-
1Academic Journal
المؤلفون: Yang, Yun-Bo, Jiang, Yao-Lin, Kong, Qiong-Xiang
مصطلحات موضوعية: keyword:magnetohydrodynamics equations, keyword:pressure segregation method, keyword:higher order scheme, keyword:stability, keyword:error estimate, msc:65N12, msc:65N15, msc:65N30
وصف الملف: application/pdf
Relation: mr:MR4022162; zbl:07144727; reference:[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(03)80012-0; reference:[2] An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations.Appl. Numer. Math. 112 (2017), 167-181. Zbl 06657058, MR 3574248, 10.1016/j.apnum.2016.10.010; reference:[3] Armero, F., Simo, J. C.: Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 131 (1996), 41-90. Zbl 0888.76042, MR 1393572, 10.1016/0045-7825(95)00931-0; reference:[4] Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics.J. Comput. Phys. 234 (2013), 399-416. Zbl 1284.76248, MR 2999784, 10.1016/j.jcp.2012.09.031; reference:[5] Badia, S., Planas, R., Gutiérrez-Santacreu, J. V.: Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections.Int. J. Numer. Methods Eng. 93 (2013), 302-328. Zbl 1352.76122, MR 3008267, 10.1002/nme.4392; reference:[6] Blasco, J., Codina, R.: Error estimates for an operator-splitting method for incompressible flows.Appl. Numer. Math. 51 (2004), 1-17. Zbl 1126.76339, MR 2083322, 10.1016/j.apnum.2004.02.004; reference:[7] Blasco, J., Codina, R., Huerta, A.: A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm.Int. J. Numer. Methods Fluids 28 (1998), 1391-1419. Zbl 0935.76041, MR 1663560, 10.1002/(SICI)1097-0363(19981230)28:103.0.CO;2-5; reference:[8] Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations.Sci. China, Math. 59 (2016), 1495-1510. Zbl 1388.76224, MR 3528499, 10.1007/s11425-016-0280-5; reference:[9] Chorin, A. J.: Numerical solution of the Navier-Stokes equations.Math. Comput. 22 (1968), 745-762. Zbl 0198.50103, MR 0242392, 10.2307/2004575; reference:[10] Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations.Numer. Math. 87 (2000), 83-111. Zbl 0988.76050, MR 1800155, 10.1007/s002110000193; reference:[11] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006). Zbl 1107.76001, MR 2289481, 10.1093/acprof:oso/9780198566656.001.0001; reference:[12] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5; reference:[13] Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly \hbox{divergence-free} velocities for incompressible magnetohydrodynamics.Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. Zbl 1231.76146, MR 2740762, 10.1016/j.cma.2010.05.007; reference:[14] Guermond, J. L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows.Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. Zbl 1122.76072, MR 2250931, 10.1016/j.cma.2005.10.010; reference:[15] Guermond, J. L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows.J. Comput. Phys. 192 (2003), 262-276. Zbl 1032.76529, MR 2045709, 10.1016/j.jcp.2003.07.009; reference:[16] Guermond, J. L., Shen, J.: Velocity-correction projection methods for incompressible flows.SIAM J. Numer. Anal. 41 (2003), 112-134. Zbl 1130.76395, MR 1974494, 10.1137/S0036142901395400; reference:[17] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods.Math. Comput. 73 (2004), 1719-1737. Zbl 1093.76050, MR 2059733, 10.1090/S0025-5718-03-01621-1; reference:[18] Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics.Math. Comput. 56 (1991), 523-563. Zbl 0731.76094, MR 1066834, 10.2307/2008394; reference:[19] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013; reference:[20] Jiang, Y.-L., Yang, Y.-B.: Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model.Comput. Methods Appl. Math. 18 (2018), 275-296. Zbl 1391.76337, MR 3776046, 10.1515/cmam-2017-0021; reference:[21] Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows.Numer. Methods Partial Differ. Equations 30 (2014), 1083-1102. Zbl 1364.76088, MR 3200267, 10.1002/num.21857; reference:[22] Linke, A., Neilan, M., Rebholz, L. G., Wilson, N. E.: A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations.J. Numer. Math. 25 (2017), 229-248. Zbl 06857557, MR 3767412, 10.1515/jnma-2016-1024; reference:[23] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system.ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. Zbl 1149.76029, MR 2473320, 10.1051/m2an:2008034; reference:[24] Qian, Y., Zhang, T.: The second order projection method in time for the time-dependent natural convection problem.Appl. Math., Praha 61 (2016), 299-315. Zbl 06587854, MR 3502113, 10.1007/s10492-016-0133-y; reference:[25] Ravindran, S. S.: An extrapolated second order backward difference time-stepping scheme for the magnetohydrodynamics system.Numer. Funct. Anal. Optim. 37 (2016), 990-1020. Zbl 1348.76189, MR 3532388, 10.1080/01630563.2016.1181651; reference:[26] Schmidt, P. G.: A Galerkin method for time-dependent MHD flow with nonideal boundaries.Commun. Appl. Anal. 3 (1999), 383-398. Zbl 0931.76099, MR 1696344; reference:[27] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics.Numer. Math. 96 (2004), 771-800. Zbl 1098.76043, MR 2036365, 10.1007/s00211-003-0487-4; reference:[28] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations.Commun. Pure Appl. Math. 36 (1983), 635-664. Zbl 0524.76099, MR 0716200, 10.1002/cpa.3160360506; reference:[29] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes.SIAM J. Numer. Anal. 29 (1992), 57-77. Zbl 0741.76051, MR 1149084, 10.1137/0729004; reference:[30] Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes.Math. Comput. 65 (1996), 1039-1065. Zbl 0855.76049, MR 1348047, 10.1090/S0025-5718-96-00750-8; reference:[31] Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows.Discrete Contin. Dyn. Syst., Ser. B. 8 (2007), 663-676. Zbl 1220.76046, MR 2328729, 10.3934/dcdsb.2007.8.663; reference:[32] Simo, J. C., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations.Comput. Methods Appl. Mech. Eng. 111 (1994), 111-154. Zbl 0846.76075, MR 1259618, 10.1016/0045-7825(94)90042-6; reference:[33] Temam, R.: Une méthode d'approximation de la solution des équations de Navier-Stokes.Bull. Soc. Math. Fr. 96 (1968), 115-152 French. Zbl 0181.18903, MR 0237972, 10.24033/bsmf.1662; reference:[34] Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows.Appl. Math. Lett. 27 (2014), 97-100. Zbl 1311.76096, MR 3111615, 10.1016/j.aml.2013.06.017; reference:[35] Yang, Y.-B., Jiang, Y.-L.: Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem.Comput. Methods Appl. Math. 16 (2016), 321-344. Zbl 1336.65155, MR 3483620, 10.1515/cmam-2016-0006; reference:[36] Yang, Y.-B., Jiang, Y.-L.: Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure.Int. J. Comput. Math. 95 (2018), 686-709. Zbl 1387.65108, MR 3760370, 10.1080/00207160.2017.1294688; reference:[37] Yang, Y.-B., Jiang, Y.-L.: An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection.Numer. Algorithms 78 (2018), 569-597. Zbl 1402.65139, MR 3803360, 10.1007/s11075-017-0389-7; reference:[38] Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers.Int. J. Numer. Anal. Model 10 (2013), 74-98. Zbl 1266.76066, MR 3011862; reference:[39] Yuksel, G., Isik, O. R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows.Appl. Math. Modelling 39 (2015), 1889-1898 \99999DOI99999 10.1016/j.apm.2014.10.007 \goodbreak. MR 3325585, 10.1016/j.apm.2014.10.007
-
2Academic Journal
المؤلفون: Tang, Yaozong, Li, Xiaolin
مصطلحات موضوعية: keyword:meshless, keyword:element-free Galerkin method, keyword:hyperbolic partial differential equation, keyword:error estimate, keyword:convergence, msc:65M60, msc:65N12, msc:65N30
وصف الملف: application/pdf
Relation: mr:MR3722900; zbl:Zbl 06819517; reference:[1] Abbasbandy, S., Ghehsareh, H. Roohani, Hashim, I., Alsaedi, A.: A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 47 (2014), 10-20. Zbl 1297.65125, MR 3233886, 10.1016/j.enganabound.2014.04.006; reference:[2] Belytschko, T., Lu, Y. Y., Gu, L.: Element-free Galerkin methods.Int. J. Numer. Methods Eng. 37 (1994), 229-256. Zbl 0796.73077, MR 1256818, 10.1002/nme.1620370205; reference:[3] Berger, M. J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.J. Comput. Phys. 53 (1984), 484-512. Zbl 0536.65071, MR 0739112, 10.1016/0021-9991(84)90073-1; reference:[4] Cheng, Y. M.: Meshless Methods.Science Press, Beijing (2015), Chinese.; reference:[5] Cheng, R.-J., Ge, H.-X.: Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation.Chin. Phys. B. 18 (2009), 4059-4064. 10.1088/1674-1056/18/10/001; reference:[6] Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 34 (2010), 324-336. Zbl 1244.65147, MR 2585262, 10.1016/j.enganabound.2009.10.010; reference:[7] Dehghan, M., Ghesmati, A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method.Eng. Anal. Bound. Elem. 34 (2010), 51-59. Zbl 1244.65137, MR 2559257, 10.1016/j.enganabound.2009.07.002; reference:[8] Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation.Math. Methods Appl. Sci. 35 (2012), 1220-1233. Zbl 1250.35015, MR 2945847, 10.1002/mma.2517; reference:[9] Dehghan, M., Shokri, A.: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions.Numer. Methods Partial Differ. Equations 25 (2009), 494-506. Zbl 1159.65084, MR 2483780, 10.1002/num.20357; reference:[10] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019; reference:[11] Hu, X., Huang, P., Feng, X.: A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation.Appl. Math., Praha 61 (2016), 27-45. Zbl 06562145, MR 3455166, 10.1007/s10492-016-0120-3; reference:[12] Jiang, Z., Su, L., Jiang, T.: A meshfree method for numerical solution of nonhomogeneous time-dependent problems.Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. MR 3246371, 10.1155/2014/978310; reference:[13] Li, X.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations.Appl. Numer. Math. 61 (2011), 1237-1256. Zbl 1232.65160, MR 2851120, 10.1016/j.apnum.2011.08.003; reference:[14] Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in {$n$}-dimensional spaces.Appl. Numer. Math. 99 (2016), 77-97. Zbl 1329.65274, MR 3413894, 10.1016/j.apnum.2015.07.006; reference:[15] Li, X., Li, S.: On the stability of the moving least squares approximation and the element-free Galerkin method.Comput. Math. Appl. 72 (2016), 1515-1531. Zbl 1361.65090, MR 3545373, 10.1016/j.camwa.2016.06.047; reference:[16] Li, X., Li, S.: Analysis of the complex moving least squares approximation and the associated element-free Galerkin method.Appl. Math. Model. 47 (2017), 45-62. MR 3659439, 10.1016/j.apm.2017.03.019; reference:[17] Li, X., Wang, Q.: Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases.Eng. Anal. Bound. Elem. 73 (2016), 21-34. MR 3581428, 10.1016/j.enganabound.2016.08.012; reference:[18] Li, X., Zhang, S., Wang, Y., Chen, H.: Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations.Comput. Math. Appl. 71 (2016), 1655-1678. MR 3481094, 10.1016/j.camwa.2016.03.007; reference:[19] Liu, G. R.: Meshfree Methods. Moving Beyond the Finite Element Method.CRC Press, Boca Raton (2010). Zbl 1205.74003, MR 2574356, 10.1201/9781420082104; reference:[20] Szekeres, B. J., Izsák, F.: Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems.Appl. Math., Praha 62 (2017), 15-36. Zbl 06738479, MR 3615476, 10.21136/AM.2017.0385-15; reference:[21] Tang, Y.-Z., Li, X.-L.: Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems.Chin. Phys. B. 26 (2017), 030203. 10.1088/1674-1056/26/3/030203; reference:[22] Thomas, J. W.: Numerical Partial Differential Equations: Finite Difference Methods.Texts in Applied Mathematics 22 Springer, New York (1995). Zbl 0831.65087, MR 1367964, 10.1007/978-1-4899-7278-1; reference:[23] Zhang, S., Li, X.: Boundary augmented Lagrangian method for the Signorini problem.Appl. Math., Praha 61 (2016), 215-231. Zbl 06562154, MR 3470774, 10.1007/s10492-016-0129-7
-
3Academic Journal
المؤلفون: Zhou, Guanyu, Kashiwabara, Takahito, Oikawa, Issei
مصطلحات موضوعية: keyword:penalty method, keyword:Stokes problem, keyword:finite element method, keyword:error estimate, msc:35Q30, msc:65N30
وصف الملف: application/pdf
Relation: mr:MR3686423; zbl:Zbl 06770050; reference:[1] Bänsch, E., Deckelnick, K.: Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition.M2AN, Math. Model. Numer. Anal. 33 (1999), 923-938. Zbl 0948.76035, MR 1726716, 10.1051/m2an:1999126; reference:[2] Bänsch, E., Höhn, B.: Numerical treatment of the Navier-Stokes equations with slip boundary condition.SIAM J. Sci. Comput. 21 (2000), 2144-2162. Zbl 0970.76056, MR 1762035, 10.1137/S1064827598343991; reference:[3] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, New York (2002). Zbl 0804.65101, MR 1894376, 10.1007/978-0-387-75934-0; reference:[4] Çağlar, A.: Weak imposition of boundary conditions for the Navier-Stokes equations.Appl. Math. Comput. 149 (2004), 119-145. Zbl 1100.76034, MR 2030987, 10.1016/S0096-3003(02)00960-8; reference:[5] Dione, I., Tibirna, C., Urquiza, J.: Stokes equations with penalised slip boundary conditions.Int. J. Comput. Fluid Dyn. 27 (2013), 283-296. MR 3171814, 10.1080/10618562.2013.821114; reference:[6] Dione, I., Urquiza, J. M.: Penalty: finite element approximation of Stokes equations with slip boundary conditions.Numer. Math. 129 (2015), 587-610. Zbl 1308.76162, MR 3311462, 10.1007/s00211-014-0646-9; reference:[7] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. Zbl 1176.74181, MR 2566786, 10.1002/nme.2579; reference:[8] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5 Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5; reference:[9] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013; reference:[10] Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization.SIAM J. Numer. Anal. 19 (1982), 275-311. Zbl 0487.76035, MR 0650052, 10.1137/0719018; reference:[11] John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations---numerical tests and aspects of the implementation.J. Comput. Appl. Math. 147 (2002), 287-300. Zbl 1021.76028, MR 1933597, 10.1016/S0377-0427(02)00437-5; reference:[12] Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition.Numer. Math. 134 (2016), 705-740. Zbl 06654608, MR 3563279, 10.1007/s00211-016-0790-5; reference:[13] Knobloch, P.: Discrete Friedrich's and Korn's inequalities in two and three dimensions.East-West J. Numer. Math. 4 (1996), 35-51. Zbl 0854.65098, MR 1393064; reference:[14] Knobloch, P.: Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions.East-West J. Numer. Math. 7 (1999), 133-158. Zbl 0958.76043, MR 1699239; reference:[15] Layton, W.: Weak imposition of ``no-slip'' conditions in finite element methods.Comput. Math. Appl. 38 (1999), 129-142. Zbl 0953.76050, MR 1707832, 10.1016/S0898-1221(99)00220-5; reference:[16] Logg, A., Mardal, K.-A., Wells, G., Editors: Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Bbook.Lecture Notes in Computational Science and Engineering 84 Springer, Heidelberg (2012). Zbl 1247.65105, MR 3075806, 10.1007/978-3-642-23099-8; reference:[17] Saito, H., Scriven, L. E.: Study of coating flow by the finite element method.J. Comput. Phys. 42 (1981), 53-76. Zbl 0466.76035, 10.1016/0021-9991(81)90232-1; reference:[18] Shibata, Y., Shimada, R.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition.J. Math. Soc. Japan 59 (2007), 469-519. Zbl 1127.35043, MR 2325694, 10.2969/jmsj/05920469; reference:[19] Stokes, Y., Carey, G.: On generalized penalty approaches for slip, free surface and related boundary conditions in viscous flow simulation.Int. J. Numer. Meth. Heat and Fluid Flow 21 (2011), 668-702. 10.1108/09615531111148455; reference:[20] Tabata, M.: Uniform solvability of finite element solutions in approximate domains.Japan J. Ind. Appl. Math. 18 (2001), 567-585. Zbl 0985.65142, MR 1842928, 10.1007/BF03168591; reference:[21] Tabata, M.: Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients---Thermal convection problems in a spherical shell.Future Gener. Comput. Syst. 22 521-531 (2006). 10.1016/j.future.2005.04.008; reference:[22] Tabata, M., Suzuki, A.: A stabilized finite element method for the Rayleigh-Bénard equations with infinite Prandtl number in a spherical shell.Comput. Methods Appl. Mech. Eng. 190 (2000), 387-402. Zbl 0973.76056, MR 1808485, 10.1016/S0045-7825(00)00209-7; reference:[23] Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows.Japan J. Ind. Appl. Math. 17 (2000), 371-389. Zbl 1306.76026, MR 1794176, 10.1007/BF03167373; reference:[24] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.AMS Chelsea Publishing, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343; reference:[25] Verfürth, R.: Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 461-475. Zbl 0579.76024, MR 0807327, 10.1051/m2an/1985190304611; reference:[26] Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition.Numer. Math. 50 (1987), 697-721. Zbl 0596.76031, MR 0884296, 10.1007/BF01398380; reference:[27] Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II.Numer. Math. 59 (1991), 615-636. Zbl 0739.76034, MR 1124131, 10.1007/BF01385799; reference:[28] Zhou, G., Kashiwabara, T., Oikawa, I.: Penalty method for the stationary Navier-Stokes problems under the slip boundary condition.J. Sci. Comput. 68 (2016), 339-374. Zbl 06607354, MR 3510584, 10.1007/s10915-015-0142-0
-
4Academic Journal
المؤلفون: Feng, Xinlong, Weng, Zhifeng, Xie, Hehu
مصطلحات موضوعية: keyword:accelerated two grid method, keyword:Stokes eigenvalue problem, keyword:stabilized method, keyword:equal-order pair, keyword:error estimate, msc:65N12, msc:65N25, msc:65N30, msc:76D07
وصف الملف: application/pdf
Relation: mr:MR3277730; zbl:Zbl 06391453; reference:[1] Babuška, I., Osborn, J. E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems.Math. Comput. 52 (1989), 275-297. MR 0962210, 10.1090/S0025-5718-1989-0962210-8; reference:[2] Babuška, I., Osborn, J.: Eigenvalue problems.P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787. MR 1115240; reference:[3] Becker, R., Hansbo, P.: A simple pressure stabilization method for the Stokes equation.Commun. Numer. Methods Eng. 24 (2008), 1421-1430. Zbl 1153.76036, MR 2474694, 10.1002/cnm.1041; reference:[4] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations.SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). Zbl 1145.76015, MR 2217373, 10.1137/S0036142905444482; reference:[5] Boffi, D.: Finite element approximation of eigenvalue problems.Acta Numerica 19 (2010), 1-120. Zbl 1242.65110, MR 2652780, 10.1017/S0962492910000012; reference:[6] Chen, H., He, Y., Li, Y., Xie, H.: A multigrid method based on shifted-inverse power technique for eigenvalue problem.http://arxiv.org/pdf/1401.5378v3 (2014). MR 3386235; reference:[7] Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems.Appl. Math., Praha 54 (2009), 237-250. Zbl 1212.65431, MR 2530541, 10.1007/s10492-009-0015-7; reference:[8] Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem.Appl. Numer. Math. 61 (2011), 615-629. Zbl 1209.65126, MR 2754580, 10.1016/j.apnum.2010.12.007; reference:[9] Chien, C. S., Jeng, B. W.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems.SIAM J. Sci. Comput. 27 (2006), 1287-1304. Zbl 1095.65100, MR 2199749, 10.1137/030602447; reference:[10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[11] Feng, X., Kim, I., Nam, H., Sheen, D.: Locally stabilized $P_1$-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations.J. Comput. Appl. Math. 236 (2011), 714-727. Zbl 1233.65088, MR 2853496, 10.1016/j.cam.2011.06.009; reference:[12] Golub, G. H., Loan, C. F. Van: Matrix Computations. (3rd ed.).The Johns Hopkins Univ. Press Baltimore (1996). MR 1417720; reference:[13] Hackbusch, W.: Multi-Grid Methods and Applications.Springer Series in Computational Mathematics 4 Springer, Berlin (1985). Zbl 0595.65106; reference:[14] Hu, X., Cheng, X.: Acceleration of a two-grid method for eigenvalue problems.Math. Comput. 80 (2011), 1287-1301. Zbl 1232.65141, MR 2785459, 10.1090/S0025-5718-2011-02458-0; reference:[15] Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem.Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages. Zbl 1235.74286, MR 2826898; reference:[16] Huang, P., He, Y., Feng, X.: Two-level stabilized finite element method for the Stokes eigenvalue problem.Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. MR 2978223, 10.1007/s10483-012-1575-7; reference:[17] Kolman, K.: A two-level method for nonsymmetric eigenvalue problems.Acta Math. Appl. Sin., Engl. Ser. 21 (2005), 1-12. Zbl 1084.65109, MR 2123599, 10.1007/s10255-005-0209-z; reference:[18] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015; reference:[19] Li, H., Yang, Y.: The adaptive finite element method based on multi-scale discretizations for eigenvalue problems.Comput. Math. Appl. 65 (2013), 1086-1102. Zbl 1266.65196, MR 3028637, 10.1016/j.camwa.2013.01.043; reference:[20] Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem.Numer. Methods Partial Differ. Equations 25 (2009), 244-257. Zbl 1169.65109, MR 2473688, 10.1002/num.20342; reference:[21] Mercier, B., Osborn, J., Rappaz, J., Raviart, P.-A.: Eigenvalue approximation by mixed and hybrid methods.Math. Comput. 36 (1981), 427-453. Zbl 0472.65080, MR 0606505, 10.1090/S0025-5718-1981-0606505-9; reference:[22] Peters, G., Wilkinson, J. H.: Inverse iteration, ill-conditioned equations and Newton's method.SIAM Rev. 21 (1979), 339-360. MR 0535118, 10.1137/1021052; reference:[23] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.).Springer Series in Computational Mathematics 24 Springer, Berlin (2008). Zbl 1155.65087, MR 2454024; reference:[24] Weng, Z., Feng, X., Zhai, S.: Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem.Comput. Math. Appl. 64 (2012), 2635-2646. Zbl 1268.65157, MR 2970840, 10.1016/j.camwa.2012.07.009; reference:[25] Xu, J.: A novel two-grid method for semilinear elliptic equations.SIAM J. Sci. Comput. 15 (1994), 231-237. Zbl 0795.65077, MR 1257166, 10.1137/0915016; reference:[26] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949; reference:[27] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17-25. Zbl 0959.65119, MR 1677419, 10.1090/S0025-5718-99-01180-1; reference:[28] Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems.SIAM J. Numer. Anal. 49 (2011), 1602-1624. Zbl 1236.65143, MR 2831063, 10.1137/100810241; reference:[29] Yang, Y., Fan, X.: Generalized Rayleigh quotient and finite element two-grid discretization schemes.Sci. China, Ser. A 52 (2009), 1955-1972. Zbl 1188.65151, MR 2545001, 10.1007/s11425-009-0016-8; reference:[30] Yin, X., Xie, H., Jia, S., Gao, S.: Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods.J. Comput. Appl. Math. 215 (2008), 127-141. Zbl 1149.65090, MR 2400623, 10.1016/j.cam.2007.03.028
-
5Academic Journal
المؤلفون: Su, Haiyan, Huang, Pengzhan, Feng, Xinlong
مصطلحات موضوعية: keyword:Stokes problem, keyword:two-level method, keyword:nonconforming finite element, keyword:error estimate, keyword:numerical result, msc:65M12, msc:65M60, msc:76D07
وصف الملف: application/pdf
Relation: mr:MR3162752; zbl:Zbl 06312919; reference:[1] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations.SIAM J. Numer. Anal 44 (2006), 82-101. Zbl 1145.76015, MR 2217373, 10.1137/S0036142905444482; reference:[2] Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations.Numer. Methods Partial Differ. Equations 12 (1996), 333-346. Zbl 0852.76039, MR 1388444, 10.1002/(SICI)1098-2426(199605)12:33.0.CO;2-P; reference:[3] Feng, X., Kim, I., Nam, H., Sheen, D.: Locally stabilized $P_{1}$-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations.J. Comput. Appl. Math. 236 (2011), 714-727. Zbl 1233.65088, MR 2853496, 10.1016/j.cam.2011.06.009; reference:[4] He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier-Stokes problem.Computing 74 (2005), 337-351. Zbl 1099.65111, MR 2149343, 10.1007/s00607-004-0118-7; reference:[5] Hecht, F., al., et: FREEFEM$++$, version 2.3-3 [online].Available from: http://www.freefem.org (2008).; reference:[6] Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem.Math. Probl. Eng. 2011 (2011), Article ID: 745908. Zbl 1235.74286, MR 2826898; reference:[7] Layton, W.: A two level discretization method for the Navier-Stokes equations.Comput. Math. Appl. 26 (1993), 33-38. Zbl 0773.76042, MR 1220955, 10.1016/0898-1221(93)90318-P; reference:[8] Layton, W., Lenferink, W.: Two-level Picard and modified Picard methods for the Navier-Stokes equations.Appl. Math. Comput. 69 (1995), 263-274. Zbl 0828.76017, MR 1326676, 10.1016/0096-3003(94)00134-P; reference:[9] Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations.SIAM J. Numer. Anal. 35 (1998), 2035-2054. Zbl 0913.76050, MR 1639994, 10.1137/S003614299630230X; reference:[10] Li, J., Chen, Z.: A new local stabilized nonconforming finite element method for the Stokes equations.Computing 82 (2008), 157-170. Zbl 1155.65101, MR 2421582, 10.1007/s00607-008-0001-z; reference:[11] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015; reference:[12] Xu, J.: A novel two-grid method for semilinear elliptic equations.SIAM J. Sci. Comput. 15 (1994), 231-237. Zbl 0795.65077, MR 1257166, 10.1137/0915016; reference:[13] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949
-
6Academic Journal
المؤلفون: Larsson, Stig, Lindberg, Carl, Warfheimer, Marcus
مصطلحات موضوعية: keyword:pairs trading, keyword:optimal stopping, keyword:Ornstein-Uhlenbeck type process, keyword:finite element method, keyword:error estimate, msc:45J05, msc:65L60, msc:65N30, msc:91G10
وصف الملف: application/pdf
Relation: mr:MR3066820; zbl:Zbl 06221230; reference:[1] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. 3rd ed., Texts in Applied Mathematics 15.Springer New York (2008). MR 2373954; reference:[2] Ekström, E., Lindberg, C., Tysk, J.: Optimal liquidation of a pair trade.(to appear). MR 2792082; reference:[3] Elliott, R. J., Hoek, J. van der, Malcolm, W. P.: Pairs trading.Quant. Finance 5 (2005), 271-276. MR 2238537, 10.1080/14697680500149370; reference:[4] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence, RI (1998). Zbl 0902.35002, MR 1625845; reference:[5] Garroni, M. G., Menaldi, J. L.: Second Order Elliptic Integro-Differential Problems.Chapman & Hall/CRC (2002). Zbl 1014.45002, MR 1911531; reference:[6] Gatev, E., Goetzmann, W., Rouwenhorst, G.: Pairs trading: performance of a relative-value arbitrage.Review of Financial Studies 19 (2006), 797-827. 10.1093/rfs/hhj020; reference:[7] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Graduate Texts in Mathematics 113 Springer, New York (1988). Zbl 0638.60065, MR 0917065, 10.1007/978-1-4684-0302-2_2; reference:[8] Larsson, S., Thomée, V.: Partial Differential Equations with Numerical Methods.Texts in Applied Mathematics 45 Springer, Berlin (2003). Zbl 1025.65002, MR 1995838; reference:[9] Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich.Birkhäuser Basel (2006). MR 2256030; reference:[10] Protter, P. E.: Stochastic Integration and Differential Equations.Stochastic Modelling and Applied Probability 21, Second edition. Version 2.1. Corrected third printing Springer, Berlin (2005). MR 2273672; reference:[11] Schatz, A. H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms.Math. Comput. 28 (1974), 959-962. Zbl 0321.65059, MR 0373326, 10.1090/S0025-5718-1974-0373326-0
-
7Academic Journal
مصطلحات موضوعية: keyword:Steklov eigenvalue problem, keyword:nonconforming finite element, keyword:error estimate, keyword:lower bound of the eigenvalues, msc:35A35, msc:35J25, msc:35P10, msc:35P15, msc:65N12, msc:65N15, msc:65N25, msc:65N30
وصف الملف: application/pdf
Relation: mr:MR3034819; zbl:Zbl 1274.65296; reference:[1] Ahn, H. J.: Vibration of a pendulum consisiting of a bob suspended from a wire: the method of integral equations.Quart. Appl. Math. 39 (1981), 109-117. MR 0613954, 10.1090/qam/613954; reference:[2] Russo, A. Alonso A. D.: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods.J. Comput. Appl. Math. 223 (2009), 177-197. MR 2463110, 10.1016/j.cam.2008.01.008; reference:[3] Andreev, A. B., Todorov, T. D.: Isoparametric finite-element approximation of a Steklov eigenvalue problem.IMA J. Numer. Anal. 24 (2004), 309-322. Zbl 1069.65120, MR 2046179, 10.1093/imanum/24.2.309; reference:[4] Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems.Math. Comput. 64 (1995), 943-972. Zbl 0829.65127, MR 1303084; reference:[5] Armentano, M. G., Durán, R. G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods.ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. Zbl 1065.65127, MR 2040799; reference:[6] Armentano, M. G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem.Appl. Numer. Math. 58 (2008), 593-601. Zbl 1140.65078, MR 2407734, 10.1016/j.apnum.2007.01.011; reference:[7] Babuška, I., Osborn, J.: Eigenvalue problems.In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2 North-Holland Amsterdam (1991), 641-787. MR 1115240; reference:[8] Beattie, C., Goerisch, F.: Methods for computing lower bounds to eigenvalues of self-adjoint operators.Numer. Math. 72 (1995), 143-172. Zbl 0857.65063, MR 1362258, 10.1007/s002110050164; reference:[9] Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics.Academic Press New York (1953). Zbl 0053.39003, MR 0054140; reference:[10] Bermúdez, A., Rodríguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations.Numer. Math. 87 (2000), 201-227. Zbl 0998.76046, MR 1804656, 10.1007/s002110000175; reference:[11] Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of the Laplace equation.Math. Comput. 71 (2002), 1371-1403. Zbl 1012.65108, MR 1933036, 10.1090/S0025-5718-01-01401-6; reference:[12] Bramble, J. H., Osborn, J. E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators.Math. Found. Finite Element Method Applications PDE A. Aziz Academic Press New York (1972), 387-408. Zbl 0264.35055, MR 0431740; reference:[13] Bucur, D., Ionescu, I. R.: Asymptotic analysis and scaling of friction parameters.Z. Angew. Math. Phys. 57 (2006), 1042-1056. Zbl 1106.35038, MR 2279256, 10.1007/s00033-006-0070-9; reference:[14] Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations.SIAM J. Numer. Anal. 49 (2011), 1761-1787. Zbl 1232.65142, MR 2837483, 10.1137/100805133; reference:[15] Ciarlet, P. G.: Basic error estimates for elliptic problems.In: Part 1. Finite Element Methods. Handbook of Numerical Analysis, Vol. 2 P. Ciarlet, J.-L. Lions North-Holland (1991), 21-343. Zbl 0875.65086, MR 1115237, 10.1016/S1570-8659(05)80039-0; reference:[16] Conca, C., Planchard, J., Vanninathan, M.: Fluid and Periodic Structures.John Wiley & Sons Chichester (1995). MR 1652238; reference:[17] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. MR 0343661; reference:[18] Dunford, N., Schwartz, J. T.: Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space.Interscience Publishers/John Wiley & Sons New York/London (1963). MR 1009163; reference:[19] Goerisch, F., Albrecht, J.: The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192.Springer Berlin (1986). MR 0877140; reference:[20] Goerisch, F., He, Z.: The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7.Academic Press Boston (1990). MR 1104000; reference:[21] Han, H. D., Guan, Z.: An analysis of the boundary element approximation of Steklov eigenvalue problems.In: Numerical Methods for Partial Differential Equations World Scientific River Edge (1992), 35-51. MR 1160822; reference:[22] Han, H. D., Guan, Z., He, B.: Boundary element approximation of Steklov eigenvalue problem.Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128-135 Chinese. MR 1293212; reference:[23] Hinton, D. B., Shaw, J. K.: Differential operators with spectral parameter incompletely in the boundary conditions.Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. Zbl 0715.34133, MR 1086767; reference:[24] Hu, J., Huang, Y., Lin, Q.: The analysis of the lower approximation of eigenvalues by nonconforming elements.(to appear).; reference:[25] Huang, J., Lü, T.: The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems.J. Comput. Math. 22 (2004), 719-726. Zbl 1069.65123, MR 2080438; reference:[26] Křížek, M., Roos, H.-G., Chen, W.: Two-sided bounds of the discretization error for finite elements.ESAIM, Math. Model. Numer. Anal. 45 (2011), 915-924 (2011). Zbl 1269.65113, MR 2817550, 10.1051/m2an/2011003; reference:[27] Li, M., Lin, Q., Zhang, S.: Extrapolation and superconvergence of the Steklov eigenvalue problem.Adv. Comput. Math. 33 (2010), 25-44. Zbl 1213.65141, MR 2645290, 10.1007/s10444-009-9118-7; reference:[28] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.Science Press Beijing (2006).; reference:[29] Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation.IMA J. Numer. Anal. 25 (2005), 160-181. Zbl 1068.65122, MR 2110239, 10.1093/imanum/drh008; reference:[30] Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods.Math. Pract. Theory 40 (2010), 157-168. MR 2768711; reference:[31] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97-111. Zbl 0742.76051, MR 1148797, 10.1002/num.1690080202; reference:[32] Tang, W., Guan, Z., Han, H.: Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation.J. Comput. Math. 16 (1998), 165-178. Zbl 0977.65100, MR 1610674; reference:[33] Wang, L., Xu, X.: Foundation of Mathematics in Finite Element Methods.Scientific and Technical Publishers Beijing (2004).; reference:[34] Yang, Y.: A posteriori error estimates in Adini finite element for eigenvalue problems.J. Comput. Math. 18 (2000), 413-418. Zbl 0957.65092, MR 1773912; reference:[35] Yang, Y., Chen, Z.: The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators.Sci. China, Ser. A 51 (2008), 1232-1242. Zbl 1153.65055, MR 2417491, 10.1007/s11425-008-0002-6; reference:[36] Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem.Appl. Numer. Math. 59 (2009), 2388-2401. Zbl 1212.65435, MR 2553141, 10.1016/j.apnum.2009.04.005; reference:[37] Yang, Y., Bi, H.: Lower spectral bounds by Wilson's brick discretization.Appl. Numer. Math. 60 (2010), 782-787. Zbl 1198.65220, MR 2647432, 10.1016/j.apnum.2010.03.019; reference:[38] Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements.Sci. China Math. 53 (2010), 137-150. Zbl 1187.65125, MR 2594754, 10.1007/s11425-009-0198-0; reference:[39] Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson's element.Math. Numer. Sin. 29 (2007), 319-321 Chinese. Zbl 1142.65435, MR 2370469
-
8Academic Journal
المؤلفون: Vinogradova, Polina, Zarubin, Anatoli
مصطلحات موضوعية: keyword:approximate solution, keyword:error estimate, keyword:Galerkin method, keyword:heat convection equation, keyword:orthogonal projection, keyword:viscous fluid, msc:35K90, msc:35Q35, msc:65J10, msc:65M15, msc:65M60
وصف الملف: application/pdf
Relation: mr:MR2891306; zbl:Zbl 1249.65119; reference:[1] Agmon, S.: On the eigenfunctions and on the eigenvalue of general elliptic boundary value problems.Commun. Pure Appl. Math. 15 (1962), 119-147. MR 0147774, 10.1002/cpa.3160150203; reference:[2] Ambethkar, V.: Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction.J. Naval Arch. Marine Eng. 5 (2008), 28-36.; reference:[3] Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., Tyuptsov, A. D.: Fluid Mechanics of Weightlessness.Nauka Moscow (1976), Russian.; reference:[4] Beckenbach, E., Bellman, R.: Inequalities.Springer Berlin (1965). Zbl 0186.09605, MR 0192009; reference:[5] Curry, J. H., Herring, J. R., Loncaric, J., Orszag, S. A.: Order and disorder in two- and three-dimensional Bénard convection.J. Fluid Mech. 147 (1984), 1-38. Zbl 0547.76093, 10.1017/S0022112084001968; reference:[6] Daly, B. J.: A numerical study of turbulence transitions in convective flow.J. Fluid Mech. 64 (1974), 129-165. Zbl 0282.76050, 10.1017/S0022112074002047; reference:[7] Gershuni, G. Z., Zhuhovitsky, E. M.: Convective Stability of Incompressible Fluid.Nauka Moscow (1972), Russian.; reference:[8] Glushko, V. P., Krejn, S. G.: Inequalities for the norms of derivative in spaces $L_p$ with weight.Sibirsk. Mat. Zh. 1 (1960), 343-382 Russian. MR 0133681; reference:[9] Krejn, S. G.: Linear Differential Equations in Banach Spaces. Trans. Math. Monographs, Vol. 29.AMS Providence (1972).; reference:[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach New York (1969). Zbl 0184.52603, MR 0254401; reference:[11] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Nauka Moscow (1967), English transl.: Trans. Math. Monographs, Vol. 23 AMS Rhode Island (1968). Zbl 0164.12302; reference:[12] Shinbrot, M., Kotorynski, W. P.: The initial value problem for a viscous heat-conducting equations.J. Math. Anal. Appl. 45 (1974), 1-22. MR 0361474, 10.1016/0022-247X(74)90115-2; reference:[13] Solonnikov, V. A.: On estimates of the solutions of elliptic and parabolic systems in $L_p$.Tr. MIAN SSSR 102 (1967), 137-160 Russian. MR 0228809; reference:[14] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Rev. ed.North-Holland Publishing Company Amsterdam (1979). Zbl 0426.35003; reference:[15] Vinogradova, P., Zarubin, A.: Projection method for Cauchy problem for operator-differential equation.Numer. Funct. Anal. Optim. 30 (2009), 148-167. MR 2492080, 10.1080/01630560902735132; reference:[16] Werne, J., DeLuca, E. E., Rosner, R., Cattaneo, F.: Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection.Phys. Rev. Lett. 64 (1990), 2370-2373. 10.1103/PhysRevLett.64.2370
-
9Academic Journal
المؤلفون: Havle, Oto, Dolejší, Vít, Feistauer, Miloslav
مصطلحات موضوعية: keyword:nonlinear convection-diffusion equation, keyword:mixed Dirichlet-Neumann conditions, keyword:discontinuous Galerkin finite element method, keyword:method of lines, keyword:nonconforming meshes, keyword:NIPG, keyword:SIPG, keyword:IIPG versions, keyword:error estimate, keyword:space semidiscretization, msc:35K20, msc:35K55, msc:65M12, msc:65M15, msc:65M20, msc:65M50, msc:65M60, msc:76M10
وصف الملف: application/pdf
Relation: mr:MR2737717; zbl:Zbl 1224.65219; reference:[1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742-760. Zbl 0482.65060, MR 0664882, 10.1137/0719052; reference:[2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162; reference:[3] Ciarlet, P. G.: The Finite Elements Method for Elliptic Problems.North-Holland Amsterdam-New York-Oxford (1978). MR 0520174; reference:[4] Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems.In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224. Zbl 0937.76049, MR 1712278, 10.1007/978-3-662-03882-6_2; reference:[5] Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds.: Discontinuous Galerkin Methods.Springer Berlin (2000). Zbl 0989.76045, MR 1842160; reference:[6] Dawson, C. N., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport.Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. Zbl 1067.76565, MR 2055253, 10.1016/j.cma.2003.12.059; reference:[7] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems.Numer. Funct. Anal. Optimization 26 (2005), 349-383. MR 2153838, 10.1081/NFA-200067298; reference:[8] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit {DGFEM} for nonlinear convection-diffusion problems on nonconforming meshes.Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. MR 2325393, 10.1016/j.cma.2006.09.025; reference:[9] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal {$L^{\infty}(L^2)$}-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem.IMA J. Numer. Anal. 28 (2008), 496-521. MR 2433210, 10.1093/imanum/drm023; reference:[10] Dolejší, V., Feistauer, M., Sobotíková, V.: A discontinuous Galerkin method for nonlinear convection-diffusion problems.Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733. MR 2136396, 10.1016/j.cma.2004.07.017; reference:[11] Feistauer, M.: Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems.In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330. MR 2537215; reference:[12] Feistauer, M., Kučera, V.: Analysis of the DGFEM for nonlinear convection-diffusion problems.ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48. MR 2537215; reference:[13] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.: An optimal $L^{\infty}(L^2)$ error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes.M2AN, Math. Model. Numer. Anal Submitted.; reference:[14] Feistauer, M., Švadlenka, K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems.J. Numer. Math. 12 (2004), 97-117. MR 2062581, 10.1515/156939504323074504; reference:[15] Houston, P., Robson, J., Süli, E.: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case.IMA J. Numer. Anal. 25 (2005), 726-749. MR 2170521, 10.1093/imanum/dri014; reference:[16] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems.SIAM J. Numer. Anal. 39 (2002), 2133-2163. MR 1897953, 10.1137/S0036142900374111; reference:[17] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia Prague (1977). MR 0482102; reference:[18] Nečas, J.: Les Méthodes Directes en Thèorie des Equations Elliptiques.Academia Prague (1967). MR 0227584; reference:[19] Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method applied to nonlinear parabolic equations.In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244. MR 1842177, 10.1007/978-3-642-59721-3_17; reference:[20] Rivière, B., Wheeler, M. F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I.Comput. Geosci. 3 (1999), 337-360. MR 1750076, 10.1023/A:1011591328604; reference:[21] Roos, H.-G., Zarin, H.: The discontinuous Galerkin finite element method for singularly perturbed problems.In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 E. Bensch Springer Berlin (2003), 246-267. Zbl 1043.65130, MR 2070794, 10.1007/978-3-642-19014-8_12; reference:[22] Roos, H.-G., Zarin, H.: A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes.Numer. Methods Partial Differential Equations 23 (2007), 1560-1576. Zbl 1145.65100, MR 2355174, 10.1002/num.20241; reference:[23] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.Birkhäuser Basel-Boston-Berlin (2005). MR 2176645; reference:[24] Sun, S., Wheeler, M. F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media.SIAM J. Numer. Anal. 43 (2005), 195-219. Zbl 1086.76043, MR 2177141, 10.1137/S003614290241708X; reference:[25] Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties.SIAM J. Numer. Anal. 15 (1978), 152-161. Zbl 0384.65058, MR 0471383, 10.1137/0715010
-
10Academic Journal
المؤلفون: Chen, Zhangxin, Espedal, Magne, Ewing, Richard E.
مصطلحات موضوعية: keyword:mixed method, keyword:finite element, keyword:compressible flow, keyword:porous media, keyword:error estimate, keyword:air-water system, msc:65M60, msc:65N30, msc:76M10, msc:76S05
وصف الملف: application/pdf
Relation: mr:MR1332314; zbl:Zbl 0847.76030; reference:[1] J. Bear: Dynamics of Fluids in Porous Media.Dover, New York, 1972.; reference:[2] F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin: Mixed finite elements for second order elliptic problems in three variables.Numer. Math. 51 (1987), 237–250. MR 0890035, 10.1007/BF01396752; reference:[3] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. Marini: Efficient rectangular mixed finite elements in two and three space variables.RAIRO Modèl. Math. Anal. Numér 21 (1987), 581–604. MR 0921828, 10.1051/m2an/1987210405811; reference:[4] F. Brezzi, J. Douglas, Jr., and L. Marini: Two families of mixed finite elements for second order elliptic problems.Numer. Math. 47 (1985), 217–235. MR 0799685, 10.1007/BF01389710; reference:[5] M. Celia and P. Binning: Two-phase unsaturated flow: one dimensional simulation and air phase velocities.Water Resources Research 28 (1992), 2819–2828.; reference:[6] G. Chavent and J. Jaffré: Mathematical Models and Finite Elements for Reservoir Simulation.North-Holland, Amsterdam, 1978.; reference:[7] Z. Chen: Analysis of mixed methods using conforming and nonconforming finite element methods.RAIRO Modèl. Math. Anal. Numér. 27 (1993), 9–34. Zbl 0784.65075, MR 1204626, 10.1051/m2an/1993270100091; reference:[8] Z. Chen: Finite element methods for the black oil model in petroleum reservoirs.IMA Preprint Series $\#$ 1238, submitted to Math. Comp.; reference:[9] Z. Chen and J. Douglas, Jr.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems.Mat. Aplic. Comp. 10 (1991), 137–160. MR 1172090; reference:[10] Z. Chen and J. Douglas, Jr.: Prismatic mixed finite elements for second order elliptic problems.Calcolo 26 (1989), 135–148. MR 1083050, 10.1007/BF02575725; reference:[11] Z. Chen, R. Ewing, and M. Espedal: Multiphase flow simulation with various boundary conditions.Numerical Methods in Water Resources, Vol. 2, A. Peters, et als. (eds.), Kluwer Academic Publishers, Netherlands, 1994, pp. 925–932.; reference:[12] S. Chou and Q. Li: Mixed finite element methods for compressible miscible displacement in porous media.Math. Comp. 57 (1991), 507–527. MR 1094942, 10.1090/S0025-5718-1991-1094942-7; reference:[13] P. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174; reference:[14] J. Douglas, Jr.: Finite difference methods for two-phase incompressible flow in porous media.SIAM J. Numer. Anal. 20 (1983), 681–696. Zbl 0519.76107, MR 0708451, 10.1137/0720046; reference:[15] J. Douglas, Jr. and J. Roberts: Numerical methods for a model for compressible miscible displacement in porous media.Math. Comp. 41 (1983), 441–459. MR 0717695, 10.1090/S0025-5718-1983-0717695-3; reference:[16] J. Douglas, Jr. and J. Roberts: Global estimates for mixed methods for second order elliptic problems.Math. Comp. 45 (1985), 39–52. MR 0771029; reference:[17] N. S. Espedal and R. E. Ewing: Characteristic Petrov-Galerkin subdomain methods for two phase immiscible flow.Comput. Methods Appl. Mech. Eng. 64 (1987), 113–135. MR 0912516, 10.1016/0045-7825(87)90036-3; reference:[18] R. Ewing and M. Wheeler: Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case.Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40–58. MR 0790511; reference:[19] K. Fadimba and R. Sharpley: A priori estimates and regularization for a class of porous medium equations.Preprint, submitted to Nonlinear World. MR 1376946; reference:[20] K. Fadimba and R. Sharpley: Galerkin finite element method for a class of porous medium equations.Preprint. MR 2025071; reference:[21] D. Hillel: Fundamentals of Soil Physics.Academic Press, San Diego, California, 1980.; reference:[22] C. Johnson and V. Thomée: Error estimates for some mixed finite element methods for parabolic type problems.RAIRO Anal. Numér. 15 (1981), 41–78. MR 0610597, 10.1051/m2an/1981150100411; reference:[23] H. J. Morel-Seytoux: Two-phase flows in porous media.Advances in Hydroscience 9 (1973), 119–202. 10.1016/B978-0-12-021809-7.50009-2; reference:[24] J. C. Nedelec: Mixed finite elements in $\Re ^3$.Numer. Math. 35 (1980), 315–341. MR 0592160, 10.1007/BF01396415; reference:[25] J. Nitsche: $L_\infty $-Convergence of Finite Element Approximation.Proc. Second Conference on Finite Elements, Rennes, France, 1975. MR 0568857; reference:[26] D. W. Peaceman: Fundamentals of Numerical Reservoir Simulation.Elsevier, New York, 1977.; reference:[27] O. Pironneau: On the transport-diffusion algorithm and its application to the Navier-Stokes equations.Numer. Math. 38 (1982), 309–332. MR 0654100, 10.1007/BF01396435; reference:[28] P.A. Raviart and J.M. Thomas: A mixed finite element method for second order elliptic problems.Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555; reference:[29] M. Rose: Numerical Methods for flow through porous media I.Math. Comp. 40 (1983), 437–467. MR 0689465, 10.1090/S0025-5718-1983-0689465-6; reference:[30] A. Schatz, V. Thomée, and L. Wahlbin: Maximum norm stability and error estimates in parabolic finite element equations.Comm. Pure Appl. Math. 33 (1980), 265–304. MR 0562737, 10.1002/cpa.3160330305; reference:[31] R. Scott: Optimal $L^\infty $ estimates for the finite element method on irregular meshes.Math. Comp. 30 (1976), 681–697. MR 0436617; reference:[32] D. Smylie: A near optimal order approximation to a class of two sided nonlinear degenerate parabolic partial differential equations.Ph. D. Thesis, University of Wyoming, 1989.; reference:[32] M. F. Wheeler: A priori $L_2$ error estimates for Galerkin approximation to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062
-
11Academic Journal
المؤلفون: Slodička, Marián
مصطلحات موضوعية: keyword:error estimate, keyword:Rothe’s method, keyword:semidiscretization in time, keyword:quasilinear parabolic Volterra integro-differential equation, keyword:rate of convergence, keyword:galerkin's method, msc:35K22, msc:45K05, msc:45L05, msc:49K22, msc:65M15, msc:65M20, msc:65R20
وصف الملف: application/pdf
Relation: mr:MR1026508; zbl:Zbl 0695.65087; reference:[1] P. G. Ciarlet: The finite element method for elliptic problems.North. Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174; reference:[2] J. Descloux: Basic properties of Sobolev spaces, approximation by finite elements.Ecole polytechnique féderale Lausanne, Switzerland 1975.; reference:[3] G. Di Blasio: Linear parabolic evolution equations in $L_p$-spaces.Ann. Mat. Рurа Appl. 138 (1984), 55-104. MR 0779538, 10.1007/BF01762539; reference:[4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numerique des inequations variationelles.Dunod, Paris 1976.; reference:[5] D. Henry: Geometric theory of semilinear parabolic equations.Springer-Verlag, Berlin - Heidelberg-New York 1981. Zbl 0456.35001, MR 0610244; reference:[6] J. Kačur: Application of Rothe's method to evolution integrodifferential equations.Universität Heidelberg, SFB 123, 381, 1986.; reference:[7] J. Kačur: Method or Rothe in evolution equations.Teubner Texte zur Mathematik 80, Leipzig 1985. MR 0834176; reference:[8] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102; reference:[9] M. Marino A. Maugeri: $L_p$-theory and partial Hölder continuity for quasilinear parabolic systems of higher order with strictly controlled growth.Ann. Mat. Рurа Appl. 139 (1985), 107-145. MR 0798171, 10.1007/BF01766852; reference:[10] V. Pluschke: Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method.(to appear in Czechoslovak. Math. J.). Zbl 0671.35037, MR 0962908; reference:[11] K. Rektorys: The method of discretization in time and and partial differential equations.D. Reidel. Publ. Do., Dordrecht-Boston-London 1982. MR 0689712; reference:[12] Ch. G. Simander: On Dirichlet's boundary value problem.Lecture Notes in Math. 268, Springer-Verlag, Berlin-Heidelberg-New York 1972.; reference:[13] M. Slodička: An investigation of convergence and error estimate of approximate solution for quasiliriear integrodifferential equation.(to appear).; reference:[14] W. von Wahl: The equation $u' + A(t) u = f$ in a Hilbert space and $L_p$-estimates for parabolic equations.J. London Math. Soc. 25 (1982), 483 - 497. Zbl 0493.35050, MR 0657505, 10.1112/jlms/s2-25.3.483; reference:[15] V. Thomee: Galerkin finite element method for parabolic problems.Lecture Notes in Math. 1054, Springer-Verlag, Berlin -Heidelberg-New York-Tokyo 1984. MR 0744045; reference:[16] M. F. Wheeler: A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations.SIAM. J. Numer. Anal. 10 (1973), 723 - 759. MR 0351124, 10.1137/0710062
-
12Academic Journal
المؤلفون: Haslinger, Jaroslav, Hlaváček, Ivan
مصطلحات موضوعية: keyword:piecewise linear elements, keyword:error estimate, keyword:exact solution sufficiently smooth, keyword:solution not regular, keyword:convergence, msc:49A29, msc:49J40, msc:49M15, msc:65N15, msc:65N30, msc:73K25, msc:73T05, msc:74A55, msc:74M15, msc:74S05
وصف الملف: application/pdf
Relation: mr:MR0623506; zbl:Zbl 0465.73144; reference:[1] J. Haslinger I. Hlaváček: Contact between elastic bodies. Part I. Continuous problems.Apl. Mat. 25 (1980), 324-348. MR 0590487; reference:[2] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892; reference:[3] M. Zlámal: Curved elements in the finite element method.SIAM J. Numer. Anal. 10, (1973), 229-240. MR 0395263, 10.1137/0710022; reference:[4] G. Strang G. Fix: An analysis of the finite element method.Prentice-Hall, 1973. MR 0443377; reference:[5] J. Nitsche: Über ein Variationsprinzip zur Lösung von Dirichlet-Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. MR 0341903, 10.1007/BF02995904; reference:[6] I. Hlaváček J. Lovíšek: Finite element analysis of the Signorini problem in semi-coercive cases.Apl. Mat. 25 (1980), 274-285. MR 0583588; reference:[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584; reference:[8] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary.Apl. Mat. 22(1977), 180-187. Zbl 0434.65083, MR 0440956; reference:[9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory.Numer. Math. 28 (1977), 431 - 443. MR 0448949, 10.1007/BF01404345
-
13Academic Journal
المؤلفون: Bose, Subhas Chandra, Kundu, Madhav Chandra
مصطلحات موضوعية: keyword:quadrature formula, keyword:error estimate, keyword:functions with simple pole, keyword:Chebyshev points, msc:41A55, msc:65D30, msc:65D32
وصف الملف: application/pdf
Relation: mr:MR0596846; zbl:Zbl 0457.65007; reference:[1] N. I. Achieser: Theory of approximation.(translated by C. J. Hyman). Frederick Ungar Publishing Co., New York, 1956. Zbl 0072.28403, MR 0095369; reference:[2] N. K. Basu: Approximate integration near a simple pole using Chebyshev abscissas.Mathematica, Vol. 13 (36), 5-11 (1971). MR 0301898; reference:[3] E. Isaacson H. B. Keller: Analysis of numerical methods.John Wiley and Sons, Inc., New York, 1966. MR 0201039; reference:[4] M. C. Kundu: Approximate integration near a simple pole using Chebyshev points of the second kind.Bulletin Mathematique, T. 21 (69), nr. 3-4(1977). Zbl 0368.65018, MR 0474711; reference:[5] W. A. Markoff: Über die Funktionen, die an einem gegebenen Intervall möglichst wenig von Null abweichen.Math. Ann. 77, 213-258 (1916). MR 1511855, 10.1007/BF01456902; reference:[6] G. Opitz: Genäherte Integration in der Nähe eines einfachen Pols.ZAMM, 41, 263-264 (1961). Zbl 0102.11703, MR 0126104, 10.1002/zamm.19610410607