-
1Academic Journal
المؤلفون: Papageorgiou, Nikolaos S., Yannakakis, Nikolaos
مصطلحات موضوعية: keyword:evolution triple, keyword:compact embedding, keyword:exremal solution, keyword:measurable multifunction, keyword:pseudomonotone map, keyword:Kadec-Klee property, keyword:parabolic equation, keyword:p-Laplacian, msc:34C25, msc:34G20, msc:34G25, msc:35K55, msc:35R70, msc:47N20
وصف الملف: application/pdf
Relation: mr:MR1822759; zbl:Zbl 1090.34577; reference:[1] Hirano N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. Amer. Math. Soc. 120 (1994), 185–192. Zbl 0795.34051, MR 1174494; reference:[2] Hu S., Papageorgiou N.S.: On the existennce of periodic solutions for a class of nonlinear evolution equations.Boll. Un. Mat. Ital. (7) (1993),591–605. MR 1244409; reference:[3] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands‘ (1997) Zbl 0887.47001, MR 1485775; reference:[4] Kandilakis D., Papageorgiou N.S.: Periodic solutions for nonlinear evolution inclusions.Arch. Math.(Brno) 32 (1996), 195–209. Zbl 0908.34043, MR 1421856; reference:[5] Lakshmikantham V., Papageorgiou N.S.: Periodic solutions for nonlinear evolution inclusions.J. Comput. Appl. Math. 52 (1994), 277–286. MR 1310135; reference:[6] Lindqvist P.: On the equation $\div (%7CDu%7C^{p-2}Du)+\lambda %7Cu%7C^{p-2}u=0$.Proc. Amer. Math. Soc. (1990), 157–164. Zbl 0714.35029, MR 1007505; reference:[7] Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non-Lineaires.Dunod, Paris (1969). Zbl 0189.40603, MR 0259693; reference:[8] Papageorgiou N.S.: On the existence of solutions for nonlinear parabolic problems with discontinuities.J. Math. Anal. Appl. 205 (1997), 434-453. MR 1428358; reference:[9] Papageorgiou N.S., Papalini F., Renzacci F.: Existence of solutions and periodic solutions for nonlinear evolution inclusions.Rend. Circ. Mat. Palermo, II. Ser. 48, No. 2 (1999), 341–364. Zbl 0931.34043, MR 1692926; reference:[10] Vrabie I.: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. Amer. Math. Soc. 109 (1990), 653–661. Zbl 0701.34074, MR 1015686; reference:[11] Zeidler E.: Nonlinear Functional Analysis and its Applications II.Springer Verlag, New York (1990). Zbl 0684.47029, MR 0816732
-
2Academic Journal
المؤلفون: Cardinali, Tiziana, Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:pseudomonotone operator, keyword:$L$-pseudomonotonicity, keyword:operator of type $(S)_{+}$, keyword:operator of type $L$-$(S)_{+}$, keyword:coercive operator, keyword:surjective operator, keyword:evolution triple, keyword:compact embedding, keyword:multifunction, keyword:upper solution, keyword:lower solution, keyword:extremal solution, keyword:$R_{\delta }$-set, msc:34G25, msc:35B10, msc:35D05, msc:35K20, msc:35K55, msc:47J05
وصف الملف: application/pdf
Relation: mr:MR1777470; zbl:Zbl 1079.35519; reference:[1] J. Appell, P. Zabrejko: Superposition Operators.Cambridge Univ. Press, Cambridge, U.K., 1990. MR 1066204; reference:[2] R. Ash: Real Analysis and Probability.Academic Press, New York, 1972. MR 0435320; reference:[3] E. Avgerinos, N. S. Papageorgiou: Solutions and periodic solutions for nonlinear evolution equations with nonmonotone perturbations.Z. Anal. Anwendungen 17 (1998), 859–875. MR 1669909, 10.4171/ZAA/855; reference:[4] M. Balloti: Aronszajn’s theorem for a parabolic partial differential equation.Nonlinear Anal. 9 (1985), 1183–1187. MR 0813652, 10.1016/0362-546X(85)90029-X; reference:[5] H. Brezis: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055; reference:[6] T. Cardinali, A. Fiacca, N. S. Papageorgiou: Extremal solutions for nonlinear parabolic problems with discintinuities.Monatsh. Math. 124 (1997), 119–131. MR 1462858, 10.1007/BF01300615; reference:[7] K.–C. Chang: The obstacle problem and partial differntial equations with discontinuous nonlinearities.Comm. Pure Appl. Math. 33 (1980), 117–146. MR 0562547, 10.1002/cpa.3160330203; reference:[8] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590; reference:[9] F. S. DeBlasi: Characterizations of certain classes of semicontinuous multifunctions by continuous approximations.J. Math. Anal. Appl. 106 (1985), 1–18. MR 0780314, 10.1016/0022-247X(85)90126-X; reference:[10] F. S. DeBlasi, J. Myjak: On the solution set for differential inclusions.Bull. Polish Acad. Sci. 33 (1985), 17–23.; reference:[11] F. S. DeBlasi, J. Myjak: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9–31. MR 0834135, 10.2140/pjm.1986.123.9; reference:[12] J. Deuel, P. Hess: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. MR 0492636, 10.1007/BF02760403; reference:[13] J. Diestel, J. Uhl: Vector Measures.Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). MR 0453964; reference:[14] E. Feireisl: A note on uniqueness for parabolic problems with discontinuous nonlinearities.Nonlinear Anal. 16 (1991), 1053–1056. Zbl 0736.35060, MR 1107003, 10.1016/0362-546X(91)90106-B; reference:[15] A. F. Filippov: Differential Equations with Discontinuous Righthand Sides.Kluwer, Dordrecht, 1988. MR 1028776; reference:[16] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443; reference:[17] S. Heikkila, S. Hu: On fixed points of multifunctions in ordered spaces.Appl. Anal. 51 (1993), 115–127. MR 1278995, 10.1080/00036819308840206; reference:[18] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker Inc., New York, 1994. MR 1280028; reference:[19] N. Hirano: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. Amer. Math. Soc. 120 (1994), 185–192. Zbl 0795.34051, MR 1174494, 10.1090/S0002-9939-1994-1174494-8; reference:[20] S. Hu, N. S. Papageorgiou: On the topological regularity of the solution of differential inclusions with constraints.J. Differential Equations 107 (1994), 280–289. MR 1264523, 10.1006/jdeq.1994.1013; reference:[21] D. Hyman: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91–97. Zbl 0174.25804, MR 0253303, 10.4064/fm-64-1-91-97; reference:[22] N. Kikuchi: Kneser’s property for $\frac{\partial u}{\partial t}=\Delta u+\sqrt{u}$.Keio Math. Seminar Reports 3 (1978), 45–48. MR 0510129; reference:[23] E. Klein, A. Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692; reference:[24] A. Kufner, O. John, S. Fučík: Function Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1977. MR 0482102; reference:[25] K. Kuratowski: Topology II.Academic Press, New York, 1968.; reference:[26] J.–M. Lasry, R. Robert: Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques.C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. MR 0436196; reference:[27] J.–L. Lions: Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires.Dunod, Paris, 1969. MR 0259693; reference:[28] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Internat. J. Math. Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516; reference:[29] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations.Math. Japon. 32 (1987), 437–464. Zbl 0634.28005, MR 0914749; reference:[30] N. S. Papageorgiou: On Fatou’s lemma and parametric integrals for set–valued functions.J. Math. Anal. Appl. 187 (1994), 809–825. Zbl 0814.28005, MR 1298822, 10.1006/jmaa.1994.1391; reference:[31] N. S. Papageorgiou: On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities.J. Math. Anal. Appl 205 (1997), 434–453. Zbl 0901.35043, MR 1428358, 10.1006/jmaa.1997.5208; reference:[32] N. S. Papageorgiou, N. Shahzad: Existence and strong relaxation theorems for nonlinear evolution inclusions.Yokohama Math. J. 43 (1995), 73–88. MR 1414183; reference:[33] J.–P. Puel: Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. Zbl 0331.35027, MR 0399654; reference:[34] J. Rauch: Discontinuous semilinear differential equations and multiple-valued maps.Proc. Amer. Math. Soc. 64 (1977), 277–282. Zbl 0413.35031, MR 0442453, 10.1090/S0002-9939-1977-0442453-6; reference:[35] D. H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems.Indiana Univ. Math. J. 21 (1972), 979–1000. Zbl 0223.35038, MR 0299921, 10.1512/iumj.1972.21.21079; reference:[36] B.–A. Ton: Nonlinear evolution equations in Banach spaces.J. Differential Equations 9 (1971), 608–618. Zbl 0227.47043, MR 0300172, 10.1016/0022-0396(71)90027-1; reference:[37] I. Vrabie: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. Amer. Math. Soc. 109 (1990), 653–661. Zbl 0701.34074, MR 1015686, 10.1090/S0002-9939-1990-1015686-4; reference:[38] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer-Verlag, New York, 1990. Zbl 0684.47029, MR 0816732
-
3Academic Journal
المؤلفون: Halidias, Nikolaos, Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:upper and lower solutions, keyword:weak solution, keyword:evolution triple, keyword:compact embedding, keyword:distributional derivative, keyword:operator of type $(S)_{+}$, keyword:operator of type $L-(S)_{+}$, keyword:$L$-pseudomonotone operator, keyword:multivalued problem, keyword:extremal solutions, keyword:Zorn’s lemma, msc:35K55, msc:35K60
وصف الملف: application/pdf
Relation: mr:MR1725842; zbl:Zbl 1046.35054; reference:[1] Aizicovici S., Papageorgiou N. S.: Infinite dimensional parametric optimal control problems.Math. Nachr. 162 (1993), 17–38. Zbl 0807.49001, MR 1239573; reference:[2] Boccardo L., Murat F., Puel J.-P.: Existence results for some quasilinear parabolic problems.Nonlin. Anal-TMA 13 (1989), 373–392. MR 0987375; reference:[3] Carl S.: On the existence of extremal weak solutions for a class of quasilinear parabolic problems.Diff. Integ. Eqns 6 (1993), 1493–1505. Zbl 0805.35057, MR 1235207; reference:[4] Carl S.: Enclosure of solution for quasilinear dynamic hemivariational inequalities.Nonlin. World 3 (1996), 281–298. MR 1411356; reference:[5] Chang K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. 80 (1981), 102–129. MR 0614246; reference:[6] Chipot M., Rodrigues, J-E.: Comparison and stability of solutions to a class of quasilinear parabolic problems.Proc. Royal Soc. Edinburgh 110 A (1988), 275–285. Zbl 0669.35052, MR 0974743; reference:[7] Costa D. G., Goncalves J. V. A.: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. 153 ( 1990), 470–485. Zbl 0717.49007, MR 1080660; reference:[8] Dancer E. N., Sweers G.: On the existence of maximal weak solution for a semilinear elliptic equation.Diff. Integr. Eqns 2 (1989), 533–540. MR 0996759; reference:[9] Deuel J., Hess P.: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. Zbl 0372.35045, MR 0492636; reference:[10] Dunford N., Schwartz J.: Linear Operators I.Wiley, New York (1958).; reference:[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775; reference:[12] Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions.CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660; reference:[13] Halidias N., Papageorgiou N. S.: Second order multivalued boundary value problems.Archivum Math. (Brno) 34 (1998), 267–284. Zbl 0915.34021, MR 1645320; reference:[14] Kandilakis D., Papageorgiou N. S.: Nonlinear periodic parabolic problems with nonmonotone discontinuities.Proc. Edinburgh Math. Soc. 41 (1998), 117–132. Zbl 0909.35074, MR 1604345; reference:[15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018; reference:[16] Lions J.-L.: Quelques Methodes de Resolution des Problems aux Limits Non-Lineaires.Dunod, Paris (1969). MR 0259693; reference:[17] Miettinen M.: Approximation of hemivariational inequalities and optimal control problem.Univ. of Jyvaskyla, Math. Department, Finland, Report 59 (1993). MR 1248824; reference:[18] Miettinen M.: A parabolic hemivariational inequality.Nonl. Anal-TMA 26 (1996), 725–734. Zbl 0858.35072, MR 1362746; reference:[19] Mokrane A.: Existence of bounded solutions for some nonlinear parabolic equations.Proc. Royal Soc. Edinburgh 107 (1987), 313–326. MR 0924524; reference:[20] Panagiotopoulos P. D.: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer Verlag, New York, Berlin (1994). MR 1385670; reference:[21] Rauch J.: Discontinuous semilinear differential equations and multiple-valued maps.Proc. AMS 64 (1977), 272–282. Zbl 0413.35031, MR 0442453; reference:[22] Stuart C.: Maximal and minimal solutions of elliptic equations with discontinuous nonlinearities.Math. Zeitschrift 163 (1978), 239–249. MR 0513729; reference:[23] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, New York (1990). Zbl 0684.47029
-
4Academic Journal
المؤلفون: Avgerinos, Evgenios P., Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:lower semicontinuous multifunctions, keyword:continuous embedding, keyword:compact embedding, keyword:continuous selector, keyword:extremal solution, keyword:relaxation theorem, msc:34A60, msc:34B15, msc:34C25
وصف الملف: application/pdf
Relation: mr:MR1679637; zbl:Zbl 0973.34010; reference:[1] Benamara M.: Points extremaux, multiapplications et fonctionelles integrales.These de 3eme cycle, Universite de Grenoble 1975.; reference:[2] Bressan A., Colombo G.: Extensions and selections on maps with decomposable values.Studia Math., XC(1988), 69-85. MR 0947921; reference:[3] Brezis H.: Analyse Fonctionelle.Masson, Paris (1983). MR 0697382; reference:[4] Frigon M.: Problemes aux limites pour des inclusions differentilles de type semi-continues inferieument.Rivista Math. Univ. Parma 17(1991), 87-97. MR 1174938; reference:[5] Gutman S.: Topological equivalence in the space of integrable vector valued functions.Proc. AMS. 93(1985), 40-42. Zbl 0529.46027, MR 0766523; reference:[6] Kisielewicz M.: Differential Inclusions and Optimal Control.Kluwer, Dordrecht, The Netherlands, (1991). MR 1135796; reference:[7] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York, (1984). Zbl 0556.28012, MR 0752692; reference:[8] Papageorgiou N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica, 32, (1987), 437-464. Zbl 0634.28005, MR 0914749; reference:[9] Šeda V.: On some nonlinear boundary value problems for ordinary differential equations.Archivum Math. (Brno) 25(1989), 207-222. MR 1188065; reference:[10] Tolstonogov A. A.: Extreme continuous selectors for multivalued maps and the bang-bang principle for evolution equations.Soviet. Math. Doklady 42(1991), 481-485. MR 1121349; reference:[11] Wagner D.: Surveys of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 857-903. MR 0486391
-
5Academic Journal
المؤلفون: Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:$R_\delta $-set, keyword:homotopic, keyword:contractible, keyword:evolution triple, keyword:evolution inclusion, keyword:compact embedding, keyword:optimal control, msc:34G20, msc:34H05, msc:35B30, msc:35B37, msc:35R45, msc:49A20, msc:49J24
وصف الملف: application/pdf
Relation: mr:MR1461421; zbl:Zbl 0898.35011; reference:[1] K. C. Chang: The obstacle problem and partial differential equations with discontinuous nonlinearities.Comm. Pure and Appl. Math. 33 (1980), 117–146. Zbl 0405.35074, MR 0562547, 10.1002/cpa.3160330203; reference:[2] F. S. DeBlasi, J. Myjak: On the solution sets for differential inclusions.Bull. Polish. Acad. Sci. 33 (1985), 17–23. MR 0798723; reference:[3] K. Deimling, M. R. M. Rao: On solution sets of multivalued differential equations.Applicable Analysis 30 (1988), 129–135. MR 0967566, 10.1080/00036818808839797; reference:[4] J. Dugundji: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0144.21501, MR 0193606; reference:[5] C. Himmelberg: Precompact contractions of metric uniformities and the continuity of $F(t,x)$.Rend. Sem. Matematico Univ. Padova 50 (1973), 185–188. MR 0355958; reference:[6] C. Himmelberg, F. Van Vleck: A note on the solution sets of differential inclusions.Rocky Mountain J. Math 12 (1982), 621–625. MR 0683856, 10.1216/RMJ-1982-12-4-621; reference:[7] D. M. Hyman: On decreasing sequences of compact absolute retracts.Fund. Math. 64 (1969), 91–97. Zbl 0174.25804, MR 0253303, 10.4064/fm-64-1-91-97; reference:[8] A. Lasota, J. Yorke: The generic property of existence of solutions of differential equations on Banach spaces.J. Diff. Equations 13 (1973), 1–12. MR 0335994, 10.1016/0022-0396(73)90027-2; reference:[9] N. S. Papageorgiou: Optimal control of nonlinear evolution inclusions.J. Optim. Theory Appl. 67 (1990), 321–357. Zbl 0697.49007, MR 1080139, 10.1007/BF00940479; reference:[10] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math and Math.Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516; reference:[11] N. S. Papageorgiou: On the solution set of differential inclusions in Banach spaces.Applicable Anal. 25 (1987), 319–329. MR 0912190, 10.1080/00036818708839695; reference:[12] N. S. Papageorgiou: Relaxability and well-posedness for infinite dimensional optimal control problems.Problems of Control and information Theory 20 (1991), 205–218. Zbl 0741.49001, MR 1119038; reference:[13] L. Rybinski: On Caratheodory type selections.Fund. Math. CXXV (1985), 187–193. Zbl 0614.28005, MR 0813756; reference:[14] D. Wagner: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056; reference:[15] J. Yorke: Spaces of solutions.Lecture Notes on Operations Research and Math. Economics 12 (1969), Springer, New York, 383–403. Zbl 0188.15502, MR 0361294; reference:[16] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer, New York, 1990. Zbl 0684.47029, MR 0816732
-
6Academic Journal
مصطلحات موضوعية: keyword:evolution triple, keyword:compact embedding, keyword:pseudomonotone operator, keyword:demicontinuity, keyword:coercive operator, keyword:dominated convergence theorem, msc:34A60, msc:34C25, msc:34G20, msc:47H15, msc:47N20
وصف الملف: application/pdf
Relation: mr:MR1421856; zbl:Zbl 0908.34043; reference:[1] Ash, R.: Real Analysis and Probability.Academic Press, New York (1972). MR 0435320; reference:[2] Becker, R. I.: Periodic solutions of semilinear equations of evolution of compact type.J. Math. Anal. Appl. 82 (1981), 33-48. Zbl 0465.34014, MR 0626739; reference:[3] Brezis, H.: Operateurs Maximaux Monotones.North Holland, Amsterdam (1973). Zbl 0252.47055; reference:[4] Browder, F.: Existence of periodic solutions for nonlinear equations of evolution.Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. Zbl 0135.17601, MR 0177295; reference:[5] Browder, F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains.Proc. Nat. Acad. Sci. USA 74 (1977), 2659-2661. MR 0445124; reference:[6] Chang, K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102-129. MR 0614246; reference:[7] Blasi, F. S., Myjak, J.: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9-31. MR 0834135; reference:[8] Diestel, J., Uhl, J. J.: Vector Measures.Math. Surveys, 15, AMS Providence, Rhode Island (1977). MR 0453964; reference:[9] Goebel, K., Kirk, W.: Topics in Metric Fixed Point Theory.Cambridge Univ. Press, Cambridge (1990). MR 1074005; reference:[10] Gossez, J. P., Mustonen, V.: Pseudomonotonicity and the Leray-Lions condition.Differential and Integral Equations 6 (1993), 37-45. MR 1190164; reference:[11] Hirano, N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces.Proc. AMS 120 (1994), 185-192. Zbl 0795.34051, MR 1174494; reference:[12] Hu, S., Papageorgiou, N. S.: On the existence of periodic solutions for a class of nonlinear evolution inclusions.Bolletino UMI 7-B (1993), 591-605. MR 1244409; reference:[13] Hu, S., Papageorgiou, N. S.: Galerkin approximations for nonlinear evolution inclusions.Comm. Math. Univ. Carolinae 35 (1994), 705-720. MR 1321241; reference:[14] Lions, J. L.: Quelques Methods de Resolution des Problemes aux Limites Nonlineaires.Dunod, Paris (1969).; reference:[15] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions.Inter. J. Math. and Math. Sci. 10 (1987), 433-464. Zbl 0619.28009, MR 0896595; reference:[16] Papageorgiou, N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749; reference:[17] Prüss, J.: Periodic solutions for semilinear evolution equations.Nonl. Anal. TMA 3 (1979), 221-235.; reference:[18] Ton, B.-A.: Nonlinear evolution equations in Banach spaces.Proc. AMS 109 (1990), 653-661.; reference:[19] Vrabie, I.: Periodic solutions for nonlinear evolution equations in a Banach space.Proc. AMS 109 (1990), 653-661. Zbl 0701.34074, MR 1015686; reference:[20] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control Opt. 15 (1977), 859-903. Zbl 0427.28009, MR 0486391; reference:[21] Zeidler, E.: Nonlinear Functinal Analysis and its Applications.Springer-Verlag, New York (1990).
-
7Academic Journal
المؤلفون: Hu, Shouchuan, Papageorgiou, Nikolaos S.
مصطلحات موضوعية: keyword:Galerkin approximations, keyword:evolution triple, keyword:monotone operator, keyword:hemicontinuous operator, keyword:compact embedding, keyword:periodic trajectory, keyword:tangent cone, keyword:connected set, keyword:acyclic set, msc:34A45, msc:34A60, msc:34G20, msc:34G99, msc:35B10, msc:35G10, msc:35K22, msc:35K25, msc:35R70
وصف الملف: application/pdf
Relation: mr:MR1321241; zbl:Zbl 0819.34011; reference:[1] Attouch H.: Variational Convergence for Functional and Operator.Pitman, London, 1984.; reference:[2] DeBlasi F.S., Myjak J.: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9-31. MR 0834135; reference:[3] DeBlasi F.S., Myjak J.: On the solution sets for differential inclusions.Bulletin Polish Acad. Sci. 33 (1985), 17-23. MR 0798723; reference:[4] Eilenberg S., Montgomery D.: Fixed point theorems for multivalued transformations.Amer. J. Math. 68 (1946), 214-222. Zbl 0060.40203, MR 0016676; reference:[5] Hu S., Papageorgiou N.S.: On the topological regularity of the solution set of differential inclusions with state constraints.J. Diff. Equations 107 (1994), in press. MR 1264523; reference:[6] Lakshmikantham V., Leela S.: Nonlinear Differential Equations in Abstract Spaces.Pergamon Press, Oxford, 1981. Zbl 0456.34002, MR 0616449; reference:[7] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.J. Math. Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595; reference:[8] Papageorgiou N.S.: On infinite dimensional control systems with state and control constraints.Proc. Indian Acad. Sci. 100 (1990), 65-79. Zbl 0703.49018, MR 1051092; reference:[9] Papageorgiou N.S.: A viability result for nonlinear time dependent evolution inclusion.Yokohama Math. Jour. 40 (1992), 73-86. MR 1190002; reference:[10] Papageorgiou N.S.: On the bang-bang principle for nonlinear evolution inclusions.Aequationes Math. 45 (1993), 267-280. Zbl 0780.34046, MR 1212391; reference:[11] Strang G., Fix G.: An Analysis of the FInite Element Method.Prentice-Hall, Englewood Cliffs, NJ, 1973. Zbl 0356.65096, MR 0443377; reference:[12] Zeidler E.: Nonlinear Functional Analysis and its Application II.Springer Verlag, New York, 1990. MR 0816732