يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"keyword:exponentially separable space"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Tkachuk, Vladimir V.

    وصف الملف: application/pdf

    Relation: mr:MR4542797; zbl:Zbl 07655808; reference:[1] Engelking R.: General Topology.Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[2] Galvin F.: Problem 6444.Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434. MR 1540672; reference:[3] Gruenhage G., Tkachuk V. V., Wilson R. G.: Domination by small sets versus density.Topology Appl. 282 (2020), 107306, 10 pages. MR 4116835, 10.1016/j.topol.2020.107306; reference:[4] Juhász I., van Mill J.: Countably compact spaces all countable subsets of which are scattered.Comment. Math. Univ. Carolin. 22 (1981), no. 4, 851–855. MR 0647031; reference:[5] Levy R., Matveev M.: Functional separability.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711. Zbl 1224.54063, MR 2858271; reference:[6] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5; reference:[7] Pelczyński A., Semadeni Z.: Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806, 10.4064/sm-18-2-211-222; reference:[8] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7; reference:[9] Tkachuk V. V.: A $C_p$-Theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. MR 3024898; reference:[10] Tkachuk V. V.: A $C_p$-Theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753; reference:[11] Tkachuk V. V.: A $C_p$-Theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185; reference:[12] Tkachuk V. V.: A nice subclass of functionally countable spaces.Comment. Math. Univ. Carolin. 59 (2018), no. 3, 399–409. MR 3861562; reference:[13] Tkachuk V. V.: Exponential domination in function spaces.Comment. Math. Univ. Carolin. 61 (2020), no. 3, 397–408. MR 4186115; reference:[14] Tkachuk V. V.: Some applications of discrete selectivity and Banakh property in function spaces.Eur. J. Math. 6 (2020), no. 1, 88–97. MR 4071459, 10.1007/s40879-019-00342-7; reference:[15] Tkachuk V. V.: Some applications of exponentially separable spaces.Quaest. Math. 43 (2020), no. 10, 1391–1403. MR 4175405, 10.2989/16073606.2019.1623934; reference:[16] Tkachuk V. V.: The extent of a weakly exponentially separable space can be arbitrarily large.Houston J. Math. 46 (2020), no. 3, 809–819. MR 4229084; reference:[17] Vaughan J. E.: Countably compact and sequentially compact spaces.Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, pages 569–602. Zbl 0562.54031, MR 0776631

  2. 2
    Academic Journal

    المؤلفون: Tkachuk, Vladimir V.

    وصف الملف: application/pdf

    Relation: mr:MR3861562; zbl:Zbl 06940880; reference:[1] Engelking R.: General Topology.Mathematical Monographs, 60, Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780; reference:[2] Kannan V., Rajagopalan M.: Scattered spaces II.Illinois J. Math. 21 (1977), no. 4, 735–751. MR 0474180; reference:[3] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5; reference:[4] Mrówka S.: Some set-theoretic constructions in topology.Fund. Math. 94 (1977), no. 2, 83–92. MR 0433388, 10.4064/fm-94-2-83-92; reference:[5] Rojas-Hernández R., Tkachuk V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces.J. Math. Anal. Appl. 412 (2014), no. 1, 125–137. MR 3145787, 10.1016/j.jmaa.2013.10.043; reference:[6] Sokolov G. A.: Lindelöf spaces of continuous functions.Matem. Zametki 39 (1986), no. 6, 887–894, 943 (Russian). MR 0855936; reference:[7] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), no. 3, 193–223. MR 0380708, 10.4064/fm-88-3-193-223; reference:[8] Tkachuk V. V.: A nice class extracted from $C_p$-theory.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513. MR 2174528; reference:[9] Tkachuk V. V.: A $C_p$-theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. Zbl 1222.54002, MR 3024898; reference:[10] Tkachuk V. V.: A $C_p$-theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753; reference:[11] Tkachuk V. V.: A $C_p$-theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185; reference:[12] Tkachuk V. V.: Lindelöf $P$-spaces need not be Sokolov.Math. Slovaca 67 (2017), no. 1, 227–234. MR 3630168, 10.1515/ms-2016-0262; reference:[13] Uspenskij V. V.: On the spectrum of frequencies of function spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 1, 31–35 (Russian. English summary). MR 0650600