يعرض 1 - 20 نتائج من 26 نتيجة بحث عن '"keyword:duality"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Khatri, Sony, Prasad, Ashish Kumar

    وصف الملف: application/pdf

    Relation: mr:MR4681018; zbl:Zbl 07790657; reference:[1] Antczak, T.: A new approach to multiobjective programming with a modified objective function.J. Global Optim. 27 (2003), 485-495. MR 2012818; reference:[2] Antczak, T.: An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions.Numer. Funct. Anal. Optim, 25 (2004), 423-438. MR 2106268; reference:[3] Antczak, T.: A new method of solving nonlinear mathematical programming problems involving $r$-invex functions.Journal of Mathematical Analysis and Applications 311 (2005), 313-323. MR 2165479; reference:[4] Antczak, T.: Saddle point criteria in an $\eta$-approximation method for nonlinear mathematical programming problems involving invex functions.J. Optim. Theory Appl, 132 (2007), 71-87. MR 2303801; reference:[5] Antczak, T.: On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems.J. Global Optim. 59 (2014), 757-785. MR 3226830; reference:[6] Antczak, T., Michalak, A.: $\eta$-Approximation method for non-convex multiobjective variational problems.Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. MR 3673740; reference:[7] Bector, C. R., Husain, I.: Duality for multiobjective variational problems.J. Math. Anal. Appl. 166 (1992), 214-229. MR 1159648; reference:[8] Chandra, S., Craven, B. D., Husain, I.: Continuous programming containing arbitrary norms.J. Austral. Math. Soc. 39 (1985), 28-38. MR 0786973; reference:[9] Dorn, W. S.: A symmetric dual theorem for quadratic programs.J. Oper. Res. Soc. Japan 2 (1960), 93-97. MR 0120038; reference:[10] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games.J. Optim. Theory Appl. 121 (2004), 301-325. Zbl 1099.91023, MR 2085280; reference:[11] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions.J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247X(81)90123-2; reference:[12] Husain, I., Ahmed, A.: Mixed type duality for a variational problem with strong pseudoinvex constraints.Soochow J. Math. 32 (2006), 589-603. MR 2265973; reference:[13] Jayswal, A., Antczak, T., Jha, S.: On equivalence between a variational problem and its modified variational problem with the $\eta$-objective function under invexity.Int. Trans. Oper. Res. 26 (2019), 2053-2070. MR 3939131; reference:[14] Jha, S., Das, P., Antczak, T.: Exponential type duality for $\eta$-approximated variational problems.Yugoslav J. Oper. Res. 30 (2019), 19-43. MR 4063168; reference:[15] Khazafi, K., Rueda, N., Enflo, P.: Sufficiency and duality for multiobjective control problems under generalized (B, $\rho$)-type I functions.J. Global Optim. 46 (2010), 111-132. MR 2566139; reference:[16] Li, T., Wang, Y., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems.J. Global Optim. 38 (2007), 405-419. Zbl 1175.90317, MR 2328021; reference:[17] Mond, B., Chandra, S., Husain, I.: Duality for variational problems with invexity.J. Math. Anal. Appl. 134 (1988), 322-328. MR 0961341; reference:[18] Mond, B., Hanson, M. A.: Duality for variational problems.J. Math. Anal. Appl. 18 (1967), 355-364. MR 0209943; reference:[19] Mond, B., Weir, T.: Generalized concavity and duality.In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. MR 0652702; reference:[20] Mond, B., Husain, I.: Sufficient optimality criteria and duality for variational problems with generalized invexity.J. Austral. Math. Soc. 31 (1989), 108-121. MR 1002095; reference:[21] Nahak, C., Nanda, S.: Duality for multiobjective variational problems with invexity.Optimization 36 (1996), 235-248. MR 1419265; reference:[22] Nahak, C., Behera, N.: Optimality conditions and duality for multiobjective variational problems with generalized $\rho-(\eta,\theta)$ - B-type-I functions.J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. MR 2795387; reference:[23] Zalmai, G. J.: Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems.Optimization 30 (1994), 15-51. MR 1277803; reference:[24] Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized invexity.J. Math. Anal. Appl. 256 (2001), 446-461. MR 1821749

  2. 2
    Academic Journal

    المؤلفون: Yuan, Qianqian, Yao, Hailou

    وصف الملف: application/pdf

    Relation: mr:MR4632853; zbl:Zbl 07729533; reference:[1] Adachi, T., Iyama, O., Reiten, I.: $\tau$-tilting theory.Compos. Math. 150 (2014), 415-452. Zbl 1330.16004, MR 3187626, 10.1112/S0010437X13007422; reference:[2] Takhman, K. Al: Equivalences of comodule categories for coalgebras over rings.J. Pure Appl. Algebra 173 (2002), 245-271. Zbl 1004.16039, MR 1916479, 10.1016/S0022-4049(02)00013-0; reference:[3] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13. Springer, New York (1974). Zbl 0301.16001, MR 0417223, 10.1007/978-1-4612-4418-9; reference:[4] Hügel, L. Angeleri, Hrbek, M.: Silting modules over commutative rings.Int. Math. Res. Not. 2017 (2017), 4131-4151. Zbl 1405.13018, MR 3671512, 10.1093/imrn/rnw147; reference:[5] Hügel, L. Angeleri, Marks, F., Vitória, J.: Silting modules.Int. Math. Res. Not. 2016 (2016), 1251-1284. Zbl 1367.16005, MR 3493448, 10.1093/imrn/rnv191; reference:[6] Colby, R. R., Fuller, K. R.: Equivalence and Duality for Module Categories: With Tilting and Cotilting for Rings.Cambridge Tracts in Mathematics 161. Cambridge University Press, Cambridge (2004). Zbl 1069.16001, MR 2048277, 10.1017/CBO9780511546518; reference:[7] Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories.J. Algebra 178 (1995), 614-634. Zbl 0849.16033, MR 1359905, 10.1006/jabr.1995.1368; reference:[8] Doi, Y.: Homological coalgebra.J. Math. Soc. Japan 33 (1981), 31-50. Zbl 0459.16007, MR 0597479, 10.2969/jmsj/03310031; reference:[9] Keller, B., Vossieck, D.: Aisles in derived categories.Bull. Soc. Math. Belg., Sér. A 40 (1988), 239-253. Zbl 0671.18003, MR 0976638; reference:[10] Krause, H., Saorín, M.: On minimal approximations of modules.Trends in the Representation Theory of Finite Dimensional Algebras Contemporary Mathematics 229. AMS, Providence (1998), 227-236. Zbl 0959.16003, MR 1676223, 10.1090/conm/229; reference:[11] Lin, B. I.: Semiperfect coalgebras.J. Algebra 49 (1977), 357-373. Zbl 0369.16010, MR 0498663, 10.1016/0021-8693(77)90246-0; reference:[12] Positselski, L.: Dedualizing complexes of bicomodules and MGM duality over coalgebras.Algebr. Represent. Theory 21 (2018), 737-767. Zbl 1394.16040, MR 3826725, 10.1007/s10468-017-9736-6; reference:[13] Simsom, D.: Coalgebras, comodules, pseudocompact algebras and tame comodule type.Colloq. Math. 90 (2001), 101-150. Zbl 1055.16038, MR 1874368, 10.4064/cm90-1-9; reference:[14] Simson, D.: Cotilted coalgebras and tame comodule type.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 421-445. Zbl 1186.16039, MR 2500051; reference:[15] Takeuchi, M.: Morita theorems for categories of comodules.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 629-644. Zbl 0385.18007, MR 0472967; reference:[16] Wang, M.-Y.: Some co-hom functors and classical tilting comodules.Southeast Asian Bull. Math. 22 (1998), 455-468. Zbl 0942.16047, MR 1811188; reference:[17] Wang, M.: Tilting comodules over semi-perfect coalgebras.Algebra Colloq. 6 (1999), 461-472. Zbl 0945.16034, MR 1809680; reference:[18] Wang, M.: Morita Equivalence and Its Generalizations.Science Press, Beijing (2001).; reference:[19] Yuan, Q. Q., Yao, H.-L.: On silting comodules.J. Shandong. Univ. 57 (2022), 1-7. 10.6040/j.issn.1671-9352.0.2021.503

  3. 3
    Academic Journal

    المؤلفون: Tkachuk, Vladimir V.

    وصف الملف: application/pdf

    Relation: mr:MR4186115; zbl:Zbl 07286012; reference:[1] Arkhangel'skiĭ A. V.: Factorization theorems and spaces of functions: stability and monolithism.Dokl. Akad. Nauk SSSR 265 (1982), no. 5, 1039–1043 (Russian). MR 0670475; reference:[2] Arkhangel'skiĭ A. V.: Continuous mappings, factorization theorems and spaces of functions.Trudy Moskov. Mat. Obshch. 47 (1984), 3–21, 246 (Russian). MR 0774944; reference:[3] Arkhangel'skiĭ A. V.: Topological Function Spaces.Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519, 10.1007/978-94-011-2598-7_4; reference:[4] Asanov M. O.: On cardinal invariants of spaces of continuous functions.Sovr. Topologia i Teoria Mnozhestv 2 (1979), 8–12 (Russian).; reference:[5] Engelking R.: General Topology,.Monografie Matematyczne, 60, PWN—Polish Scientific Publishers, Warsaw, 1977. MR 0500780; reference:[6] Gruenhage G., Tkachuk V. V., Wilson R. G.: Domination by small sets versus density.Topology Appl. 282 (2020), 107306, 10 pages. MR 4116835, 10.1016/j.topol.2020.107306; reference:[7] Hodel R. E.: Cardinal Functions. I.Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, 1–61. MR 0776620; reference:[8] Hušek M.: Topological spaces without $\kappa$-accessible diagonal.Comment. Math. Univ. Carolinae 18 (1977), no. 4, 777–788. MR 0515009; reference:[9] Juhász I., Szentmiklóssy Z.: Convergent free sequences in compact spaces.Proc. Amer. Math. Soc. 116 (1992), no. 4, 1153–1160. Zbl 0767.54002, MR 1137223, 10.2307/2159502; reference:[10] Noble N.: The density character of function spaces.Proc. Amer. Math. Soc. 42 (1974), no. 1, 228–233. MR 0328855, 10.1090/S0002-9939-1974-0328855-4; reference:[11] Pytkeev E. G.: Tightness of spaces of continuous functions.Uspekhi Mat. Nauk 37 (1982), no. 1(223), 157–158 (Russian). MR 0643782; reference:[12] Tkachuk V. V.: A $C_p$-Theory Problem Book.Topological and Function Spaces, Problem Books in Mathematics, Springer, New York, 2011. MR 3024898; reference:[13] Tkachuk V. V.: A $C_p$-Theory Problem Book.Special Features of Function Spaces, Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753; reference:[14] Tkachuk V. V.: A $C_p$-Theory Problem Book.Compactness in Function Spaces, Problem Books in Mathematics, Springer, Cham, 2015. MR 3243753

  4. 4
    Academic Journal

    المؤلفون: Hou, Bo, Yang, Shilin

    وصف الملف: application/pdf

    Relation: mr:MR4039610; zbl:07144865; reference:[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309; reference:[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608; reference:[3] Demonet, L.: Skew group algebras of path algebras and preprojective algebras.J. Algebra 323 (2010), 1052-1059. Zbl 1210.16017, MR 2578593, 10.1016/j.jalgebra.2009.11.034; reference:[4] Deng, B., Du, J.: Frobenius morphisms and representations of algebras.Trans. Am. Math. Soc. 358 (2006), 3591-3622. Zbl 1095.16007, MR 2218990, 10.1090/S0002-9947-06-03812-8; reference:[5] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups.Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). Zbl 1154.17003, MR 2457938, 10.1090/surv/150; reference:[6] Gabriel, P., Roĭter, A. V.: Algebra VIII. Representations of Finite-Dimensional Algebras.Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). Zbl 0839.16001, MR 1239447; reference:[7] Guo, J.: On the McKay quivers and $m$-Cartan matrices.Sci. China, Ser. A 52 (2009), 511-516. Zbl 1181.16014, MR 2491769, 10.1007/s11425-008-0176-y; reference:[8] Hou, B., Yang, S.: Skew group algebras of deformed preprojective algebras.J. Algebra 332 (2011), 209-228. Zbl 1252.16010, MR 2774685, 10.1016/j.jalgebra.2011.02.007; reference:[9] Hou, B., Yang, S.: Generalized McKay quivers, root system and Kac-Moody algebras.J. Korean Math. Soc. 52 (2015), 239-268. Zbl 1335.16011, MR 3318368, 10.4134/JKMS.2015.52.2.239; reference:[10] Hubery, A.: Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac.Ph.D. Thesis, University of Leeds, Leeds (2002). MR 2025328; reference:[11] Hubery, A.: Quiver representations respecting a quiver automorphism: a generalization of a theorem of Kac.J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. Zbl 1062.16021, MR 2025328, 10.1112/S0024610703004988; reference:[12] Kac, V. G.: Infinite-Dimensional Lie Algebras.Cambridge University Press, Cambridge (1990). Zbl 0716.17022, MR 1104219, 10.1017/CBO9780511626234; reference:[13] Liu, G. X.: Classification of Finite Dimensional Basic Hopf Algebras and Related Topics.Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005).; reference:[14] McKay, J.: Graphs, singularities, and finite groups.The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. Zbl 0451.05026, MR 0604577, 10.1090/pspum/037; reference:[15] Reiten, I., Riedtmann, C.: Skew group algebras in the representation theory of Artin algebras.J. Algebra 92 (1985), 224-282. Zbl 0549.16017, MR 0772481, 10.1016/0021-8693(85)90156-5; reference:[16] Zhang, M.: The dual quiver of the Auslander-Reiten quiver of path algebras.Algebr. Represent. Theory 15 (2012), 203-210. Zbl 1252.16015, MR 2892506, 10.1007/s10468-010-9237-3; reference:[17] Zhang, M., Li, F.: Representations of skew group algebras induced from isomorphically invariant modules over path algebras.J. Algebra 321 (2009), 567-581. Zbl 1207.16015, MR 2483282, 10.1016/j.jalgebra.2008.09.035

  5. 5
    Academic Journal

    المؤلفون: Ding, Wei, Chen, Jiao, Niu, Yaoming

    وصف الملف: application/pdf

    Relation: mr:MR3989277; zbl:Zbl 07088815; reference:[1] Bownik, M.: Duality and interpolation of anisotropic Triebel-Lizorkin spaces.Math. Z. 259 (2008), 131-169. Zbl 1213.42062, MR 2375620, 10.1007/s00209-007-0216-2; reference:[2] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bidisc.Mittag-Leffler Report. No. 7 (1974). MR 1555104; reference:[3] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality of $H^1$ with BMO on the bidisc.Ann. Math. (2) 112 (1980), 179-201. Zbl 0451.42014, MR 0584078, 10.2307/1971324; reference:[4] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains.Am. J. Math. 104 (1982), 455-468. Zbl 0513.42019, MR 0658542, 10.2307/2374150; reference:[5] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$ theory on product domains.Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. Zbl 0557.42007, MR 0766959, 10.1090/S0273-0979-1985-15291-7; reference:[6] Cruz-Uribe, D., Martell, J. M., Pérez, C.: Sharp weighted estimates for classical operators.Adv. Math. 229 (2012), 408-441. Zbl 1236.42010, MR 2854179, 10.1016/j.aim.2011.08.013; reference:[7] Ding, W., Lu, G.: Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators.Trans. Am. Math. Soc. 368 (2016), 7119-7152. Zbl 1338.42025, MR 3471087, 10.1090/tran/6576; reference:[8] Ding, W., Zhu, Y.: Duality of weighted multiparameter Triebel-Lizorkin spaces.Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1083-1104. Zbl 06873879, MR 3657209, 10.1016/S0252-9602(17)30059-0; reference:[9] Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces.Sci. China, Math. 60 (2017), 2093-2154. Zbl 1395.42058, MR 3714569, 10.1007/s11425-016-9024-2; reference:[10] Fefferman, R.: Strong differentiation with respect to measures.Am. J. Math. 103 (1981), 33-40. Zbl 0475.42019, MR 0601461, 10.2307/2374188; reference:[11] Fefferman, R.: Calderón-Zygmund theory for product domains: $H^p$ spaces.Proc. Natl. Acad. Sci. USA 83 (1986), 840-843. Zbl 0602.42023, MR 0828217, 10.1073/pnas.83.4.840; reference:[12] Fefferman, R.: Harmonic analysis on product spaces.Ann. Math. (2) 126 (1987), 109-130. Zbl 0644.42017, MR 0898053, 10.2307/1971346; reference:[13] Fefferman, R., Stein, E. M.: Singular integrals on product spaces.Adv. Math. 45 (1982), 117-143. Zbl 0517.42024, MR 0664621, 10.1016/S0001-8708(82)80001-7; reference:[14] Ferguson, S. H., Lacey, M. T.: A characterization of product BMO by commutators.Acta Math. 189 (2002), 143-160. Zbl 1039.47022, MR 1961195, 10.1007/BF02392840; reference:[15] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34-170. Zbl 0716.46031, MR 1070037, 10.1016/0022-1236(90)90137-A; reference:[16] Grafakos, L.: Classical and Modern Fourier Analysis.Pearson/Prentice Hall, Upper Saddle River (2004). Zbl 1148.42001, MR 2449250; reference:[17] Gundy, R. F., Stein, E. M.: $H^p$ theory for the polydisk.Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. Zbl 0405.32002, MR 0524328, 10.1073/pnas.76.3.1026; reference:[18] Han, Y., Lee, M.-Y., Lin, C.-C., Lin, Y.-C.: Calderón-Zygmund operators on product Hardy spaces.J. Funct. Anal. 258 (2010), 2834-2861. Zbl 1197.42006, MR 2593346, 10.1016/j.jfa.2009.10.022; reference:[19] Han, Y., Li, J., Lu, G.: Duality of multiparameter Hardy spaces $H^p$ on spaces of homogeneous type.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 645-685. Zbl 1213.42073, MR 2789471, 10.2422/2036-2145.2010.4.01; reference:[20] Han, Y., Li, J., Lu, G.: Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type.Trans. Am. Math. Soc. 365 (2013), 319-360. Zbl 1275.42035, MR 2984061, 10.1090/S0002-9947-2012-05638-8; reference:[21] Han, Y., Lu, G., Ruan, Z.: Boundedness criterion of Journé's class of singular integrals on multiparameter Hardy spaces.J. Funct. Anal. 264 (2013), 1238-1268. Zbl 1268.42024, MR 3010020, 10.1016/j.jfa.2012.12.006; reference:[22] Han, Y., Lu, G., Ruan, Z.: Boundedness of singular Integrals in Journé's class on weighted multiparameter Hardy spaces.J. Geom. Anal. 24 (2014), 2186-2228. Zbl 1302.42024, MR 3261735, 10.1007/s12220-013-9421-x; reference:[23] Han, Y., Lin, C., Lu, G., Ruan, Z., Sawyer, E. T.: Hardy spaces associated with different homogeneities and boundedness of composition operators.Rev. Mat. Iberoam. 29 (2013), 1127-1157. Zbl 1291.42018, MR 3148598, 10.4171/RMI/751; reference:[24] Journé, J.-L.: Calderón-Zygmund operators on product spaces.Rev. Mat. Iberoam. 1 (1985), 55-91. Zbl 0634.42015, MR 0836284, 10.4171/RMI/15; reference:[25] Journé, J.-L.: Two problems of Calderón-Zygmund theory on product spaces.Ann. Inst. Fourier 38 (1988), 111-132. Zbl 0638.47026, MR 0949001, 10.5802/aif.1125; reference:[26] Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces.Positivity 16 (2012), 213-244. Zbl 1260.46025, MR 2929088, 10.1007/s11117-011-0119-7; reference:[27] Li, B. D., Fan, X., Fu, Z. W., Yang, D.: Molecular characterization of anisotropic Musielak-Orlicz Hardy spaces and their applications.Acta Math. Sin., Engl. Ser. 32 (2016), 1391-1414. Zbl 1359.42010, MR 3557405, 10.1007/s10114-016-4741-y; reference:[28] Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications.Sci. China, Math. 59 (2016), 1669-1720. Zbl 1352.42028, MR 3536030, 10.1007/s11425-016-5157-y; reference:[29] Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation.J. Math. Anal. Appl. 456 (2017), 356-393. Zbl 1373.42028, MR 3680972, 10.1016/j.jmaa.2017.07.003; reference:[30] Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces.Acta Math. Sci., Ser. B, Engl. Ed. 38 (2018), 1-33. Zbl 06881863, MR 3733274, 10.1016/S0252-9602(17)30115-7; reference:[31] Lu, G. Z., Zhu, Y. P.: Singular integrals and weighted Triebel-Lizorkin and Besov Spaces of arbitrary number of parameters.Acta Math. Sin., Engl. Ser. 29 (2013), 39-52. Zbl 1261.42030, MR 3001008, 10.1007/s10114-012-1402-7; reference:[32] Pipher, J.: Journér's covering lemma and its extension to higher dimensions.Duke Math. J. 53 (1986), 683-690. Zbl 0645.42018, MR 0860666, 10.1215/S0012-7094-86-05337-8; reference:[33] Pisier, G.: Factorization of operators through $L^{p\infty}$ or $L^{p1}$ and non-commutative generalizations.Math. Ann. 276 (1986), 105-136. Zbl 0619.47016, MR 0863711, 10.1007/BF01450929; reference:[34] Ruan, Z.: Weighted Hardy spaces in three-parameter case.J. Math. Anal. Appl. 367 (2010), 625-639. Zbl 1198.42015, MR 2607286, 10.1016/j.jmaa.2010.02.010; reference:[35] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78, Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1; reference:[36] Verbitsky, I. E.: Imbedding and multiplier theorems for discrete Littlewood-Paley spaces.Pac. J. Math. 176 (1996), 529-556. Zbl 0865.42009, MR 1435004, 10.2140/pjm.1996.176.529; reference:[37] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel.Lecture Notes in Mathematics 2005, Springer, Berlin (2010). Zbl 1207.46002, MR 2683024, 10.1007/978-3-642-14606-0

  6. 6
    Academic Journal

    المؤلفون: Liu, Suying, Yang, Minghua

    وصف الملف: application/pdf

    Relation: mr:MR3819181; zbl:Zbl 06890380; reference:[1] Anh, B. T., Duong, X. T.: Weighted Hardy spaces associated to operators and boundedness of singular integrals.Available at https://arxiv.org/abs/1202.2063.; reference:[2] Auscher, P.: On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}^n$ and related estimates.Mem. Am. Math. Soc. 186 (2007), 75 pages. Zbl 1221.42022, MR 2292385, 10.1090/memo/0871; reference:[3] Auscher, P., Duong, X. T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces.Unpublished preprint (2005).; reference:[4] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators I: General operator theory and weights.Adv. Math. 212 (2007), 225-276. Zbl 1213.42030, MR 2319768, 10.1016/j.aim.2006.10.002; reference:[5] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators II: Off-diagonal estimates on spaces of homogeneous type.J. Evol. Equ. 7 (2007), 265-316. Zbl 1210.42023, MR 2316480, 10.1007/s00028-007-0288-9; reference:[6] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators III: Harmonic analysis of elliptic operators.J. Funct. Anal. 241 (2006), 703-746. Zbl 1213.42029, MR 2271934, 10.1016/j.jfa.2006.07.008; reference:[7] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds.J. Geom. Anal. 18 (2008), 192-248. Zbl 1217.42043, MR 2365673, 10.1007/s12220-007-9003-x; reference:[8] Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math. Nachr. 283 (2010), 392-442. Zbl 1205.42021, MR 2643020, 10.1002/mana.200910078; reference:[9] Bui, H.-Q., Duong, X. T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators.Adv. Math. 229 (2012), 2449-2502. Zbl 1241.46020, MR 2880229, 10.1016/j.aim.2012.01.005; reference:[10] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bi-disc.Mittag Leffler Report 7 (1974).; reference:[11] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality $H^1$ with BMO on the bidisc.Ann. Math. (2) 112 (1980), 179-201. Zbl 0451.42014, MR 0584078, 10.2307/1971324; reference:[12] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains.Am. J. Math. 104 (1982), 445-468. Zbl 0513.42019, MR 0658542, 10.2307/2374150; reference:[13] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$-theory on product domains.Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. Zbl 0557.42007, MR 0766959, 10.1090/S0273-0979-1985-15291-7; reference:[14] Davies, E. B.: Heat Kernels and Spectral Theory.Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989). Zbl 0699.35006, MR 0990239, 10.1017/CBO9780511566158; reference:[15] Deng, D., Song, L., Tan, C., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains.J. Geom. Anal. 17 (2007), 455-483. Zbl 1146.42003, MR 2359975, 10.1007/BF02922092; reference:[16] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.J. Funct. Anal. 264 (2013), 1409-1437. Zbl 1271.42033, MR 3017269, 10.1016/j.jfa.2013.01.006; reference:[17] Duong, X. T., MacIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains.Rev. Mat. Iberoam. 15 (1999), 233-265. Zbl 0980.42007, MR 1715407, 10.4171/RMI/255; reference:[18] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers.J. Funct. Anal. 196 (2002), 443-485. Zbl 1029.43006, MR 1943098, 10.1016/S0022-1236(02)00009-5; reference:[19] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds.J. Fourier Anal. Appl. 13 (2007), 87-111. Zbl 1133.42017, MR 2296729, 10.1007/s00041-006-6057-2; reference:[20] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds.J. Am. Math. Soc. 18 (2005), 943-973. Zbl 1078.42013, MR 2163867, 10.1090/S0894-0347-05-00496-0; reference:[21] Fefferman, R.: $A_p$ weights and singular integrals.Am. J. Math. 110 (1988), 975-987. Zbl 0665.42020, MR 0961502, 10.2307/2374700; reference:[22] García-Cuerva, J., Francia, J. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3; reference:[23] Gundy, R. F., Stein, E. M.: $H^p$ theory for the poly-disc.Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. Zbl 0405.32002, MR 0524328, 10.1073/pnas.76.3.1026; reference:[24] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Mem. Am. Math. Soc. 214 (2011), 78 pages. Zbl 1232.42018, MR 2868142, 10.1090/S0065-9266-2011-00624-6; reference:[25] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators.Math. Ann. 344 (2009), 37-116. Zbl 1162.42012, MR 2481054, 10.1007/s00208-008-0295-3; reference:[26] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators.J. Funct. Anal. 258 (2010), 1167-1224. Zbl 1205.46014, MR 2565837, 10.1016/j.jfa.2009.10.018; reference:[27] Journé, J.-L.: Calderón-Zygmund operators on product spaces.Rev. Mat. Iberoam. 1 (1985), 55-91. Zbl 0634.42015, MR 0836284, 10.4171/RMI/15; reference:[28] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces.Trans. Am. Math. Soc. 367 (2015), 121-189. Zbl 1321.58017, MR 3271256, 10.1090/S0002-9947-2014-05993-X; reference:[29] Krug, D.: A weighted version of the atomic decomposition for $H^p$ (bi-halfspace).Indian Univ. Math. J. 37 (1988), 277-300. Zbl 0635.46048, MR 0963503, 10.1512/iumj.1988.37.37014; reference:[30] Krug, D., Torchinsky, A.: A weighted version of Journé's lemma.Rev. Math. Iberoam. 10 (1994), 363-378. Zbl 0819.42009, MR 1286479, 10.4171/RMI/155; reference:[31] Liu, S., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators.J. Funct. Anal. 265 (2013), 2709-2723. Zbl 1285.42019, MR 3096987, 10.1016/j.jfa.2013.08.003; reference:[32] Liu, S., Song, L.: The atomic decomposition of weighted Hardy spaces associated to self-adjoint operators on product spaces.J. Math. Anal. Appl. 443 (2016), 92-115. Zbl 1341.42034, MR 3508481, 10.1016/j.jmaa.2016.05.021; reference:[33] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators I: Weighted norm inequalities for conical square functions.Trans. Am. Math. Soc. 369 (2017), 4193-4233. Zbl 06698812, MR 3624406, 10.1090/tran/6768; reference:[34] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of $H^1_L(w)$.Available at\ https://arxiv.org/abs/1701.00920. MR 3624406; reference:[35] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31, Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040, 10.1515/9781400826483; reference:[36] Sato, S.: Weighted inequalities on product domains.Stud. Math. 92 (1989), 59-72. Zbl 0667.42008, MR 0984850, 10.4064/sm-92-1-59-72; reference:[37] Song, L., Tan, C., Yan, L.: An atomic decomposition for Hardy spaces associated to Schrödinger operators.J. Aust. Math. Soc. 91 (2011), 125-144. Zbl 1238.42007, MR 2844951, 10.1017/S1446788711001376; reference:[38] Song, L., Xiao, J., Yan, L.: Preduals of quadratic Campanato spaces associated to operators with heat kernel bounds.Potential Anal. 41 (2014), 849-867. Zbl 1308.42024, MR 3264823, 10.1007/s11118-014-9396-7; reference:[39] Song, L., Yan, L.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces.J. Funct. Anal. 259 (2010), 1466-1490. Zbl 1202.35072, MR 2659768, 10.1016/j.jfa.2010.05.015; reference:[40] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals.Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192; reference:[41] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces.Lecture Notes in Mathematics 1381, Springer, Berlin (1989). Zbl 0676.42021, MR 1011673, 10.1007/BFb0091154; reference:[42] Zhu, X. X.: Atomic decomposition for weighted $H^p$ spaces on product domains.Sci. China, Ser. A 35 (1992), 158-168. Zbl 0801.46062, MR 1183454

  7. 7
    Academic Journal

    المؤلفون: Gaitán, Hernando

    وصف الملف: application/pdf

    Relation: mr:MR3695466; zbl:Zbl 06770145; reference:[1] Berman, J., Blok, W. J.: Algebras defined from ordered sets and the varieties they generate.Order 23 (2006), 65-88. Zbl 1096.08002, MR 2258461, 10.1007/s11083-006-9032-2; reference:[2] Celani, S. A.: A note on homomorphisms of Hilbert algebras.Int. J. Math. Math. Sci. 29 (2002), 55-61. Zbl 0993.03089, MR 1892332, 10.1155/S0161171202011134; reference:[3] Celani, S. A., Cabrer, L. M.: Duality for finite Hilbert algebras.Discrete Math. 305 (2005), 74-99. Zbl 1084.03050, MR 2186683, 10.1016/j.disc.2005.09.002; reference:[4] Celani, S. A., Cabrer, L. M., Montangie, D.: Representation and duality for Hilbert algebras.Cent. Eur. J. Math. 7 (2009), 463-478. Zbl 1184.03064, MR 2534466, 10.2478/s11533-009-0032-5; reference:[5] Celani, S. A., Montangie, D.: Hilbert algebras with supremum.Algebra Univers. 67 (2012), 237-255. Zbl 1254.03117, MR 2910125, 10.1007/s00012-012-0178-z; reference:[6] Diego, A.: Sur les algèbres de Hilbert.Collection de logique mathématique. Ser. A, vol. 21. Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966). Zbl 0144.00105, MR 0199086; reference:[7] Gaitán, H.: Congruences and closure endomorphisms of Hilbert algebras.Commun. Algebra 43 (2015), 1135-1145. Zbl 1320.03090, MR 3298124, 10.1080/00927872.2013.865039; reference:[8] Idziak, P. M.: Lattice operations in BCK-algebras.Math. Jap. 29 (1984), 839-846. Zbl 0555.03030, MR 0803438; reference:[9] Iseki, K., Tanaka, S.: An introduction to the theory of BCK-algebras.Math. Jap. 23 (1978), 1-26. Zbl 0385.03051, MR 0500283; reference:[10] Kondo, M.: Hilbert algebras are dual isomorphic to positive implicative BCK-algebras.Math. Jap. 49 (1999), 265-268. Zbl 0930.06017, MR 1687626

  8. 8
    Academic Journal

    المؤلفون: Frič, Roman, Papčo, Martin

    وصف الملف: application/pdf

    Relation: mr:MR3546805; zbl:Zbl 06670230; reference:[1] Adámek, J.: Theory of Mathematical Structures.1983, Reidel, Dordrecht, MR 0735079; reference:[2] Bugajski, S.: Statistical maps I. Basic properties.Math. Slovaca, 51, 3, 2001, 321-342, Zbl 1088.81021, MR 1842320; reference:[3] Bugajski, S.: Statistical maps II. Operational random variables.Math. Slovaca, 51, 3, 2001, 343-361, Zbl 1088.81022, MR 1842321; reference:[4] Chovanec, F., Frič, R.: States as morphisms.Internat. J. Theoret. Phys., 49, 12, 2010, 3050-3060, Zbl 1204.81011, MR 2738063, 10.1007/s10773-009-0234-4; reference:[5] Chovanec, F., Kôpka, F.: D-posets.Handbook of Quantum Logic and Quantum Structures: Quantum Structures, 2007, 367-428, Elsevier, Amsterdam, Edited by K. Engesser, D. M. Gabbay and D. Lehmann. Zbl 1139.81005, MR 2408886; reference:[6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.2000, Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, MR 1861369; reference:[7] Frič, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras.Czechoslovak Math. J., 52, 2002, 861-874, Zbl 1016.28013, MR 1940065, 10.1023/B:CMAJ.0000027239.28381.31; reference:[8] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ, 30, 2005, 21-34, Zbl 1150.60304, MR 2190245; reference:[9] Frič, R.: Extension of domains of states.Soft Comput., 13, 2009, 63-70, Zbl 1166.28006, 10.1007/s00500-008-0293-0; reference:[10] Frič, R.: On D-posets of fuzzy sets.Math. Slovaca, 64, 2014, 545-554, Zbl 1332.06005, MR 3227755, 10.2478/s12175-014-0224-8; reference:[11] Frič, R-, Papčo, M.: A categorical approach to probability.Studia Logica, 94, 2010, 215-230, Zbl 1213.60021, MR 2602573, 10.1007/s11225-010-9232-z; reference:[12] Frič, R., Papčo, M.: Fuzzification of crisp domains.Kybernetika, 46, 2010, 1009-1024, Zbl 1219.60006, MR 2797424; reference:[13] Frič, R., Papčo, M.: On probability domains.Internat. J. Theoret. Phys., 49, 2010, 3092-3100, Zbl 1204.81012, MR 2738067, 10.1007/s10773-009-0162-3; reference:[14] Frič, R., Papčo, M.: On probability domains II.Internat. J. Theoret. Phys., 50, 2011, 3778-3786, Zbl 1254.60009, MR 2860035, 10.1007/s10773-011-0855-2; reference:[15] Frič, R., Papčo, M.: On probability domains III.Internat. J. Theoret. Phys., 54, 2015, 4237-4246, Zbl 1329.81095, MR 3418298, 10.1007/s10773-014-2471-4; reference:[16] Goguen, J. A.: A categorical manifesto.Math. Struct. Comp. Sci., 1, 1991, 49-67, Zbl 0747.18001, MR 1108804, 10.1017/S0960129500000050; reference:[17] Gudder, S.: Fuzzy probability theory.Demonstratio Math., 31, 1998, 235-254, Zbl 0984.60001, MR 1623780; reference:[18] Kolmogorov, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung.1933, Springer, Berlin, Zbl 0007.21601, MR 0494348; reference:[19] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca, 44, 1994, 21-34, MR 1290269; reference:[20] Kuková, M., Navara, M.: What observables can be.Theory of Functions, Its Applications, and Related Questions, Transactions of the Mathematical Institute of N.I. Lobachevsky 46, 2013, 62-70, Kazan Federal University; reference:[21] Loève, M.: Probability theory.1963, D. Van Nostrand, Inc., Princeton, New Jersey, Zbl 0108.14202, MR 0203748; reference:[22] Mesiar, R.: Fuzzy sets and probability theory.Tatra Mt. Math. Publ., 1, 1992, 105-123, Zbl 0790.60005, MR 1230469; reference:[23] Navara, M.: Triangular norms and measures of fuzzy sets.Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, 2005, 345-390, Elsevier, Zbl 1073.28015, MR 2165242; reference:[24] Navara, M.: Probability theory of fuzzy events.Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications, 2005, 325-329, Universitat Polit ecnica de Catalunya, Barcelona, Spain; reference:[25] Navara, M.: Tribes revisited.30th Linz Seminar on Fuzzy Set Theory: The Legacy of 30 Seminars, Where Do We Stand and Where Do We Go?, 2009, 81-84, Johannes Kepler University, Linz, Austria; reference:[26] Papčo, M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ., 28, 2004, 125-140, Zbl 1112.06005, MR 2086282; reference:[27] Papčo, M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ., 30, 2005, 175-185, Zbl 1152.60302, MR 2190258; reference:[28] Papčo, M.: On effect algebras.Soft Comput., 12, 2008, 373-379, Zbl 1127.06003, 10.1007/s00500-007-0171-1; reference:[29] Papčo, M.: Fuzzification of probabilistic objects.8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), doi:10.2991/eusat.2013.10, 2013, 67-71, 10.2991/eusat.2013.10; reference:[30] Riečan, B., Mundici, D.: Probability on MV-algebras.Handbook of Measure Theory, Vol. II, 2002, 869-910, North-Holland, Amsterdam, Zbl 1017.28002, MR 1954631; reference:[31] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.1997, Kluwer Acad. Publ., Dordrecht-Boston-London, MR 1489521; reference:[32] Zadeh, L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl., 23, 1968, 421-427, Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4; reference:[33] Zadeh, L. A.: Fuzzy probabilities.Inform. Process. Manag., 19, 1984, 148-153, Zbl 0543.60007

  9. 9
    Academic Journal

    المؤلفون: Sánchez Pérez, Enrique A.

    وصف الملف: application/pdf

    Relation: mr:MR3407606; zbl:Zbl 06537693; reference:[1] Blasco, Ó., Pavlović, M.: Coefficient multipliers on Banach spaces of analytic functions.Rev. Mat. Iberoam. 27 (2011), 415-447. Zbl 1235.42004, MR 2848526, 10.4171/RMI/642; reference:[2] Calabuig, J. M., Delgado, O., Pérez, E. A. Sánchez: Generalized perfect spaces.Indag. Math., New Ser. 19 (2008), 359-378. MR 2513056, 10.1016/S0019-3577(09)00008-1; reference:[3] Defant, A., Floret, K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). Zbl 0774.46018, MR 1209438; reference:[4] Delgado, O., Pérez, E. A. Sánchez: Summability properties for multiplication operators on Banach function spaces.Integral Equations Oper. Theory 66 (2010), 197-214. MR 2595653, 10.1007/s00020-010-1741-7; reference:[5] Diestel, J., Uhl, J. J., Jr., \rm: Vector Measures.Mathematical Surveys 15 American Mathematical Society, Providence (1977). MR 0453964; reference:[6] Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E. A.: Spaces of {$p$}-integrable functions with respect to a vector measure.Positivity 10 (2006), 1-16. Zbl 1111.46018, MR 2223581, 10.1007/s11117-005-0016-z; reference:[7] Ferrando, I., Pérez, E. A. Sánchez: Tensor product representation of the (pre)dual of the {$L^p$}-space of a vector measure.J. Aust. Math. Soc. 87 (2009), 211-225. MR 2551119, 10.1017/S1446788709000196; reference:[8] Ferrando, I., Rodríguez, J.: The weak topology on $L^p$ of a vector measure.Topology Appl. 155 (2008), 1439-1444. Zbl 1151.28014, MR 2427417, 10.1016/j.topol.2007.12.014; reference:[9] Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization.J. Funct. Anal. 266 (2014), 616-659. Zbl 1308.46039, MR 3132723, 10.1016/j.jfa.2013.10.028; reference:[10] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II: Function Spaces.Ergebnisse der Mathematik und ihrer Grenzgebiete 97 Springer, Berlin (1979). Zbl 0403.46022, MR 0540367; reference:[11] Mastyło, M., Sánchez-Pérez, E. A.: Köthe dual of Banach lattices generated by vector measures.Monatsh. Math. 173 (2014), 541-557. Zbl 1305.46021, MR 3177946, 10.1007/s00605-013-0560-8; reference:[12] Okada, S., Ricker, W. J., Pérez, E. A. Sánchez: Optimal Domain and Integral Extension of Operators: Acting in Function Spaces.Operator Theory: Advances and Applications 180 Birkhäuser, Basel (2008). MR 2418751; reference:[13] Pérez, E. A. Sánchez: Factorization theorems for multiplication operators on Banach function spaces.Integral Equations Oper. Theory 80 (2014), 117-135. MR 3248477, 10.1007/s00020-014-2169-2; reference:[14] Pérez, E. A. Sánchez: Vector measure duality and tensor product representations of {$L_p$}-spaces of vector measures.Proc. Am. Math. Soc. 132 (2004), 3319-3326. MR 2073308, 10.1090/S0002-9939-04-07521-5; reference:[15] Pérez, E. A. Sánchez: Compactness arguments for spaces of {$p$}-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces.Ill. J. Math. 45 (2001), 907-923. MR 1879243, 10.1215/ijm/1258138159; reference:[16] Rueda, P., Pérez, E. A. Sánchez: Compactness in spaces of \mbox{$p$-integrable} functions with respect to a vector measure.Topol. Methods Nonlinear Anal. 45 (2015), 641-654. MR 3408839, 10.12775/TMNA.2015.030; reference:[17] Schep, A. R.: Products and factors of Banach function spaces.Positivity 14 (2010), 301-319. Zbl 1216.46028, MR 2657636, 10.1007/s11117-009-0019-2; reference:[18] Sukochev, F., Tomskova, A.: $(E,F)$-Schur multipliers and applications.Stud. Math. 216 (2013), 111-129. Zbl 1281.47023, MR 3085499, 10.4064/sm216-2-2

  10. 10
    Academic Journal

    المؤلفون: Bohner, Martin, Wintz, Nick

    وصف الملف: application/pdf

    Relation: mr:MR2978261; zbl:Zbl 1265.34334; reference:[1] Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics.Colloq. Math. Soc. János Bolyai. 53 (1990), 37-56. Zbl 0723.34030, MR 1062633; reference:[2] Bartosiewicz, Z., Pawłuszewicz, E.: Linear control systems on time scales: unification of continuous and discrete.Proc. of 10th IEEE Int. Conference MMAR. (2004), 263-266. MR 2323260; reference:[3] Bartosiewicz, Z., Pawłuszewicz, E.: Realizations of linear control systems on time scales.Control Cybernet. 35 (2006), 769-786. Zbl 1133.93033, MR 2323260; reference:[4] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales.Birkhäuser, Basel (2001). Zbl 0993.39010, MR 1843232; reference:[5] Bohner, M., Peterson, A., eds.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, MA (2003). Zbl 1025.34001, MR 1962542; reference:[6] DaCunha, J.: Transition matrix and generalized matrix exponential via the Peano-{B}aker series.J. Difference Equ. Appl. 11 (2005), 1245-1264. Zbl 1093.39017, MR 2191005, 10.1080/10236190500272798; reference:[7] Davis, J. M., Gravagne, I. A., Jackson, B. J., II, R. J. Marks: Controllability, observability, realizability, and stability of dynamic linear systems.Electron. J. Diff. Equ. 37 (2009), 1-32. MR 2495842; reference:[8] Fausett, L. V., Murty, K. N.: Controllability, observability and realizability criteria on time scale dynamical systems.Nonlinear Stud. 11 (2004), 627-638. MR 2100755; reference:[9] Hilscher, R., Zeidan, V.: Weak maximum principle and accessory problem for control problems on time scales.Nonlinear Anal. 70 (2009), 3209-3226. Zbl 1157.49030, MR 2503067; reference:[10] Kalman, R. E.: Contributions to the theory of optimal control.Bol. Soc. Mat. Mexicana. 2 (1960), 102-119. Zbl 0112.06303, MR 0127472; reference:[11] Kalman, R. E.: On the general theory of control systems.Proc. 1st IFAC Congress Automatic Control. 1 (1960), 481-492.; reference:[12] Kalman, R. E.: Mathematical description of linear dynamical systems.J. SIAM Control Ser. A Control. 1 (1963), 152-192. Zbl 0145.34301, MR 0152167; reference:[13] Kalman, R. E., Ho, Y. C., Narendra, K. S.: Controllability of linear dynamical systems.Contrib. Differ. Equ. 1 (1963), 189-213. Zbl 0151.13303, MR 0155070; reference:[14] Molnar, S., Szigeti, F.: Controllability and reachability of dynamic discrete-time linear systems.Proceedings of the 4th International Conference on Control and Automation (2003), 350-354. MR 1368381; reference:[15] Wintz, N.: The Kalman filter on time scales.PhD Thesis, Missouri University of Science and Technology, Rolla, Missouri, USA (2009). MR 2941934; reference:[16] Zafer, A.: The matrix exponential on time scales.ANZIAM J. 48 (2006), 99-106. MR 2263186, 10.1017/S1446181100003436

  11. 11
    Academic Journal

    المؤلفون: Panaite, Florin

    وصف الملف: application/pdf

    Relation: mr:MR2899744; zbl:Zbl 1249.16031; reference:[1] Beattie, M., Chen, C.-Y., Zhang, J. J.: Twisted Hopf comodule algebras.Commun. Algebra 24 (1996), 1759-1775. Zbl 0851.16031, MR 1386496, 10.1080/00927879608825669; reference:[2] Čap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras.Commun. Algebra 23 (1995), 4701-4735. Zbl 0842.16005, MR 1352565, 10.1080/00927879508825496; reference:[3] Luigi, C. Di, Guccione, J. A., Guccione, J. J.: Brzeziński's crossed products and braided Hopf crossed products.Commun. Algebra 32 (2004), 3563-3580. Zbl 1080.16040, MR 2097479, 10.1081/AGB-120039631; reference:[4] Fiore, G.: On the decoupling of the homogeneous and inhomogeneous parts in inhomogeneous quantum groups.J. Phys. A, Math. Gen. 35 (2002), 657-678. Zbl 1041.81064, MR 1957140, 10.1088/0305-4470/35/3/312; reference:[5] Fiore, G., Steinacker, H., Wess, J.: Unbraiding the braided tensor product.J. Math. Phys. 44 (2003), 1297-1321. Zbl 1062.16044, MR 1958269, 10.1063/1.1522818; reference:[6] Guccione, J. A., Guccione, J. J.: Semiquasitriangular Hopf algebras.Electronic preprint arXiv:math.QA/0302052.; reference:[7] Guccione, J. A., Guccione, J. J.: Theory of braided Hopf crossed products.J. Algebra 261 (2003), 54-101. Zbl 1017.16032, MR 1967157, 10.1016/S0021-8693(02)00546-X; reference:[8] Martínez, P. Jara, Peña, J. López, Panaite, F., Oystaeyen, F. Van: On iterated twisted tensor products of algebras.Int. J. Math. 19 (2008), 1053-1101. MR 2458561, 10.1142/S0129167X08004996; reference:[9] Majid, S.: Doubles of quasitriangular Hopf algebras.Commun. Algebra 19 (1991), 3061-3073. Zbl 0767.16014, MR 1132774, 10.1080/00927879108824306; reference:[10] Năstăsescu, C., Panaite, F., Oystaeyen, F. Van: External homogenization for Hopf algebras: Applications to Maschke's theorem.Algebr. Represent. Theory 2 (1999), 211-226. MR 1715183, 10.1023/A:1009931309850; reference:[11] Daele, A. Van, Keer, S. Van: The Yang-Baxter and pentagon equation.Compos. Math. 91 (1994), 201-221. Zbl 0811.17014, MR 1273649

  12. 12
    Academic Journal

    المؤلفون: Ahmane, Mourad, Truffet, Laurent

    وصف الملف: application/pdf

    Relation: mr:MR2362725; zbl:Zbl 1132.93029; reference:[1] Ahmane M., Ledoux, J., Truffet L.: Criteria for the comparison of discrete-time Markov chains.In: 13th Internat. Workshop on Matrices and Statistics in Celebration of I. Olkin’s 80th Birthday, Poland, August 18-21, 2004; reference:[2] Ahmane M., Ledoux, J., Truffet L.: Positive invariance of polyhedrons and comparison of Markov reward models with different state spaces.In: Proc. Positive Systems: Theory and Applications (POSTA’06), Grenoble 2006 (Lecture Notes in Control and Information Sciences 341), Springer–Verlag, Berlin, pp. 153–160 Zbl 1132.93333, MR 2250251; reference:[3] Ahmane M., Truffet L.: State feedback control via positive invariance for max-plus linear systems using $\Gamma $-algorithm.In: 11th IEEE Internat. Conference on Emerging Technologies and Factory Automation, ETFA’06, Prague 2006; reference:[4] Ahmane M., Truffet L.: Sufficient condition of max-plus ellipsoidal invariant set and computation of feedback control of discrete events systems.In: 3rd Internat. Conference on Informatics in Control, Automation and Robotics, ICINCO’06, Setubal 2006; reference:[5] Aubin J.-P.: Viability Theory.Birkhäuser, Basel 1991 MR 1134779; reference:[6] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[7] Bertsekas D. P., Rhodes I. B.: On the minimax reachability of target sets and target tubes.Automatica 7 (1971), 233–247 Zbl 0215.21801, MR 0322648; reference:[8] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, 1972 Zbl 0301.06001, MR 0396359; reference:[9] Braker J. G.: Max-algebra modelling and analysis of time-table dependent networks.In: Proc. 1st European Control Conference, Grenoble 1991, pp. 1831–1836; reference:[10] Butkovic P., Zimmermann K.: A strongly polynomial algorithm for solving two-wided linear systems in max-algebra.Discrete Appl. Math. 154 (2006), 437–446 MR 2203194; reference:[11] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions.Dynamics Stability Systems 14 (1999), 4, 407–433 Zbl 0958.47028, MR 1746112; reference:[12] Cohen G., Gaubert, S., Quadrat J.-P.: Duality and separation theorems in idempotent semimodules.Linear Algebra Appl. 379 (2004), 395–422 Zbl 1042.46004, MR 2039751; reference:[13] Costan A., Gaubert S., Goubault, E., Putot S.: A policy iteration algorithm for computing fixed points in static analysis of programs.In: CAV’05, Edinburgh 2005 (Lecture Notes in Computer Science 3576), Springer–Verlag, Berlin, pp. 462–475 Zbl 1081.68616; reference:[14] Cuninghame-Green R. A., Butkovic P.: The equation $A \otimes x= B \otimes y$ over $(\max ,+)$.Theoret. Comp. Sci. 293 (2003), 3–12 Zbl 1021.65022, MR 1957609; reference:[15] Vries R. de, Schutter, B. De, Moor B. De: On max-algebraic models for transportation networks.In: Proc. Internat. Workshop on Discrete Event Systems (WODES’98), Cagliari 1998, pp. 457–462; reference:[16] Farkas J.: Über der einfachen Ungleichungen.J. Reine Angew. Math. 124 (1902), 1–27; reference:[17] Gaubert S., Gunawardena J.: The duality theorem for min-max functions.Comptes Rendus Acad. Sci. 326 (1999), Série I, 43–48 MR 1649473; reference:[18] Gaubert S., Katz R.: Rational semimodules over the max-plus semiring and geometric approach of discrete event systems.Kybernetika 40 (2004), 2, 153–180 MR 2069176; reference:[19] Golan J. S.: The theory of semirings with applications in mathematics and theoretical computer science.Longman Sci. & Tech. 54 (1992) Zbl 0780.16036, MR 1163371; reference:[20] Haar A.: Über Lineare Ungleichungen.1918. Reprinted in: A. Haar, Gesammelte Arbeiten, Akademi Kiadó, Budapest 1959; reference:[21] Hennet J. C.: Une Extension du Lemme de Farkas et Son Application au Problème de Régulation Linéaire sous Contraintes.Comptes Rendus Acad. Sci. 308 (1989), Série I, pp. 415–419 MR 0992520; reference:[22] Hiriart-Urruty J.-B., Lemarechal C.: Fundamentals of Convex Analysis.Springer–Verlag, Berlin 2001 Zbl 0998.49001, MR 1865628; reference:[23] Katz R. D.: Max-plus (A,B)-invariant and control of discrete event systems.To appear in IEEE TAC, 2005, arXiv:math.OC/0503448; reference:[24] Klimann I.: A solution to the problem of (A,B)-invariance for series.Theoret. Comput. Sci. 293 (2003), 1, 115–139 Zbl 1025.68050, MR 1957615; reference:[25] Ledoux J., Truffet L.: Comparison and aggregation of max-plus linear systems.Linear Algebra. Appl. 378 (2004), 1, 245–272 Zbl 1052.15014, MR 2031795; reference:[26] Lhommeau M.: Etude de Systèmes à Evénements Discrets: 1.Synthèse de Correcteurs Robustes dans un Dioide d’Intervalles. 2. Synthèse de Correcteurs en Présence de Perturbations. PhD Thesis, Université d’Angers ISTIA 2003; reference:[27] Lhommeau M., Hardouin, L., Cottenceau B.: Optimal control for (Max,+)-linear systems in the presence of disturbances.In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin, pp. 47–54 Zbl 1059.93090, MR 2019300; reference:[28] Muller A., Stoyan D.: Comparison Methods for Stochastic Models and Risks.Wiley, New York 2002 MR 1889865; reference:[29] Dam A. A. ten, Nieuwenhuis J. W.: A linear programming algorithm for invariant polyhedral sets of discrete-time linear systems.Systems Control Lett. 25 (1995), 337–341 MR 1343218; reference:[30] Truffet L.: Monotone linear dynamical systems over dioids.In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin pp. 39–46 Zbl 1059.93093, MR 2019299; reference:[31] Truffet L.: Some ideas to compare Bellman chains.Kybernetika 39 (2003), 2, 155–163. (Special Issue on max-plus Algebra) MR 1996554; reference:[32] Truffet L.: Exploring positively invariant sets by linear systems over idempotent semirings.IMA J. Math. Control Inform. 21 (2004), 307–322 Zbl 1098.93025, MR 2076223; reference:[33] Truffet L.: New bounds for timed event graphs inspired by stochastic majorization results.Discrete Event Dyn. Systems 14 (2004), 355–380 Zbl 1073.93039, MR 2092597; reference:[34] Wagneur E.: Duality in the max-algebra.In: IFAC, Commande et Structures des Systèmes, Nantes 1998, pp. 707–711

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2375169; zbl:Zbl 1199.54141; reference:[AB] Arhangel'skii A.V., Buzyakova R.Z.: Convergence in compacta and linear Lindelöfness.Comment. Math. Univ. Carolin. 39 1 (1998), 159-166. Zbl 0937.54022, MR 1623006; reference:[ATW] Alas O.T., Tkachuk V.V., Wilson R.G.: Covering properties and neighbourhood assignments.Topology Proc. 30 1 (2006), 25-37. MR 2280656; reference:[DTTW] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces.Glas. Mat. Ser. III 37(57) (2002), 1 187-210. Zbl 1009.54005, MR 1918105; reference:[vDL] van Douwen E.K., Lutzer D.J.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 4 (1997), 1237-1245. Zbl 0885.54023, MR 1396999; reference:[En] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[Lu] Lutzer D.J.: Ordered Topological Spaces.Surveys in General Topology, ed. by G.M. Reed, Academic Press, New York, 1980, pp. 247-295. Zbl 0472.54020, MR 0564104; reference:[vMTW] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127-2134. Zbl 1131.54022, MR 2324924; reference:[Os] Ostaszewski A.: On countably compact, perfectly normal spaces.J. London Math. Soc. 14 2 (1976), 505-516. Zbl 0348.54014, MR 0438292; reference:[Ro] Roitman J.: Basic $S$ and $L$.Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E. Vaughan, Elsevier S.P. B.V., Amsterdam, 1984, pp.295-326. Zbl 0594.54001, MR 0776626; reference:[To] Todorcevic S.: Partition Problems in Topology.Contemporary Math. 84, Amer. Math. Soc., Providence, RI, 1989. Zbl 0659.54001, MR 0980949

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2375159; zbl:Zbl 1199.06008; reference:[1] Ahlswede R., Erdös P.L., Graham N.: A splitting property of maximal antichains.Combinatorica 15 (1995), 475-480. MR 1364020; reference:[2] Duffus D., Sands B.: Minimum sized fibres in distributive lattices.J. Austral. Math. Soc. 70 (2001), 337-350. Zbl 1019.06002, MR 1829963; reference:[3] Duffus D., Sands B.: Splitting numbers of grids.Electron. J. Combin. 12 (2005), #R17. Zbl 1060.06005, MR 2134180; reference:[4] Džamonja M.: A note on the splitting property in strongly dense posets of size $\aleph_0$.Rad. Mat. 8 (1992/98), 321-326. MR 1690735; reference:[5] Erdös P.: Graph theory and probability.Canad. J. Math. 11 (1959), 34-38. MR 0102081; reference:[6] Erdös P., Hajnal A.: On chromatic number of graphs and set systems.Acta Math. Hungar. 17 (1966), 61-99. MR 0193025; reference:[7] Erdös P., Rényi A.: On random graphs I.Publ. Math. Debrecen 6 (1959), 290-297. MR 0120167; reference:[8] Erdös P.L.: Splitting property in infinite posets.Discrete Math. 163 (1997), 251-256. MR 1428578; reference:[9] Erdös P.L., Soukup L.: How to split antichains in infinite posets.Combinatorica 27 2 (2007), 147-161. Zbl 1136.06002, MR 2321920; reference:[10] Foniok J., Nešetřil J., Tardif C.: Generalized dualities and maximal finite antichains in the homomorphism order of relational structures.to appear in European J. Combin.; extended abstract in Lecture Notes in Comput. Sci. 4271, Springer, Berlin, 2006, pp.27-36. MR 2408365; reference:[11] Hell P., Nešetřil J.: Graphs and Homomorphisms.Oxford University Press, Oxford, 2004. MR 2089014; reference:[12] Nešetřil J.: Sparse incomparability for relational structures.in preparation.; reference:[13] Nešetřil J., Ossona de Mendez P.: Cuts and bounds.Discrete Math. 302 1-3 (2005), 211-224. MR 2179644; reference:[14] Nešetřil J., Pultr A.: On classes of relations and graphs determined by subobjects and factorobjects.Discrete Math. 22 (1978), 287-300. MR 0522724; reference:[15] Nešetřil J., V. Rödl V.: Chromatically optimal rigid graphs.J. Combin. Theory Ser. (B) 46 (1989), 133-141. MR 0992987; reference:[16] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and good characterisations).J. Combin. Theory Ser. (B) 80 (2000), 80-97. Zbl 1024.05078, MR 1778201; reference:[17] Nešetřil J., Tardif C.: On maximal finite antichains in the homomorphism order of directed graphs.Discuss. Math. Graph Theory 23 (2003), 325-332. Zbl 1057.05036, MR 2070160; reference:[18] Nešetřil J., Zhu X.: On sparse graphs with given colorings and homomorphisms.J. Combin. Theory Ser. (B) 90 (2004), 161-172. Zbl 1033.05044, MR 2041324; reference:[19] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North-Holland, Amsterdam, 1980. MR 0563525; reference:[20] Welzl E.: Color families are dense.Theoret. Comput. Sci. 17 (1982), 29-41. Zbl 0482.68063, MR 0644791

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2291762; zbl:Zbl 1164.34361; reference:[1] V. Anuradha, D. D. Hai and R. Shivaji: Existence results for superlinear semipositone BVP’s.Proc. A.M.S. 124 (1996), 757–763. MR 1317029; reference:[2] A. V. Bitsadze: On the theory of nonlocal boundary value problems.Soviet Math. Dokl. 30 (1984), 8–10. Zbl 0586.30036, MR 0757061; reference:[3] A. V. Bitsadze and A. A. Samarskii: Some elementary generalizations of linear elliptic boundary value problems.Dokl. Akad. Nauk SSSR 185 (1969), 739–740. MR 0247271; reference:[4] D. R. Dunninger and H. Wang: Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions.Annales Polonici Math. LXIX.2 (1998), 155–165. MR 1641876; reference:[5] W. P. Eloe and J. Henderson: Positive solutions and nonlinear multipoint conjugate eigenvalue problems.Electronic J. of Differential Equations 03 (1997), 1–11. MR 1428301; reference:[6] L. H. Erbe and H. Wang: On the existence of positive solutions of ordinary differential equations.Proc. A.M.S. 120 (1994), 743–748. MR 1204373; reference:[7] C. P. Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation.J. Math. Anal. Appl. 168 (1992), 540–551. Zbl 0763.34009, MR 1176010, 10.1016/0022-247X(92)90179-H; reference:[8] C. Gupta, S. K. Ntouyas and P. Ch. Tsamatos: On an m-point boundary value problem for second order differential equations.Nonlinear Analysis TMA 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6; reference:[9] C. Gupta: Solvability of a generalized multipoint boundary value problem of mixed type for second order ordinary differential equations.Proc. Dynamic Systems and Applications 2 (1996), 215–222. MR 1419531; reference:[10] C. P. Gupta: A generalized multi-point nonlinear boundary value problem for a second order ordinary differential equation.Appl. Math. Comput 89 (1998), 133–146. MR 1491699, 10.1016/S0096-3003(97)81653-0; reference:[11] J. Henderson and H. Wang: Positive solutions for nonlinear eigenvalue problems.J. Math. Anal. Appl. 208 (1997), 252–259. MR 1440355, 10.1006/jmaa.1997.5334; reference:[12] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 803–811.; reference:[13] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differ. Equ. 23 (1987), 979–987.; reference:[14] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions of a boundary-value problem for second order ordinary differential equations.Electronic Journal of Differential Equations 49 (2000 2000), 1–9. MR 1772734; reference:[15] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions for a nonlocal boundary-value problem with increasing response.Electronic Journal of Differential Equations 73 (2000), 1–8. MR 1801638; reference:[16] G. L. Karakostas and P. Ch. Tsamatos: Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero.Electronic Journal of Differential Equations 13 (2001), 1–10. MR 1811786; reference:[17] G. L. Karakostas and P. Ch. Tsamatos: Existence of multiple solutions for a nonlocal boundary-value problem.Topol. Math. Nonl. Anal. 19 (2000), 109–121. MR 1921888; reference:[18] M. A. Krasnoselski: Positive solutions of operator equations.Noordhoff, Groningen, 1964. MR 0181881; reference:[19] R. Ma: Positive solutions for a nonlinear three-point boundary-value problem.Electronic Journal of Differential Equations 34 (1998), 1–8.; reference:[20] R. Y. Ma and N. Castaneda: Existence of solutions of nonlinear m-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556–567. MR 1821757, 10.1006/jmaa.2000.7320; reference:[21] R. Ma: Existence of positive solutions for second order m-point boundary value problems.Annales Polonici Mathematici LXXIX.3 (2002), 256–276. Zbl 1055.34025, MR 1957802; reference:[22] J. Mawhin: Problèmes de Dirichlet Variationnels Non Linéares.Les Presses de l’Université de Montréal (1987). MR 0906453; reference:[23] A. Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations.J. Differential Eqns. 97 (1992), 174–188. Zbl 0759.34039, MR 1161317, 10.1016/0022-0396(92)90089-6; reference:[24] A. Nowakowski and A. Orpel: Positive solutions for a nonlocal boundary-value problem with vector-valued response.Electronic J. of Differential Equations 46 (2002), 1–15. MR 1907722; reference:[25] P. H. Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations.AMS, Providence, 1986. MR 0845785; reference:[26] J. R. L. Webb: Positive solutions of some three-point boundary value problems via fixed point theory.Nonlinear Anal. 47 (2001), 4319–4332. MR 1975828, 10.1016/S0362-546X(01)00547-8; reference:[27] H. Wang: On the existence of positive solutions for semilinear elliptic equations in annulus.J. Differential Equation 109 (1994), 1–4. MR 1272398, 10.1006/jdeq.1994.1042; reference:[28] M. Willem: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkhäuser, Vol. 24, 1996. Zbl 0856.49001, MR 1400007

  16. 16
    Academic Journal

    المؤلفون: Schappacher, Gudrun

    وصف الملف: application/pdf

    Relation: mr:MR2151462; zbl:Zbl 1099.46021; reference:[1] J. Lemaitre, J.-L. Chaboche: Mechanics of Solid Materials.Cambridge University Press, Cambridge, 1990.; reference:[2] J.-P. Aubin: Optima and Equilibria. An Introduction to Nonlinear Analysis.Springer-Verlag, Berlin, 1998. Zbl 0930.91001, MR 1729758; reference:[3] W. Desch, R. Grimmer: On the well-posedness of constitutive laws involving dissipation potentials.Trans. Am. Math. Soc. 353 (2001), 5095–5120. MR 1852096, 10.1090/S0002-9947-01-02847-1; reference:[4] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Pure and Applied Mathematics, Vol. 146.Marcel Dekker, New York, 1991. MR 1113700; reference:[5] M. A. Krasnosel’skij, Ya. B. Rutickij: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen, 1961. MR 0126722; reference:[6] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434; reference:[7] M. S. Skaff: Vector valued Orlicz spaces. Generalized $N$-functions, I.Pac. J. Math. 28 (1969), 193–206. Zbl 0176.11002, MR 0415305, 10.2140/pjm.1969.28.193; reference:[8] M. S. Skaff: Vector valued Orlicz spaces, II.Pac. J. Math. 28 (1969), 413–430. Zbl 0176.11003, MR 0415306, 10.2140/pjm.1969.28.413; reference:[9] G. Schappacher: Generalizations of Orlicz spaces of vector valued functions.PhD. Thesis, Karl Franzens University, Graz, 2003. MR 2151462; reference:[10] C. Bennett, R. Sharpley: Interpolation of Operators. Pure and Applied Mathematics, Vol. 129.Academic Press, Boston, 1988. MR 0928802; reference:[11] N. Dinculeanu: Vector Measures. Hochschulbücher für Mathematik.Pergamon Press, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. (English) MR 0206189

  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2059270; zbl:Zbl 1080.22500; reference:[1] I. Amemiya and Y. Kōmura: Über nicht-vollständige Montelräme.Math. Ann. 177 (1968), 273–277. MR 0232182, 10.1007/BF01350719; reference:[2] L. Außenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.PhD. thesis, Universität Tübingen, 1998. MR 1736984; reference:[3] L. Außenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.Dissertationes Math. Vol. CCCLXXXIV, Warszawa, 1998. MR 1736984; reference:[4] W. Banaszczyk: On the existence of exotic Banach-Lie groups.Ann. Math. 264 (1983), 485–493. Zbl 0502.22010, MR 0716262, 10.1007/BF01456956; reference:[5] W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics Vol. 1466.Springer-Verlag, Berlin, 1991. MR 1119302; reference:[6] T. Bartoszyński and H. Judah: Set Theory: on the Structure of the Real Line.A. K. Peters, Wellesley, 1990, pp. 546. MR 1350295; reference:[7] S. Berhanu, W. W. Comfort and J. D. Reid: Counting subgroups and topological group topologies.Pacific J. Math. 116 (1985), 217–241. MR 0771633, 10.2140/pjm.1985.116.217; reference:[8] N. Bourbaki: General Topology, Part 2.Addison-Wesley Publishing Company, Reading, Massachusetts, 1966, pp. 363. Zbl 0301.54002, MR 0205211; reference:[9] M. J. Chasco: Pontryagin duality for metrizable groups.Archiv der Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160; reference:[10] K. Ciesielski: Set Theory for the Working Mathematician.London Mathematical Society Student Texts, Vol. 39 Cambridge University Press, Cambridge, 1997. Zbl 0938.03067, MR 1475462; reference:[11] W. W. Comfort and Dieter Remus: Abelian torsion groups with a pseudocompact group topology.Forum Math. 6 (1994), 323–337. MR 1269843, 10.1515/form.1994.6.323; reference:[12] W. W. Comfort and Dieter Remus: Pseudocompact refinements of compact group topologies.Math. Z. 215 (1994), 337–346. MR 1262521, 10.1007/BF02571718; reference:[13] W. W. Comfort and K. A. Ross: Topologies induced by groups of characters.Fund. Math. 55 (1964), 283–291. MR 0169940, 10.4064/fm-55-3-283-291; reference:[14] W. W. Comfort and V. Saks: Countably compact groups and finest totally bounded topologies.Pacific J. Math. 49 (1973), 33–44. MR 0372104, 10.2140/pjm.1973.49.33; reference:[15] W. W. Comfort, F. Javier Trigos-Arrieta and and Ta-Sun Wu: The Bohr compactification, modulo a metrizable subgroup.Fund. Math. 143 (1993), 119–136. MR 1240629; reference:[16] W. W. Comfort and J. van Mill: Some topological groups with, and some without, proper dense subgroups.Topology Appl. 41 (1991), 3–15. MR 1129694, 10.1016/0166-8641(91)90096-5; reference:[17] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov: Topological Groups (Characters, Dualities and Minimal Group Topologies). Monographs and Textbooks in Pure and Applied Mathematics 130.Marcel Dekker, Inc., New York-Basel, 1990. MR 1015288; reference:[18] E. K. van Douwen: The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space for Abelian groups $G$.Topology Appl. 34 (1990), 69–91. Zbl 0696.22003, MR 1035461, 10.1016/0166-8641(90)90090-O; reference:[19] R. Engelking: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[20] P. Flor: Zur Bohr-Konvergenz der Folgen.Math. Scand. 23 (1968), 169–170. MR 0251457, 10.7146/math.scand.a-10907; reference:[21] D. H. Fremlin: Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics, Vol. 84.Cambridge University Press, Cambridge, 1984. MR 0780933; reference:[22] L. Fuchs: Infinite Abelian Groups, Vol. I.Academic Press, New York-San Francisco-London, 1970. Zbl 0209.05503, MR 0255673; reference:[23] J. Galindo and S. Hernández: On the completion of a MAP group.In: Papers on General Topology and Applications. Proc. Eleventh (August, 1995) summer topology conference at the University of Maine. Annals New York Acad. Sci. Vol. 806, S. Andima, R. C. Flagg, G. Itzkowitz, Yung Kong, R. Kopperman, and P. Misra (eds.), New York, 1996, pp. 164–168. MR 1429651; reference:[24] I. Glicksberg: Uniform boundedness for groups.Canad. J. Math. 14 (1962), 269–276. Zbl 0109.02001, MR 0155923, 10.4153/CJM-1962-017-3; reference:[25] A. Hajnal and I. Juhász: Remarks on the cardinality of compact spaces and their Lindelöf subspaces.Proc. Amer. Math. Soc. 59 (1976), 146–148. MR 0423283; reference:[26] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis, Vol. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 115.Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0551496; reference:[27] E. Hewitt and K. A. Ross: Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups.Math. Ann. 160 (1965), 171–194. MR 0186751, 10.1007/BF01360918; reference:[28] E. Hewitt and K. R. Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics Vol. 25.Springer-Verlag, New York, 1965.; reference:[29] H. Heyer: Dualität lokalkompakter Gruppen. Lecture Notes in Mathematics Vol. 150.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0274648, 10.1007/BFb0069778; reference:[30] M. Higasikawa: Non-productive duality properties of topological groups.Topology Proc. 25 (2002), 207–216. MR 1925684; reference:[31] R. Hooper: A study of topological Abelian groups based on norm space theory.PhD. thesis, University of Maryland, College Park, 1967.; reference:[32] M. Hrušák: Personal communication, November 20, 2000.; reference:[33] T. Jech: Set Theory.Academic Press, Inc., San Diego, 1978. Zbl 0419.03028, MR 0506523; reference:[34] S. Kaplan: Extensions of the Pontryagin duality I: infinite products.Duke Math. J. 15 (1948), 649–658. MR 0026999, 10.1215/S0012-7094-48-01557-9; reference:[35] S. Kaplan: Extensions of the Pontryagin duality II: direct and inverse sequences.Duke Math. J. 15 (1950), 419–435. MR 0049906, 10.1215/S0012-7094-50-01737-6; reference:[36] A. S. Kechris: Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156.Springer-Verlag, New York, 1994. MR 1321597; reference:[37] Y. Kōmura: Some examples of linear topological spaces.Math. Ann. 153 (1964), 150–162. MR 0185417, 10.1007/BF01361183; reference:[38] K. Kunen: Set Theory, An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics.North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980. MR 0597342; reference:[39] H. Leptin: Abelsche Gruppen mit kompakten Charaktergruppen und Dualitätstheorie gewisser linear topologischer abelscher Gruppen.Abhandlungen Mathem. Seminar Univ. Hamburg 19 (1955), 244–263. Zbl 0065.01501, MR 0068545, 10.1007/BF02988875; reference:[40] V. I. Malykhin and B. Šapirovskiĭ: Martin’s axiom and topological spaces.Doklady Akad. Nauk SSSR 213 (1973), 532–535. (Russian); reference:[41] N. Noble: $k$-groups and duality.Trans. Amer. Math. Soc. 151 (1970), 551–561. Zbl 0229.22012, MR 0270070; reference:[42] S. U. Raczkowski-Trigos: Totally bounded groups.PhD. thesis, Wesleyan University, Middletown, 1998.; reference:[43] M. Rajagopalan and H. Subrahmanian: Dense subgroups of locally compact groups.Colloq. Math. 35 (1976), 289–292. MR 0417325; reference:[44] G. A. Reid: On sequential convergence in groups.Math. Z. 102 (1967), 225–235. Zbl 0153.04302, MR 0220000, 10.1007/BF01112440; reference:[45] D. Remus: Zur Struktur des Verbandes der Gruppentopologien.PhD. thesis, Universität Hannover, Hannover, 1983. (English) Zbl 0547.22004; reference:[46] D. Remus: The number of $T_2$-precompact group topologies on free groups.Proc. Amer. Math. Soc. 95 (1985), 315–319. MR 0801346; reference:[47] D. Remus and F. Javier Trigos-Arrieta: Abelian groups which satisfy Pontryagin duality need not respect compactness.Proc. Amer. Math. Soc. 117 (1993), 1195–1200. MR 1132422, 10.1090/S0002-9939-1993-1132422-4; reference:[48] D. Remus and F. Javier Trigos-Arrieta: Locally convex spaces as subgroups of products of locally compact Abelian groups.Math. Japon. 46 (1997), 217–222. MR 1479817; reference:[49] W. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients.McGraw-Hill International Book Company, New York-Toronto, 1981. MR 0644485; reference:[50] H. H. Schaefer: Topological Vector Spaces.Graduate Texts in Mathematics, Vol. 3, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1986, pp. 294. MR 0342978; reference:[51] S. J. Sidney: Weakly dense subgroups of Banach spaces.Indiana Univ. Math. J. 26 (1977), 981–986. Zbl 0344.46033, MR 0458134, 10.1512/iumj.1977.26.26079; reference:[52] M. Freundlich Smith: The Pontrjagin duality theorem in linear spaces.Ann. Math. 56 (1952), 248–253. MR 0049479, 10.2307/1969798; reference:[53] E. Specker: Additive Gruppen von Folgen ganzer Zahlen.Portugal. Math. 9 (1950), 131–140. MR 0039719; reference:[54] S. M. Srivastava: A Course on Borel Sets.Graduate Texts in Mathematics, Vol. 180, Springer-Verlag, New York-Berlin-Heildelberg, 1998. Zbl 0903.28001, MR 1619545; reference:[55] H. Steinhaus: Sur les distances des points des ensembles de mesure positive.Fund. Math. 1 (1920), 93–104. 10.4064/fm-1-1-93-104; reference:[56] K. Stromberg: An elementary proof of Steinhaus’ theorem.Proc. Amer. Math. Soc. 36 (1972), 308. MR 0308368; reference:[57] S. Todorčević: .Personal Communication, August, 2001.; reference:[58] F. J. Trigos-Arrieta: Pseudocompactness on groups.In: General Topology and Applications, S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman, and A. R. Todd (eds.), Marcel Dekker, Inc., New York-Basel-Hong Kong, 1991, pp. 369–378. Zbl 0777.22003, MR 1142814; reference:[59] F. J. Trigos-Arrieta: Continuity, boundedness, connectedness and the Lindelöf property for topological groups.J. Pure and Applied Algebra 70 (1991), 199–210. Zbl 0724.22003, MR 1100517, 10.1016/0022-4049(91)90018-W; reference:[60] J. E. Vaughan: Small uncountable cardinals and topology.In: Open Problems in Topology, Chapter 11, J. van Mill, G. M. Reed (eds.), Elsevier Science Publishers (B. V.), Amsterdam-New York-Oxford-Tokyo, 1990. MR 1078647; reference:[61] W. C. Waterhouse: Dual groups of vector spaces.Pacific J. Math. 26 (1968), 193–196. Zbl 0162.44102, MR 0232190, 10.2140/pjm.1968.26.193; reference:[62] A. Weil: Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, Vol. 551.(1938), Hermann & Cie, Paris.; reference:[63] A. Weil: L’Integration dans les Groupes Topologiques et ses Applications. Actualités Scientifiques et Industrielle, Publ. Math. Inst. Strasbourg.Hermann, Paris, 1951.

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2000049; zbl:Zbl 1080.34516; reference:[1] A. Capietto, J. Mawhin and F. Zanolin: Boundary value problems for forced superlinear second order ordinary differential equations.Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XII, Pitman Res. Notes ser., 302, 1994, pp. 55–64. MR 1291842; reference:[2] A. Castro, J. Cossio and J. M. Neuberger: A sign-changing solution for a superlinear Dirichlet problem.Rocky Mountain J. Math. 27 (1997), 1041–1053. MR 1627654, 10.1216/rmjm/1181071858; reference:[3] S. K. Ingram: Continuous dependence on parameters and boundary value problems.Pacific J. Math. 41 (1972), 395–408. MR 0304741, 10.2140/pjm.1972.41.395; reference:[4] G. Klaasen: Dependence of solutions on boundary conditions for second order ordinary differential equations.J. Differential Equations 7 (1970), 24–33. Zbl 0184.11704, MR 0273086, 10.1016/0022-0396(70)90121-X; reference:[5] L. Lassoued: Periodic solutions of a second order superquadratic systems with a change of sign in the potential.J. Differential Equations 93 (1991), 1–18. MR 1122304, 10.1016/0022-0396(91)90020-A; reference:[6] J. Mawhin: Problèmes de Dirichlet Variationnels Non Linéares.Les Presses de l’Université de Montréal, 1987. MR 0906453; reference:[7] A. Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations.J. Differential Equations 97 (1992), 174–188. Zbl 0759.34039, MR 1161317, 10.1016/0022-0396(92)90089-6; reference:[8] P. H. Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations.AMS, Providence, 1986. MR 0845785; reference:[9] D. O’Regan: Singular Dirichlet boundary value problems. I. Superlinear and nonresonant case.Nonlinear Anal. 29 (1997), 221–245. MR 1446226, 10.1016/S0362-546X(96)00026-0

  19. 19
    Academic Journal

    المؤلفون: Jung, Jong Soo, Sahu, Daya Ram

    وصف الملف: application/pdf

    Relation: mr:MR1983460; zbl:Zbl 1030.47037; reference:[1] R. E. Bruck and S. Reich: Accretive operators, Banach limits and dual ergodic theorems.Bull. Acad. Polon. Sci. 29 (1981), 585–589. MR 0654218; reference:[2] L. Deng: Convergence of the Ishikawa iteration process for nonexpansive mappings.J. Math. Anal. Appl. 199 (1996), 769–775. Zbl 0856.47041, MR 1386604; reference:[3] K. Goebel and S. Reich: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings.Marcel Dekker, New York and Basel, 1984. MR 0744194; reference:[4] S. Ishikawa: Fixed point by a new iteration method.Proc. Amer. Math. Soc. 44 (1974), 147–150. MR 0336469, 10.1090/S0002-9939-1974-0336469-5; reference:[5] K. S. Ha and J. S. Jung: Strong convergence theorems for accretive operators in Banach spaces.J. Math. Anal. Appl. 104 (1990), 330–339. MR 1050208, 10.1016/0022-247X(90)90351-F; reference:[6] G. G. Lorentz: A contribution to the theory of divergent series.Acta Math. 80 (1948), 167–190. MR 0027868, 10.1007/BF02393648; reference:[7] W. R. Mann: Mean value methods in iteration.Proc. Amer. Math. Soc. 4 (1953), 506–510. Zbl 0050.11603, MR 0054846, 10.1090/S0002-9939-1953-0054846-3; reference:[8] S. Reich: Weak convergence theorem for nonexpansive mappings in Banach spaces.J. Math. Anal. Appl. 67 (1979), 274–276. MR 0528688, 10.1016/0022-247X(79)90024-6; reference:[9] S. Reich: Product formulas, nonlinear semigroups and accretive operators.J. Functional Analysis 36 (1980), 147–168. Zbl 0437.47048, MR 0569251, 10.1016/0022-1236(80)90097-X; reference:[10] K. K. Tan and H. K. Xu: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process.J. Math. Anal. Appl. 178 (1993), 301–308. MR 1238879, 10.1006/jmaa.1993.1309

  20. 20
    Academic Journal

    المؤلفون: Jakubík, Ján

    وصف الملف: application/pdf

    Relation: mr:MR1923269; zbl:Zbl 1012.06013; reference:[1] G. Birkhoff: Lattice Theory.AMS Colloquium Publications. Vol. XXV, Providence, RI, 1967. Zbl 0153.02501, MR 0227053; reference:[2] G. Cattaneo and F. Lombardo: Independent axiomatization of $MV$-algebras.Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091; reference:[3] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9; reference:[4] P. Conrad: Lattice Ordered Groups.Tulane University, New Orleans, 1970. Zbl 0258.06011; reference:[5] D. Glushankof: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math. J. 44(119) (1994), 725–739.; reference:[6] Ch. Holland: Intrinsic metrics for lattice ordered groups.Algebra Universalis 19 (1984), 142–150. Zbl 0557.06011, MR 0758313, 10.1007/BF01190425; reference:[7] J. Jakubík: Isometries of lattice ordered groups.Czechoslovak Math. J. 30(105) (1980), 142–152. MR 0565917; reference:[8] J. Jakubík: Direct product decompositions of $MV$-algebras.Czechoslovak Math. J. 44(119) (1994), 725–739. MR 1295146; reference:[9] J. Jakubík and M. Kolibiar: On some properties of pairs of lattices.Czechoslovak Math. J. 4(79) (1954), 1–27. (Russian) MR 0065529; reference:[10] M. Jasem: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups.Math. Slovaca 43 (1993), 119–136. Zbl 0782.06012, MR 1274597; reference:[11] J. Lihová: Posets having a selfdual interval poset.Czechoslovak Math. J. 44(119) (1994), 523–533. MR 1288170; reference:[12] P. Mangani: On certain algebras related to many-valued logics.Boll. Un. Mat. Ital. 8 (1973), 68–78. (Italian); reference:[13] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7; reference:[14] W. B. Powell: On isometries in abelian lattice ordered groups.J. Indian Math. Soc. 46 (1982), 189–194. MR 0878072; reference:[15] J. Rachůnek: Isometries in ordered groups.Czechoslovak Math. J. 34(109) (1984), 334–341. MR 0743498; reference:[16] K. L. Swamy: Isometries in autometrized lattice ordered groups.Algebra Universalis 8 (1977), 58–64. Zbl 0457.06015, MR 0463074; reference:[17] K. L. Swamy: Isometries in autometrized lattice ordered groups II.Math. Seminar Notes, Kobe Univ. 5 (1977), 211–214. Zbl 0457.06015, MR 0463075