-
1Academic Journal
المؤلفون: Benchohra, M., Ntouyas, S. K.
مصطلحات موضوعية: keyword:initial value problems, keyword:convex multivalued map, keyword:mild solution, keyword:evolution inclusion, keyword:nonlocal condition, keyword:fixed point, msc:34A60, msc:34G20, msc:34G25, msc:34K30, msc:35R10, msc:45J05, msc:47H20, msc:47N20
وصف الملف: application/pdf
Relation: mr:MR1942647; zbl:Zbl 1017.34061; reference:[1] K. Balachandran, M. Chandrasekaran: Existence of solutions of a delay differential equation with nonlocal condition.Indian J. Pure Appl. Math. 27 (1996), 443–449. MR 1387239; reference:[2] J. Banas, K. Goebel: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. MR 0591679; reference:[3] M. Benchohra, S. K. Ntouyas: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal conditions.Dynam. Systems Appl. 9 (2000), 405–412. MR 1844640; reference:[4] L. Byszewski: Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem.Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1993), 109–112. MR 1274697; reference:[5] L. Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494–505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U; reference:[6] K. Deimling: Multivalued Differential Equations.Walter de Gruyter, Berlin, 1992. Zbl 0820.34009, MR 1189795; reference:[7] H. O. Fattorini: Ordinary differential equations in linear topological spaces, I.J. Differ. Equations 5 (1968), 72–105. MR 0277860; reference:[8] H. O. Fattorini: Ordinary differential equations in linear topological spaces, II.J. Differ. Equations 6 (1969), 50–70. MR 0277861, 10.1016/0022-0396(69)90117-X; reference:[9] J. A. Goldstein: Semigroups of Linear Operators and Applications.Oxford Univ. Press, New York, 1985. Zbl 0592.47034, MR 0790497; reference:[10] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker, New York, 1994. MR 1280028; reference:[11] Sh. Hu, N. Papageorgiou: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775; reference:[12] A. Lasota, Z. Opial: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178; reference:[13] M. Martelli: A Rothe’s type theorem for non-compact acyclic-valued map.Boll. Un. Mat. Ital. 4 (1975), 70–76. MR 0394752; reference:[14] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), 679–687. MR 1453198, 10.1006/jmaa.1997.5425; reference:[15] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions.Appl. Anal. 67 (1997), 245–257. MR 1614061, 10.1080/00036819708840609; reference:[16] S. K. Ntouyas: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions.Dynam. Systems. Appl. 7 (1998), 415–426. Zbl 0914.35148, MR 1639604; reference:[17] C. C. Travis, G. F. Webb: Second order differential equations in Banach spaces.Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 331–361. MR 0502551; reference:[18] C. C. Travis, G. F. Webb: Cosine families and abstract nonlinear second order differential equations.Acta Math. Hung. 32 (1978), 75–96. MR 0499581, 10.1007/BF01902205; reference:[19] K. Yosida: Functional Analysis, 6th edn.Springer, Berlin, 1980. MR 0617913
-
2Academic Journal
المؤلفون: Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:$R_\delta $-set, keyword:homotopic, keyword:contractible, keyword:evolution triple, keyword:evolution inclusion, keyword:compact embedding, keyword:optimal control, msc:34G20, msc:34H05, msc:35B30, msc:35B37, msc:35R45, msc:49A20, msc:49J24
وصف الملف: application/pdf
Relation: mr:MR1461421; zbl:Zbl 0898.35011; reference:[1] K. C. Chang: The obstacle problem and partial differential equations with discontinuous nonlinearities.Comm. Pure and Appl. Math. 33 (1980), 117–146. Zbl 0405.35074, MR 0562547, 10.1002/cpa.3160330203; reference:[2] F. S. DeBlasi, J. Myjak: On the solution sets for differential inclusions.Bull. Polish. Acad. Sci. 33 (1985), 17–23. MR 0798723; reference:[3] K. Deimling, M. R. M. Rao: On solution sets of multivalued differential equations.Applicable Analysis 30 (1988), 129–135. MR 0967566, 10.1080/00036818808839797; reference:[4] J. Dugundji: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0144.21501, MR 0193606; reference:[5] C. Himmelberg: Precompact contractions of metric uniformities and the continuity of $F(t,x)$.Rend. Sem. Matematico Univ. Padova 50 (1973), 185–188. MR 0355958; reference:[6] C. Himmelberg, F. Van Vleck: A note on the solution sets of differential inclusions.Rocky Mountain J. Math 12 (1982), 621–625. MR 0683856, 10.1216/RMJ-1982-12-4-621; reference:[7] D. M. Hyman: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91–97. Zbl 0174.25804, MR 0253303, 10.4064/fm-64-1-91-97; reference:[8] A. Lasota, J. Yorke: The generic property of existence of solutions of differential equations on Banach spaces.J. Diff. Equations 13 (1973), 1–12. MR 0335994, 10.1016/0022-0396(73)90027-2; reference:[9] N. S. Papageorgiou: Optimal control of nonlinear evolution inclusions.J. Optim. Theory Appl. 67 (1990), 321–357. Zbl 0697.49007, MR 1080139, 10.1007/BF00940479; reference:[10] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math and Math.Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516; reference:[11] N. S. Papageorgiou: On the solution set of differential inclusions in Banach spaces.Applicable Anal. 25 (1987), 319–329. MR 0912190, 10.1080/00036818708839695; reference:[12] N. S. Papageorgiou: Relaxability and well-posedness for infinite dimensional optimal control problems.Problems of Control and information Theory 20 (1991), 205–218. Zbl 0741.49001, MR 1119038; reference:[13] L. Rybinski: On Caratheodory type selections.Fund. Math. CXXV (1985), 187–193. Zbl 0614.28005, MR 0813756; reference:[14] D. Wagner: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056; reference:[15] J. Yorke: Spaces of solutions.Lecture Notes on Operations Research and Math. Economics 12 (1969), Springer, New York, 383–403. Zbl 0188.15502, MR 0361294; reference:[16] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer, New York, 1990. Zbl 0684.47029, MR 0816732
-
3Academic Journal
المؤلفون: Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:subdifferential operator, keyword:function of compact type, keyword:evolution inclusion, keyword:continuous selection, keyword:path connectedness, keyword:differential variational inequalities, keyword:nonlinear parabolic system, msc:34A60, msc:34G20, msc:35K55
وصف الملف: application/pdf
Relation: mr:MR1263796; zbl:Zbl 0792.34014; reference:[1] Ahmed N.U.: Existence of optimal controls for a class of systems governed by differential inclusions on a Banach space.J. Optim. Theory Appl. 50 (1986), 213-237. Zbl 0577.49025, MR 0857234; reference:[2] Aubin J.-P., Cellina A.: Differential Inclusions.Springer, Berlin, 1984. Zbl 0538.34007, MR 0755330; reference:[3] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1976. Zbl 0328.47035, MR 0390843; reference:[4] Brezis H.: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055; reference:[5] Cellina A., Ornelas A.: Representation of the attainable set for Lipschitzian differential inclusions.Rocky Mountain J. Math. 22 (1992), 117-124. Zbl 0752.34012, MR 1159946; reference:[6] Chang K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities.Comm. Pure and Appl. Math. 33 (1980), 117-146. Zbl 0405.35074, MR 0562547; reference:[7] Colombo R., Fryszkowski A., Rzezuchowski T., Staicu V.: Continuous selection of solution sets of Lipschitzian differential inclusions.Funkcialaj Ekvacioj, to appear. MR 1130468; reference:[8] DeBlasi F., Pianigiani G.: On the solution sets of nonconvex differential inclusions.Centro V. Volterra, Università di Roma II, Preprint No. 73, September 1991.; reference:[9] Deimling K., Rao M.R.M.: On solution sets of multivalued differential equations.Applicable Analysis 28 (1988), 129-135. Zbl 0635.34014, MR 0967566; reference:[10] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. Zbl 0521.46035, MR 0453964; reference:[11] Dugundji J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0397.54003, MR 0193606; reference:[12] Henry C.: Differential equations with discontinuous right-hand side for planning procedures.J. Economic Theory 4 (1972), 545-551. MR 0449534; reference:[13] Himmelberg C., Van Vleck F.: A note on solution sets of differential inclusions.Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856; reference:[14] Hu S., Papageorgiou N.S.: On the topological regularity of the solution set of differential inclusions with constraints.J. Differential Equations, to appear. Zbl 0796.34017, MR 1264523; reference:[15] Kenmochi N.: Some nonlinear parabolic inequalities.Israel J. Math 22 (1975), 304-331. MR 0399662; reference:[16] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Equations 26 (1977), 347-374. MR 0508661; reference:[17] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials.Comment. Math. Univ. Carolinae 31 (1990), 517-527. Zbl 0711.34076, MR 1078486; reference:[18] Papageorgiou N.S.: Optimal control of nonlinear evolution inclusions.J. Optim. Theory 67 (1990), 321-354. Zbl 0697.49007, MR 1080139; reference:[19] Papageorgiou N.S.: On the solution set of differential inclusions in Banach spaces.Applicable Analysis 25 (1987), 319-329. MR 0912190; reference:[20] Papageorgiou N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials.Math. Nachrichten 158 (1992), 219-232. Zbl 0776.34014, MR 1235307; reference:[21] Papageorgiou N.S.: A property of the solution set of nonlinear evolution inclusions with state constraints.Mathematica Japonica 38 (1993), 559-569. Zbl 0777.34043, MR 1221027; reference:[22] Papageorgiou N.S.: On the set of solutions of a class of nonlinear evolution inclusions.Kôdai Math. Jour. 15 (1992), 387-402. Zbl 0774.34011, MR 1189966; reference:[23] Papageorgiou N.S.: Differential inclusions with state constraints.Proc. of the Edinburgh Math. Soc. 32 (1988), 81-97. MR 0981995; reference:[24] Pugh C.C.: Funnel sections.J. Differential Equations 19 (1975), 270-295. Zbl 0327.34007, MR 0393678; reference:[25] Staicu V.: Continuous selections of solution sets to evolution inclusions.SISSA, Reprint No. 42M, Trieste, Italy, March 1990.; reference:[26] Staicu V., Wu H.: Arcwise connectedness of solution sets to Lipschitzian differential inclusions.SISSA, Reprint No. 71M, Trieste, Italy, June 1990. MR 1120387; reference:[27] Tolstonogov A.: On the structure of the solution set for differential inclusions in a Banach space.Math. USSR Sbornik 46 (1983), 1-15. Zbl 0564.34065; reference:[28] Wagner D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391; reference:[29] Watanabe J.: On certain nonlinear evolution equations.J. Math. Soc. Japan 25 (1973), 446-463. Zbl 0253.35053, MR 0326522; reference:[30] Yamada Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. Zbl 0343.34053, MR 0425701; reference:[31] Yotsutani S.: Evolution equations associated with the subdifferentials.J. Math. Soc. Japan 31 (1978), 623-646. Zbl 0405.35043, MR 0544681