يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"keyword:equivariant cohomology"', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Yadav, Raj Bhawan

    وصف الملف: application/pdf

    Relation: mr:MR4632852; zbl:Zbl 07729532; reference:[1] Frégier, Y.: A new cohomology theory associated to deformations of Lie algebra morphisms.Lett. Math. Phys. 70 (2004), 97-107. Zbl 1136.17306, MR 2108705, 10.1007/s11005-004-4289-0; reference:[2] Gerstenhaber, M.: The cohomology structure of an associative ring.Ann. Math. (2) 78 (1963), 267-288. Zbl 0131.27302, MR 0161898, 10.2307/1970343; reference:[3] Gerstenhaber, M.: On the deformation of rings and algebras.Ann. Math. (2) 79 (1964), 59-103. Zbl 0123.03101, MR 0171807, 10.2307/1970484; reference:[4] Gerstenhaber, M.: On the deformation of rings and algebras. II.Ann. Math. (2) 84 (1966), 1-19. Zbl 0147.28903, MR 0207793, 10.2307/1970528; reference:[5] Gerstenhaber, M.: On the deformation of rings and algebras. III.Ann. Math. (2) 88 (1968), 1-34. Zbl 0182.05902, MR 0240167, 10.2307/1970553; reference:[6] Gerstenhaber, M.: On the deformation of rings and algebras. IV.Ann. Math. (2) 99 (1974), 257-276. Zbl 0281.16016, MR 0389978, 10.2307/1970900; reference:[7] Gerstenhaber, M., Schack, S. D.: On the deformation of algebra morphisms and diagrams.Trans. Am. Math. Soc. 279 (1983), 1-50. Zbl 0544.18005, MR 0704600, 10.1090/S0002-9947-1983-0704600-5; reference:[8] Gerstenhaber, M., Schack, S. D.: On the cohomology of an algebra morphism.J. Algebra 95 (1985), 245-262. Zbl 0595.16021, MR 0797666, 10.1016/0021-8693(85)90104-8; reference:[9] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. I.Ann. Math. (2) 67 (1958), 328-401. Zbl 0128.16901, MR 0112154, 10.2307/1970009; reference:[10] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. II.Ann. Math. (2) 67 (1958), 403-466. Zbl 1307.14016, MR 0112154, 10.2307/1969867; reference:[11] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. III: Stability theorems for complex structures.Ann. Math. (2) 71 (1960), 43-76. Zbl 0128.16902, MR 0115189, 10.2307/1969879; reference:[12] Majumdar, A., Mukherjee, G.: Deformation theory of dialgebras.$K$-Theory 27 (2002), 33-60. Zbl 1016.16026, MR 1936584, 10.1023/A:1020833326579; reference:[13] Mandal, A.: Deformation of Leibniz algebra morphisms.Homology Homotopy Appl. 9 (2007), 439-450. Zbl 1162.17002, MR 2299806, 10.4310/HHA.2007.v9.n1.a17; reference:[14] Mukherjee, G., Yadav, R. B.: Equivariant one-parameter deformations of associative algebras.J. Algebra Appl. 19 (2020), Article ID 2050114, 18 pages. Zbl 1440.13064, MR 4120091, 10.1142/S0219498820501145; reference:[15] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras.Bull. Am. Math. Soc. 72 (1966), 1-29. Zbl 0136.30502, MR 0195995, 10.1090/S0002-9904-1966-11401-5; reference:[16] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras.Bull. Am. Math. Soc. 73 (1967), 175-179. Zbl 0153.04402, MR 0204575, 10.1090/S0002-9904-1967-11703-8; reference:[17] Yau, D.: Deformation theory of dialgebra morphisms.Algebra Colloq. 15 (2008), 279-292. Zbl 1177.17004, MR 2400183, 10.1142/S1005386708000254