يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:equilibrium problem"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Yin, Lulu, Liu, Hongwei, Yang, Jun

    وصف الملف: application/pdf

    Relation: mr:MR4409307; zbl:Zbl 07547196; reference:[1] Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). Zbl 1218.47001, MR 2798533, 10.1007/978-1-4419-9467-7; reference:[2] Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria.EURO Advanced Tutorials on Operational Research. Springer, Cham (2019). Zbl 06954058, MR 3838394, 10.1007/978-3-030-00205-3; reference:[3] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.Math. Stud. 63 (1994), 123-145. Zbl 0888.49007, MR 1292380; reference:[4] Daniele, P., Giannessi, F., (eds.), A. Maugeri: Equilibrium Problems and Variational Models.Nonconvex Optimization and Its Applications 68. Kluwer, Dordrecht (2003). Zbl 1030.00031, MR 2042582, 10.1007/978-1-4613-0239-1; reference:[5] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. 1.Springer Series in Operations Research. Springer, New York (2003). Zbl 1062.90001, MR 1955648, 10.1007/b97543; reference:[6] Fan, K.: A minimax inequality and applications.Inequalities. III Academic Press, New York (1972), 103-113. Zbl 0302.49019, MR 0341029; reference:[7] am, S. D. Fl\accent23, Antipin, A. S.: Equilibrium programming using proximal-like algorithms.Math. Program. 78 (1997), 29-41. Zbl 0890.90150, MR 1454787, 10.1007/BF02614504; reference:[8] Hieu, D. V.: Halpern subgradient extragradient method extended to equilibrium problems.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111 (2017), 823-840. Zbl 1378.65136, MR 3661152, 10.1007/s13398-016-0328-9; reference:[9] Hieu, D. V.: Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems.Numer. Algorithms 77 (2018), 983-1001. Zbl 06860399, MR 3779075, 10.1007/s11075-017-0350-9; reference:[10] Hieu, D. V.: The convergence rate of a golden ratio algorithm for equilibrium problems.Available at https://arxiv.org/abs/1810.03564 (2018), 11 pages.; reference:[11] Hieu, D. V.: New inertial algorithm for a class of equilibrium problems.Numer Algorithms 80 (2019), 1413-1436. Zbl 07042055, MR 3927239, 10.1007/s11075-018-0532-0; reference:[12] Hieu, D. V., Cho, Y. J., Xiao, Y.-b.: Modified extragradient algorithms for solving equilibrium problems.Optimization 67 (2018), 2003-2029. Zbl 1416.90050, MR 3885897, 10.1080/02331934.2018.1505886; reference:[13] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces.Optimization 69 (2020), 2279-2304. Zbl 1459.65096, MR 4156869, 10.1080/02331934.2019.1683554; reference:[14] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces.Vietnam J. Math. 49 (2021), 1165-1183. Zbl 7425500, MR 4319545, 10.1007/s10013-020-00447-7; reference:[15] Hieu, D. V., Strodiot, J. J., Muu, L. D.: Modified golden ratio algorithms for solving equilibrium problems.Available at https://arxiv.org/abs/1907.04013 (2019), 14 pages.; reference:[16] Hieu, D. V., Strodiot, J. J., Muu, L. D.: An explicit extragradient algorithm for solving variational inequalities.J. Optim. Theory Appl. 185 (2020), 476-503. Zbl 07198926, MR 4096353, 10.1007/s10957-020-01661-6; reference:[17] Hieu, D. V., Thong, D. V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities.J. Glob. Optim. 70 (2018), 385-399. Zbl 1384.65041, MR 3761263, 10.1007/s10898-017-0564-3; reference:[18] Kim, D. S., Vuong, P. T., Khanh, P. D.: Qualitative properties of strongly pseudomonotone variational inequalities.Optim. Lett. 10 (2016), 1669-1679. Zbl 1392.90115, MR 3556951, 10.1007/s11590-015-0960-x; reference:[19] Konnov, I. V.: Combined Relaxation Methods for Variational Inequalities.Lecture Notes in Economics and Mathematical Systems 495. Springer, Berlin (2001). Zbl 0982.49009, MR 1795730, 10.1007/978-3-642-56886-2; reference:[20] Konnov, I. V.: Equilibrium Models and Variational Inequalities.Mathematics in Science and Engineering 210. Elsevier, Amsterdam (2007). Zbl 1140.91056, MR 2503647, 10.1016/s0076-5392(07)x8001-9; reference:[21] Korpelevich, G. M.: An extragradient method for finding saddle points and other problems.Ehkon. Mat. Metody Russian 12 (1976), 747-756. Zbl 0342.90044, MR 0451121; reference:[22] Malitsky, Y.: Golden ratio algorithms for variational inequalities.Math. Program. 184 (2020), 383-410. Zbl 07263698, MR 4037890, 10.1007/s10107-019-01416-w; reference:[23] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. French 4 (1970), 154-158. Zbl 0215.21103, MR 298899, 10.1051/m2an/197004R301541; reference:[24] Muu, L. D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria.Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. Zbl 0773.90092, MR 1171603, 10.1016/0362-546X(92)90159-C; reference:[25] Muu, L. D., Quy, N. V.: On existence and solution methods for strongly pseudomonotone equilibrium problems.Vietnam J. Math. 43 (2015), 229-238. Zbl 1317.47058, MR 3349814, 10.1007/s10013-014-0115-x; reference:[26] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Computer Science and Applied Mathematics. Academic Press, New York (1970). Zbl 0241.65046, MR 0273810, 10.1016/c2013-0-11263-9; reference:[27] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056; reference:[28] Tran, D. Q., Dung, M. L., Nguyen, V. H.: Extragradient algorithms extended to equilibrium problems.Optimization 57 (2008), 749-776. Zbl 1152.90564, MR 2473940, 10.1080/02331930601122876; reference:[29] Vinh, N. T.: Golden ratio algorithms for solving equilibrium problems in Hilbert spaces.Available at https://arxiv.org/abs/1804.01829 (2018), 25 pages.; reference:[30] Yang, J., Liu, H.: A self-adaptive method for pseudomonotone equilibrium problems andvariational inequalities.Comput. Optim. Appl. 75 (2020), 423-440. Zbl 1432.49013, MR 4064596, 10.1007/s10589-019-00156-z

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3066821; zbl:Zbl 1275.47105; reference:[1] Agarwal, R. P., Balaj, M., O'Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces.Appl. Anal. 88 (2009), 1691-1699. Zbl 1223.47057, MR 2588412, 10.1080/00036810903331874; reference:[2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed.Springer Berlin (2006). Zbl 1156.46001, MR 2378491; reference:[3] Ansari, Q. H., Farajzadeh, A. P., Schaible, S.: Existence of solutions of vector variational inequalities and vector complementarity problems.J. Glob. Optim. 45 (2009), 297-307. Zbl 1226.49015, MR 2539162, 10.1007/s10898-008-9375-x; reference:[4] Ansari, Q. H., Yao, J. C.: An existence result for the generalized vector equilibrium problem.Appl. Math. Lett. 12 (1999), 53-56. Zbl 1014.49008, MR 1751352, 10.1016/S0893-9659(99)00121-4; reference:[5] Balaj, M.: An intersection theorem with applications in minimax theory and equilibrium problem.J. Math. Anal. Appl. 336 (2007), 363-371. Zbl 1124.49019, MR 2348511, 10.1016/j.jmaa.2007.02.065; reference:[6] Balaj, M.: A fixed point-equilibrium theorem with applications.Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. Zbl 1213.54061, MR 2777781, 10.36045/bbms/1292334066; reference:[7] Balaj, M., O'Regan, D.: Inclusion and intersection theorems with applications in equilibrium theory in $G$-convex spaces.J. Korean Math. Soc. 47 (2010), 1017-1029. Zbl 1203.47092, MR 2723006, 10.4134/JKMS.2010.47.5.1017; reference:[8] Fan, K.: A generalization of Tychonoff's fixed point theorem.Math. Ann. 142 (1961), 305-310. Zbl 0093.36701, MR 0131268, 10.1007/BF01353421; reference:[9] Farajzadeh, A. P., Noor, M. A., Zainab, S.: Mixed quasi complementarity problems in topological vector spaces.J. Glob. Optim. 45 (2009), 229-235. Zbl 1193.90204, MR 2539158, 10.1007/s10898-008-9368-9; reference:[10] Himmelberg, C. J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368, 10.1016/0022-247X(72)90128-X; reference:[11] Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization.J. Math. Anal. Appl. 179 (1993), 537-546. Zbl 0791.46002, MR 1249837, 10.1006/jmaa.1993.1368; reference:[12] Khan, S. A.: Generalized vector implicit quasi complementarity problems.J. Glob. Optim. 49 (2011), 695-705. Zbl 1242.90261, MR 2781983, 10.1007/s10898-010-9557-1; reference:[13] Khanh, P. Q., Quan, N. H.: Intersection theorems, coincidence theorems and maximal-element theorems in $GFC$-spaces.Optimization 59 (2010), 115-124. Zbl 1185.49007, MR 2765472, 10.1080/02331930903500324; reference:[14] Köthe, G.: Topological Vector Spaces I.Springer Berlin (1969). MR 0248498; reference:[15] Lan, K. Q.: An intersection theorem for multivalued maps and applications.Comput. Math. Appl. 48 (2004), 725-729. Zbl 1060.49016, MR 2105247, 10.1016/j.camwa.2004.03.003; reference:[16] Lee, B. S., Farajzadeh, A. P.: Generalized vector implicit complementarity problems with corresponding variational inequality problems.Appl. Math. Lett. 21 (2008), 1095-1100. Zbl 1211.90249, MR 2450657, 10.1016/j.aml.2007.12.008; reference:[17] Lu, H., Tang, D.: An intersection theorem in L-convex spaces with applications.J. Math. Anal. Appl. 312 (2005), 343-356. Zbl 1090.47045, MR 2175223, 10.1016/j.jmaa.2005.03.085

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR0854322; zbl:Zbl 0601.73018; reference:[1] I. Hlaváček J. Nečas: On Inequalities of Korn's Type.Arch. Ratl. Mech. Anal., 36, (1970), 305-334. MR 0252844, 10.1007/BF00249518; reference:[2] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655; reference:[3] J. P. Aubin: Applied functional analysis.John Wiley-Sons, New York 1979. Zbl 0424.46001, MR 0549483; reference:[4] K. Stamm H. Witte: Sandwichkonstruktionen - Berechnung, Fertigung, Ausführung.Springer-Verlag, Wien-New York 1974.; reference:[5] R. M. Christensen: Mechanics of composite materials.John Wiley, New York, 1979.; reference:[6] : Mechanika elementov konstrukcij.Tom 1, 2, 3, Kijev, Nauka dumka, 1983.; reference:[7] C. A. Ambartsumjan: Общая теория анизотропных оболочек.Nauka, Moskva 1974.