finite element method for the regularized long wave equation.Commun. Numer. Methods Eng. 11 (1995), 59-68. Zbl 0819.65125, MR 1312879, 10.1002/cnm.1640110109; reference:[11] Guo, L., Chen, H.: $H^1$-Galerkin mixed finite element method for the regularized long wave equation.Computing 77 (2006), 205-221. Zbl 1098.65096, MR 2214448, 10.1007/s00607-005-0158-7; reference:[12] Guo, B., Shang, Y.: Approximate inertial manifolds to the generalized symmetric regularized long wave equations with damping term.Acta Math. Appl. Sin., Engl. Ser. 19 (2003), 191-204. Zbl 1059.35105, MR 2011482, 10.1007/s10255-003-0095-1; reference:[13] Hammad, D. A., El-Azab, M. S.: Chebyshev-Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation.Appl. Math. Comput. 285 (2016), 228-240. Zbl 1410.65395, MR 3494425, 10.1016/j.amc.2016.03.033; reference:[14] Hu, J., Zheng, K.: Two conservative difference schemes for the generalized Rosenau equation.Bound. Value Probl. 2010 (2010), Article ID 543503, 18 pages. Zbl 1187.65090, MR 2600713, 10.1155/2010/543503; reference:[15] Irk, D., Keskin, P.: Quadratic trigonometric $B$-spline Galerkin methods for the regularized long wave equation.J. Appl. Anal. Comput. 7 (2017), 617-631. MR 3602441, 10.11948/2017038; reference:[16] Irk, D., Yildiz, P. Keskin, Görgülü, M. Zorşahin: Quartic trigonometric $B$-spline algorithm for numerical solution of the regularized long wave equation.Turk. J. Math. 43 (2019), 112-125. Zbl 1417.65172, MR 3909279, 10.3906/mat-1804-55; reference:[17] Karakoc, S. B. G., Yagmurlu, N. M., Ucar, Y.: Numerical approximation to a solution of the modified regularized long wave equation using quintic $B$-splines.Bound. Value Probl. 2013 (2013), Article ID 27, 17 pages. Zbl 1284.65142, MR 3110753, 10.1186/1687-2770-2013-27; reference:[18] Kumar, R., Baskar, S.: $B$-spline quasi-interpolation based numerical methods for some Sobolev type equations.J. Comput. Appl. Math. 292 (2016), 41-66. Zbl 1329.65236, MR 3392380, 10.1016/j.cam.2015.06.015; reference:[19] Lin, B.: A nonpolynomial spline scheme for the generalized regularized long wave equation.Stud. Appl. Math. 132 (2014), 160-182. Zbl 1291.65302, MR 3167092, 10.1111/sapm.12022; reference:[20] Lin, B.: Parametric spline solution of the regularized long wave equation.Appl. Math. Comput. 243 (2014), 358-367. Zbl 1336.65176, MR 3244483, 10.1016/j.amc.2014.05.133; reference:[21] Lin, B.: Non-polynomial splines method for numerical solutions of the regularized long wave equation.Int. J. Comput. Math. 92 (2015), 1591-1607. Zbl 1317.65054, MR 3340634, 10.1080/00207160.2014.950254; reference:[22] Luo, Y., Li, X., Guo, C.: Fourth-order compact and energy conservative scheme for solving nonlinear Klein-Gordon equation.Numer. Methods Partial Differ. Equations 33 (2017), 1283-1304. Zbl 1377.65119, MR 3652187, 10.1002/num.22143; reference:[23] Oruç, Ö., Bulut, F., Esen, A.: Numerical solutions of regularized long wave equation by Haar wavelet method.Mediterr. J. Math. 13 (2016), 3235-3253. Zbl 1354.65194, MR 3554305, 10.1007/s00009-016-0682-z; reference:[24] Peregrine, D. H.: Calculations of the development of an undular bore.J. Fluid Mech. 25 (1966), 321-330. 10.1017/S0022112066001678; reference:[25] Peregrine, D. H.: Long waves on a beach.J. Fluid Mech. 27 (1967), 815-827. Zbl 0163.21105, 10.1017/S0022112067002605; reference:[26] Pindza, E., Maré, E.: Solving the generalized regularized long wave equation using a distributed approximating functional method.Int. J. Comput. Math. 2014 (2014), Article ID 178024, 12 pages. 10.1155/2014/178024; reference:[27] Raslan, K. R.: A computational method for the regularized long wave (RLW) equation.Appl. Math. Comput. 167 (2005), 1101-1118. Zbl 1082.65582, MR 2169754, 10.1016/j.amc.2004.06.130; reference:[28] Rouatbi, A., Achouri, T., Omrani, K.: High-order conservative difference scheme for a model of nonlinear dispersive equations.Comput. Appl. Math. 37 (2018), 4169-4195. Zbl 1402.65090, MR 3848530, 10.1007/s40314-017-0567-1; reference:[29] Salih, H., Tawfiq, L. N. M., Yahya, Z. R., Zin, S. Mat: Solving modified regularized long wave equation using collocation method.J. Phys., Conf. Ser. 1003 (2018), Article ID 012062, 9 pages. 10.1088/1742-6596/1003/1/012062; reference:[30] Shang, Y., Guo, B.: Exponential attractor for the generalized symmetric regularized long wave equation with damping term.Appl. Math. Mech., Engl. Ed. 26 (2005), 283-291. Zbl 1144.76304, MR 2132120, 10.1007/BF02440077; reference:[31] Shao, X., Xue, G., Li, C.: A conservative weighted finite difference scheme for regularized long wave equation.Appl. Math. Comput. 219 (2013), 9202-9209. Zbl 1288.65125, MR 3047814, 10.1016/j.amc.2013.03.068; reference:[32] Soliman, A. A.: Numerical scheme based on similarity reductions for the regularized long wave equation.Int. J. Comput. Math. 81 (2004), 1281-1288. Zbl 1063.65086, MR 2173459, 10.1080/00207160412331272135; reference:[33] Wang, B., Sun, T., Liang, D.: The conservative and fourth-order compact finite difference schemes for regularized long wave equation.J. Comput. Appl. Math. 356 (2019), 98-117. Zbl 1419.65033, MR 3915392, 10.1016/j.cam.2019.01.036; reference:[34] Xie, S., Kim, S., Woo, G., Yi, S.: A numerical method for the generalized regularized long wave equation using a reproducing kernel function.SIAM J. Sci. Comput. 30 (2008), 2263-2285. Zbl 1181.65125, MR 2429465, 10.1137/070683623; reference:[35] Yan, J., Lai, M.-C., Li, Z., Zhang, Z.: New conservative finite volume element schemes for the modified regularized long wave equation.Adv. Appl. Math. Mech. 9 (2017), 250-271. MR 3598526, 10.4208/aamm.2014.m888; reference:[36] Zhang, L.: A finite difference scheme for generalized regularized long-wave equation.Appl. Math. Comput. 168 (2005), 962-972. Zbl 1080.65079, MR 2171754, 10.1016/j.amc.2004.09.027; reference:[37] Zheng, K., Hu, J.: High-order conservative Crank-Nicolson scheme for regularized long wave equation.Adv. Difference Equ. 2013 (2013), Article ID 287, 12 pages. Zbl 1444.65051, MR 3337283, 10.1186/1687-1847-2013-287; reference:[38] Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method.International Academic Publishers, Beijing (1991). Zbl 0732.65080, MR 1133399

  3. 3
    Conference
  4. 4
    Conference
  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3833660; zbl:Zbl 06945732; reference:[1] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2003). Zbl 1038.65058, MR 1997488, 10.1093/acprof:oso/9780198506546.001.0001; reference:[2] Capasso, V.: Mathematical Structures of Epidemic Systems.Lecture Notes in Biomathematics 97, Springer, Berlin (2008). Zbl 1141.92035, MR 2722340, 10.1007/978-3-540-70514-7; reference:[3] ECDC: Communicable Disease Threats Report Week 46, 12-18 November 2017.Available at: https://ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-12-18-november-2017-week-46.; reference:[4] Faragó, I., Horváth, R.: Discrete maximum principle and adequate discretizations of linear parabolic problems.SIAM J. Sci. Comput. 28 (2006), 2313-2336. Zbl 1130.65086, MR 2272263, 10.1137/050627241; reference:[5] Faragó, I., Horváth, R.: Continuous and discrete parabolic operators and their qualitative properties.IMA J. Numer. Anal. 29 (2009), 606-631. Zbl 1176.65087, MR 2520161, 10.1093/imanum/drn032; reference:[6] Hethcote, H. W., Stech, H. W., Driessche, P. van den: Periodicity and stability in epidemic models: a survey.Differential Equations and Applications in Ecology, Epidemics, and Population Problems S. Busenberg, K. L. Cooke Academic Press, New York (1981), 65-82. Zbl 0477.92014, MR 0645190; reference:[7] Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics.Proc. R. Soc. Lond., Ser. A 115 (1927), 700-721. Zbl 53.0517.01, 10.1098/rspa.1927.0118; reference:[8] Mandal, S., Sarkar, R. R., Sinha, S.: Mathematical models of malaria---a review.Malaria Journal 10 (2011). MR 2756727, 10.1186/1475-2875-10-202; reference:[9] Ross, R.: The Prevention of Malaria.John Murray, London (1911).; reference:[10] Ruan, S., Xiao, D., Beier, J. C.: On the delayed Ross-Macdonald model for malaria transmission.Bull. Math. Biol. 70 (2008), 1098-1114. Zbl 1142.92040, MR 2391181, 10.1007/s11538-007-9292-z; reference:[11] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences.Texts in Applied Mathematics 57, Springer, New York (2011). Zbl 1227.34001, MR 2724792, 10.1007/978-1-4419-7646-8; reference:[12] WHO.malaria: Available at: http://www.who.int/en/news-room/fact-sheets/de-tail/malaria.

  6. 6
    Conference
  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3083523; zbl:Zbl 06221240; reference:[1] Allen, E. J., Novosel, S. J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations.Stochastics Stochastics Rep. 64 (1998), 117-142. Zbl 0907.65147, MR 1637047, 10.1080/17442509808834159; reference:[2] Ames, W. F.: Numerical Methods for Partial Differential Equations. 3. ed. Computer Science and Scientific Computing.Academic Press Boston (1992). MR 1184394; reference:[3] Campbell, L. J., Yin, B.: On the stability of alternating-direction explicit methods for advection-diffusion equations.Numer. Methods Partial Differ. Equations 23 (2007), 1429-1444. Zbl 1129.65058, MR 2355168, 10.1002/num.20233; reference:[4] Davie, A. M., Gaines, J. G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations.Math. Comput. 70 (2001), 121-134. Zbl 0956.60064, MR 1803132, 10.1090/S0025-5718-00-01224-2; reference:[5] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations.SIAM Rev. 43 (2001), 525-546. Zbl 0979.65007, MR 1872387, 10.1137/S0036144500378302; reference:[6] Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics 23.Springer Berlin (1992). MR 1214374; reference:[7] Komori, Y., Mitsui, T.: Stable ROW-type weak scheme for stochastic differential equations.Monte Carlo Methods Appl. 1 (1995), 279-300. Zbl 0938.65535, MR 1368807, 10.1515/mcma.1995.1.4.279; reference:[8] Liu, S. L.: Stable explicit difference approximations to parabolic partial differential equations.AIChE J. 15 (1969), 334-338. 10.1002/aic.690150308; reference:[9] McDonald, S.: Finite difference approximation for linear stochastic partial differential equation with method of lines.MPRA Paper No. 3983 (2006), \\http://mpra.ub.uni-muenchen.de/3983.; reference:[10] Milstein, G. N.: Numerical Integration of Stochastic Differential Equations. Transl. from the Russian. Mathematics and its Applications 313.Kluwer Academic Publishers Dordrecht (1994). MR 1335454; reference:[11] Rößler, A.: Stochastic Taylor expansions for the expectation of functionals of diffusion processes.Stochastic Anal. Appl. 22 (2004), 1553-1576. Zbl 1065.60068, MR 2095070, 10.1081/SAP-200029495; reference:[12] Rößler, A., Seaïd, M., Zahri, M.: Method of lines for stochastic boundary-value problems with additive noise.Appl. Math. Comput. 199 (2008), 301-314. Zbl 1142.65007, MR 2415825, 10.1016/j.amc.2007.09.062; reference:[13] Roth, C.: Difference methods for stochastic partial differential equations.Z. Angew. Math. Mech. 82 (2002), 821-830. Zbl 1010.60057, MR 1944425, 10.1002/1521-4001(200211)82:11/123.0.CO;2-L; reference:[14] Roth, C.: Approximations of Solution of a First Order Stochastic Partial Differential Equation, Report.Institut Optimierung und Stochastik, Universität Halle-Wittenberg Halle (1989).; reference:[15] Saul'yev, V. K.: Integration of Equations of Parabolic Type by the Method of Nets. Translated by G. J. Tee. International Series of Monographs in Pure and Applied Mathematics Vol. 54.K.L. Stewart Pergamon Press Oxford (1964). MR 0197994; reference:[16] Saul'yev, V. K.: On a method of numerical integration of a diffusion equation.Dokl. Akad. Nauk SSSR 115 (1957), 1077-1080. MR 0142205; reference:[17] Soheili, A. R., Niasar, M. B., Arezoomandan, M.: Approximation of stochastic parabolic differential equations with two different finite difference schemes.Bull. Iran. Math. Soc. 37 (2011), 61-83. Zbl 1260.60124, MR 2890579; reference:[18] Strikwerda, J. C.: Finite difference schemes and partial differential equations. 2nd ed.Society for Industrial and Applied Mathematics Philadelphia (2004). Zbl 1071.65118, MR 2124284; reference:[19] Thomas, J. W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics 22.Springer New York (1995). MR 1367964, 10.1007/978-1-4899-7278-1_7

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2985552; zbl:Zbl 1249.35153; reference:[1] Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equation and nucleation.IMA J. Appl. Math. (1992), 48 249-264. MR 1167735, 10.1093/imamat/48.3.249; reference:[2] Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall. (1979), 27 1084-1095.; reference:[3] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system {III}. Nucleation of a two-component incompressible fluid.J. Chem. Phys. (1959), 31 688-699. 10.1063/1.1730447; reference:[4] Taylor, J. E., Cahn, J. W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows.J. Statist. Phys. (1994), 77 183-197. Zbl 0844.35044, MR 1300532, 10.1007/BF02186838; reference:[5] Bronsard, L., Kohn, R.: Motion by mean curvature as the singular limit of Ginzburg-{L}andau dynamics.J. Differential Equations (1991), 90 211-237. Zbl 0735.35072, MR 1101239, 10.1016/0022-0396(91)90147-2; reference:[6] Bronsard, L., Stoth, B.: Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-{L}andau equation.SIAM J. Math. Anal. (1997), 28 769-807. Zbl 0874.35009, MR 1453306, 10.1137/S0036141094279279; reference:[7] Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow.Appl. Math., Praha (2003), 48 437-453. Zbl 1099.53044, MR 2025297, 10.1023/B:APOM.0000024485.24886.b9; reference:[8] Beneš, M.: Mathematical and computational aspects of solidification of pure substances.Acta Math. Univ. Comenian. (2001), 70 123-152. Zbl 0990.80006, MR 1865364

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2663598; zbl:Zbl 1198.68266; reference:[1] Bornemann, F., Deuflhard, P.: Cascadic multigrid methods.In: Domain Decomposition Methods in Sciences and Engineering (R. Glowinski, J. Periaux, Z. Shi, and O. Widlund, eds.), John Wiley, New York 1997, pp. 205–212. MR 1943461; reference:[2] Breuß, M., Vogel, O., Weickert, J.: Efficient numerical techniques for perspective shape from shading.In: Proc. Algoritmy 2009, Podbanské 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševcovič, eds.), Slovak University of Technology, Bratislava 2009, pp. 11–20.; reference:[3] Camilli, F., Prados, E.: Shape-from-Shading with discontinuous image brightness.Appl. Numer. Math. 56 (2006), 9, 1225–1237. Zbl 1096.65059, MR 2244973, 10.1016/j.apnum.2006.03.007; reference:[4] Courteille, F., Crouzil, A., Durou, J.-D, Gurdjos, P.: Towards shape from shading under realistic photographic conditions.In: Proc. 17th Internat. Conf. Patt. Recog. (vol. II), Cambridge 2004, pp. 277–280.; reference:[5] Cristiani, E.: Fast Marching and Semi-Lagrangian Methods for Hamilton–Jacobi Equations with Applications.Ph.D. Thesis, Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Rome 2007.; reference:[6] Cristiani, E., Falcone, M., Seghini, A.: Numerical solution of the perspective Shape-from-Shading problem.In: Proc. Control Systems: Theory, Numerics and Applications, Rome 2005. Proceedings of Science (CSTNA2005) 008, http://pos.sissa.it/; reference:[7] Cristiani, E., Falcone, M., Seghini, A.: Some remarks on perspective Shape-from-Shading models.In: Proc. 1st Internat. Conf. Scale Space and Variational Methods in Comput. Vis., Ischia 2007 (F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Comput. Sci. 4485), Springer, Berlin 2008, pp. 276–287.; reference:[8] Durou, J.-D., Falcone, M., Sagona, M.: Numerical methods for Shape-from-Shading: A new survey with nenchmarks.Comp. Vis. and Image Underst. 109 (2008), 1, 22–43. 10.1016/j.cviu.2007.09.003; reference:[9] Falcone, M., Ferretti, R.: Semi–Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods.J. Comput. Phys. 175 (2002), 2, 559–575. Zbl 1007.65060, MR 1880118, 10.1006/jcph.2001.6954; reference:[10] Foley, J. D., Dam, A. van, Feiner, S. K., Hughes, J. F.: Computer Graphics: Principles and Practice.Addison–Wesley, Reading 1996.; reference:[11] Hoppe, R. H. W.: Multigrid methods for Hamilton–Jacobi–Bellman equations.Numer. Math. 49 (1986), 2-3, 239–254. MR 0848524, 10.1007/BF01389627; reference:[12] Horn, B. K. P.: Obtaining shape from shading information.In: The Psychology of Computer Vision (P. H. Winston, ed.), McGraw-Hill, New York 1975, Ch. 4, pp. 115–155. MR 0416135; reference:[13] Horn, B. K. P.: Robot Vision.MIT Press, Cambridge Mass. 1986.; reference:[14] Horn, B. K. P., Brooks, M. J.: Shape from Shading.Artificial Intelligence Series, MIT Press, Cambridge Mass.1989. Zbl 0629.65125, MR 1062877; reference:[15] Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by Shape from Shading Technique for a point light source at the projection center.Comp. Vis. and Image Underst. 66 (1997), 2, 119–131. 10.1006/cviu.1997.0613; reference:[16] Prados, E., Faugeras, O.: “Perspective Shape from Shading” and viscosity solutions.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 826–831.; reference:[17] Prados, E., Faugeras, O.: Unifying approaches and removing unrealistic assumptions in Shape From Shading: Mathematics can help.In: Proc. 8th Eur. Conf. Comp. Vis. (vol. IV), Prague 2004, Lecture Notes in Comp. Sci.3024, pp. 141–154. Zbl 1098.68844; reference:[18] Prados, E., Camilli, F., Faugeras, O.: A unifying and rigorous shape from shading method adapted to realistic data and applications.J. Math. Imag. and Vis. 25 (2006), 3, 307–328. MR 2283609, 10.1007/s10851-006-6899-x; reference:[19] Prados, E., Camilli, F., Faugeras, O.: A viscosity solution method for shape-from-shading without image boundary data.M2AN Math. Model. Numer. Anal. 40 (2006), 2, 393–412. Zbl 1112.49025, MR 2241829, 10.1051/m2an:2006018; reference:[20] Rosenfeld, A.: Multiresolution Image Processing and Analysis.Springer, Berlin 1984. Zbl 0537.68086; reference:[21] Rouy, E., Tourin, A.: A Viscosity solutions approach to Shape-from-Shading.SIAM J. Numer. Anal. 29 (1992), 3, 867–884. Zbl 0754.65069, MR 1163361, 10.1137/0729053; reference:[22] Tankus, A., Sochen, N., Yeshurun, Y.: A new perspective [on] Shape-from-Shading.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 862–869.; reference:[23] Vogel, O., Breuß, M., Weickert, J.: A direct numerical approach to perspective Shape-from-Shading.In: Proc. Vision, Modeling, and Visualization Workshop 2007, Saarbrücken 2007 (H. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, eds.), pp. 91–100.; reference:[24] Zhang, R., Tsai, P.-S., Cryer, J. E., Shah, M.: Shape from Shading: A survey.IEEE Trans. Patt. Anal. Mach. Intell. 21 (1999), 8, 690–706. 10.1109/34.784284; reference:[25] Zhao, H.: A fast sweeping method for eikonal equations.Math. Comp. 74 (2004), 250, 603–627. Zbl 1070.65113, MR 2114640, 10.1090/S0025-5718-04-01678-3

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2405056; zbl:Zbl 1145.93047; reference:[1] Daum F. E.: New exact nonlinear filters.In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988, pp. 199–226; reference:[2] Higham D. J., Kloeden P. E.: Maple and Matlab for Stochastic Differential Equations in Finance.Technical Report. University of Strathclyde 2001; reference:[3] Chang J. S., Cooper G.: A practical difference scheme for Fokker–Planck equations.J. Comput. Phys. 6 (1970), 1–16 Zbl 0221.65153; reference:[4] Moral P. del, Jacod J.: Interacting particle filtering with discrete observations.In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas, and N. Gordon, eds.), Springer-Verlag, New York 2001, pp. 43–75 MR 1847786; reference:[5] Jazwinski A. H.: Stochastic Processes and Filtering Theory.Academic Press, New York 1970 Zbl 0203.50101; reference:[6] Kalman R. E., Bucy R. S.: New results in linear filtering and prediction theory.J. Basic Engrg. 83 (1961), 95–108 MR 0234760; reference:[7] Kouritzin M. A.: On exact filters for continuous signals with discrete observations.IEEE Trans. Automat. Control 43 (1998), 709–715 Zbl 0908.93064, MR 1618075; reference:[8] Kushner H. J., Budhijara A. S.: A nonlinear filtering algorithm based on an approximation of the conditional distribution.IEEE Trans. Automat. Control 45 (2000), 580–585 MR 1762882; reference:[9] LeVeque R. J.: Finite Volume Methods for Hyperbolic Problems.Cambridge University Press, New York 2002 Zbl 1010.65040, MR 1925043; reference:[10] Lototsky S. V., Rozovskii B. L.: Recursive nonlinear filter for a continuous-discrete time model: Separation of parameters and observations.IEEE Trans. Automat. Control 43 (1998), 1154–1158 Zbl 0957.93085, MR 1636479; reference:[11] Mirkovic D.: $N$-dimensional Finite Element Package.Technical Report. Department of Mathematics, Iowa State University 1996; reference:[12] Park B. T., Petrosian V.: Fokker–Planck equations of stochastic acceleration: A study of numerical methods.Astrophys. J., Suppl. Ser. 103 (1996), 255–267; reference:[13] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T.: Numerical Recipes.Cambridge University Press, New York 1986 Zbl 1132.65001, MR 0833288; reference:[14] Risken H.: The Fokker–Planck Equation.Springer–Verlag, Berlin 1984 Zbl 0866.60071, MR 0749386; reference:[15] Schmidt G. C.: Designing nonlinear filters based on Daum’s theory.J. Guidance, Control and Dynamics 16 (1993), 371–376 Zbl 0775.93283; reference:[16] Sorenson H. W., Alspach D. L.: Recursive Bayesian estimation using Gaussian sums.Automatica 7 (1971), 465–479 Zbl 0219.93020, MR 0321581; reference:[17] Spencer B. F., Bergman L. A.: On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems.Nonlinear Dynamics 4 (1993), 357–372; reference:[18] Spencer B. F., Wojtkiewicz S. F., Bergman L. A.: Some experiments with massively parallel computation for Monte Carlo simulation of stochastic dynamical systems.In: Proc. Second Internat. Conference on Computational Stochastic Mechanics, Athens 1994; reference:[19] Šimandl M., Švácha J.: Nonlinear filters for continuous-time processes.In: Proc. 5th Internat. Conference on Process Control, Kouty nad Desnou 2002; reference:[20] Šimandl M., Královec J.: Filtering, prediction and smoothing with Gaussian sum Rrpresentation.In: Proc. Symposium on System Identification. Santa Barbara 2000; reference:[21] Šimandl M., Královec, J., Söderström T.: Anticipative grid design in point-mass approach to nonlinear state estimation.IEEE Trans. Automat. Control 47 (2002), 699–702 MR 1893533; reference:[22] Šimandl M., Královec, J., Söderström T.: Advanced point–mass method for nonlinear state estimation.Automatica 42 (2006), 1133–1145 Zbl 1118.93052; reference:[23] Šimandl M., Švácha J.: Separation approach for numerical solution of the Fokker–Planck equation in estimation problem.In: Preprints of 16th IFAC World Congress. Prague 2005; reference:[24] Zhang D. S., Wei G. W., Kouri D. J., Hoffman D. K.: Numerical method for the nonlinear Fokker–Planck equation.Amer. Physical Society 56 (1997), 1197–1206; reference:[25] Zorzano M. P., Mais, H., Vazquez L.: Numerical solution for Fokker–Planck equations in accelerators.Phys. D: Nonlinear Phenomena 113 (1998), 379–381 Zbl 0962.82055

  11. 11
    Academic Journal

    المؤلفون: Dinh, Ta Van

    وصف الملف: application/pdf

    Relation: mr:MR0879326; zbl:Zbl 0629.65109; reference:[1] Г. И. Марчук В. В. Шайдуров: Повышение точности решений разностных схем.Москва, Наука, 1979. Zbl 1225.01075; reference:[2] О. А. Ладыженская H. H. Уралъцева: Линейные и квазилинейные уравнения эллиптического типа.Москва, Наука, 1973. Zbl 1221.53041

  12. 12
    Academic Journal

    المؤلفون: Roubíček, Tomáš

    وصف الملف: application/pdf

    Relation: mr:MR0695181; zbl:Zbl 0538.65032; reference:[1] I. Babuška M.Práger, E. Vitásek: Numerical Processes in Differential Equations.SNTL, Prague, 1966. Zbl 0156.16003, MR 0223101; reference:[2] B. L. Ehle: A-stable Methods and Pade Approximations to the Exponential.SIAM J. Math. Anal., Vol. 4 (1973), No. 4, pp. 671-680. Zbl 0236.65016, MR 0331787, 10.1137/0504057; reference:[3] A. Iserles: On the A-acceptability of Pade Approximations.SIAM J. Math. Anal., Vol. 10 (1979), No. 5, pp. 1002-1007. Zbl 0441.41010, MR 0541096, 10.1137/0510091; reference:[4] E. Hille, R. S. Phillips: Functional Analysis and Semi-groups.Amer. Math. Soc., Vol. 31., rev. ed., Waverly Press, Baltimore, 1957. MR 0089373