-
1Academic Journal
مصطلحات موضوعية: keyword:prey-predator model, keyword:prey-taxis, keyword:free boundary, keyword:classical solutions, keyword:global existence, msc:35K51, msc:35K55, msc:35K57, msc:35K59, msc:35R35, msc:92B05, msc:92D25
وصف الملف: application/pdf
Relation: mr:MR3795243; zbl:Zbl 06890302; reference:[1] Ainseba, B. E., Bendahmane, M., Noussair, A.: A reaction-diffusion system modeling predator-prey with prey-taxis.Nonlinear Anal., Real World Appl. 9 (2008), 2086-2105. Zbl 1156.35404, MR 2441768, 10.1016/j.nonrwa.2007.06.017; reference:[2] Bozorgnia, F., Arakelyan, A.: Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems.Appl. Math. Comput. 219 (2013), 8863-8875. Zbl 1291.65257, MR 3047783, 10.1016/j.amc.2013.03.074; reference:[3] Bunting, G., Du, Y., Krakowski, K.: Spreading speed revisited: analysis of a free boundary model.Netw. Heterog. Media 7 (2012), 583-603. Zbl 1302.35194, MR 3004677, 10.3934/nhm.2012.7.583; reference:[4] Chen, X., Friedman, A.: A free boundary problem arising in a model of wound healing.SIAM J. Math. Anal. 32 (2000), 778-800. Zbl 0972.35193, MR 1814738, 10.1137/S0036141099351693; reference:[5] Du, Y., Guo, Z.: The Stefan problem for the Fisher-KPP equation.J. Differ. Equations 253 (2012), 996-1035. Zbl 1257.35110, MR 2922661, 10.1016/j.jde.2012.04.014; reference:[6] Friedman, A.: Variational Principles and Free-Boundary Problems.Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York (1982). Zbl 0564.49002, MR 0679313; reference:[7] He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis.Appl. Math. Lett. 49 (2015), 73-77. Zbl 06587041, MR 3361698, 10.1016/j.aml.2015.04.017; reference:[8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis.J. Math. Biol. 58 (2009), 183-217. Zbl 1161.92003, MR 2448428, 10.1007/s00285-008-0201-3; reference:[9] Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems.SIAM J. Appl. Math. 55 (1995), 763-783. Zbl 0832.34035, MR 1331585, 10.1137/S0036139993253201; reference:[10] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822; reference:[11] Levin, S. A.: A more functional response to predator-prey stability.Amer. Natur. 111 (1977), 381-383. 10.1086/283170; reference:[12] Li, A.-W.: Impact of noise on pattern formation in a predator-prey model.Nonlinear Dyn. 66 (2011), 689-694. MR 2859594, 10.1007/s11071-010-9941-x; reference:[13] Li, L., Jin, Z.: Pattern dynamics of a spatial predator-prey model with noise.Nonlinear Dyn. 67 (2012), 1737-1744. MR 2877412, 10.1007/s11071-011-0101-8; reference:[14] Li, C., Wang, X., Shao, Y.: Steady states of a predator-prey model with prey-taxis.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 97 (2014), 155-168. Zbl 1287.35018, MR 3146380, 10.1016/j.na.2013.11.022; reference:[15] Lin, Z.: A free boundary problem for a predator-prey model.Nonlinearity 20 (2007), 1883-1892. Zbl 1126.35111, MR 2343682, 10.1088/0951-7715/20/8/004; reference:[16] Markowich, P. A.: Applied Partial Differential Equations: A Visual Approach.Springer, Berlin (2007). Zbl 1109.35001, MR 2309862, 10.1007/978-3-540-34646-3; reference:[17] Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion equations.J. Math. Biol. 9 (1980), 49-64. Zbl 0425.92010, MR 0648845, 10.1007/BF00276035; reference:[18] Mimura, M., Murray, J. D.: On a diffusive prey-predator model which exhibits patchiness.J. Theor. Biol. 75 (1978), 249-252. MR 0518476, 10.1016/0022-5193(78)90332-6; reference:[19] Monobe, H., Wu, C.-H.: On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment.J. Diff. Equations 261 (2016), 6144-6177. Zbl 1351.35070, MR 3552561, 10.1016/j.jde.2016.08.033; reference:[20] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044-1081. Zbl 0990.35128, MR 1462051, 10.1137/S0036139995288976; reference:[21] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement.Can. Appl. Math. Q. 10 (2002), 501-543. Zbl 1057.92013, MR 2052525; reference:[22] Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect.Nonlinear Dyn. 85 (2016), 1-12. MR 3510594, 10.1007/s11071-016-2671-y; reference:[23] Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis.Nonlinear Anal., Real World Appl. 11 (2010), 2056-2064. Zbl 1195.35171, MR 2646615, 10.1016/j.nonrwa.2009.05.005; reference:[24] Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system.J. Math. Biol. 43 (2001), 268-290. Zbl 1007.34031, MR 1868217, 10.1007/s002850100097; reference:[25] Wang, M.: On some free boundary problems of the prey-predator model.J. Differ. Equations 256 (2014), 3365-3394. Zbl 1317.35110, MR 3177899, 10.1016/j.jde.2014.02.013; reference:[26] Wang, M.: Spreading and vanishing in the diffusive prey-predator model with a free boundary.Commun. Nonlinear Sci. Numer. Simul. 23 (2015), 311-327. Zbl 1354.92074, MR 3312368, 10.1016/j.cnsns.2014.11.016; reference:[27] Yousefnezhad, M., Mohammadi, S. A.: Stability of a predator-prey system with prey taxis in a general class of functional responses.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 62-72. Zbl 1363.35185, MR 3432748, 10.1016/S0252-9602(15)30078-3; reference:[28] Zhao, J., Wang, M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment.Nonlinear Anal., Real World Appl. 16 (2014), 250-263. Zbl 1296.35220, MR 3123816, 10.1016/j.nonrwa.2013.10.003
-
2Academic Journal
المؤلفون: Jiang, Lingyu, Wang, Yidong
مصطلحات موضوعية: keyword:compressible Navier-Stokes equations, keyword:classical solutions, keyword:blow up criterion, msc:35B44, msc:35Q30, msc:35Q35, msc:76D03
وصف الملف: application/pdf
Relation: mr:MR2595083; zbl:Zbl 1224.35317; reference:[1] Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations.Comm. Math. Phys. 94 (1984), 61-66. Zbl 0573.76029, MR 0763762, 10.1007/BF01212349; reference:[2] Choe, H. J., Jin, B. J.: Regularity of weak solutions of the compressible Navier-Stokes equations.J. Korean Math. Soc. 40 (2003), 1031-1050. Zbl 1034.76049, MR 2013486, 10.4134/JKMS.2003.40.6.1031; reference:[3] Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations.Comm. P. D. E. 22 (1997), 977-1008. Zbl 0885.35089, MR 1452175, 10.1080/03605309708821291; reference:[4] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations.J. Math. Fluid Mech. 3 (2001), 358-392. MR 1867887, 10.1007/PL00000976; reference:[5] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing movement of compressible viscous fluids.K$\bar o$dai Math. Sem. Rep. 23 (1971), 60-120. MR 0283426, 10.2996/kmj/1138846265; reference:[6] Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations.Comm. Math. Phys. 214 (2000), 191-200. Zbl 0985.46015, MR 1794270, 10.1007/s002200000267; reference:[7] Lions, P. L.: Mathematical Topics in Fluid Mechanics, Vol 2. Compressible Models.Oxford lecture series in Mathematics and its Applications, 10, Oxford Sciences Publications. The Clarendon Press, Oxford University Press, New York (1998). Zbl 0908.76004, MR 1637634; reference:[8] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion.Publ. RIMS. Kyoto Univ. 13 (1977), 193-253. Zbl 0366.35070, 10.2977/prims/1195190106; reference:[9] Xin, Z. P.: Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density.Comm. Pure Appl. Math. 51 (1998), 229-240. MR 1488513, 10.1002/(SICI)1097-0312(199803)51:33.0.CO;2-C; reference:[10] Vaigant, V. A., Kazhikhov, A. V.: On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid.Russian Sibirsk. Mat. Zh. 36 (1995), 1283-1316 translation in it Siberian Math. J. {\it 36} (1995). MR 1375428