-
1Academic Journal
المؤلفون: Yang, Shanshan, Jiang, Hongbiao, Lin, Yinhe
مصطلحات موضوعية: keyword:compressible isentropic Navier-Stokes-Poisson equation, keyword:unipolar, keyword:energy solution, keyword:blow-up, msc:35B44, msc:35Q35
وصف الملف: application/pdf
Relation: mr:MR4339121; zbl:Zbl 07442484; reference:[1] Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows.J. Math. Anal. Appl. 320 (2006), 819-826. Zbl 1121.35110, MR 2225997, 10.1016/j.jmaa.2005.08.005; reference:[2] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations.Sci. Sin., Math. 50 (2020), 873-884 Chinese. 10.1360/N012018-00134; reference:[3] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations.Czech. Math. J. 70 (2020), 9-19. Zbl 07217119, MR 4078344, 10.21136/CMJ.2019.0156-18; reference:[4] Gamba, I. M., Gualdani, M. P., Zhang, P.: On the blowing up of solutions to quantum hydrodynamic models on bounded domains.Monatsh Math. 157 (2009), 37-54. Zbl 1173.35106, MR 2504777, 10.1007/s00605-009-0092-4; reference:[5] Guo, B., Wang, G.: Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbb R^d$.J. Differ. Equations 261 (2016), 3815-3842. Zbl 1354.35123, MR 3532056, 10.1016/j.jde.2016.06.007; reference:[6] Guo, B., Wang, G.: Blow-up of solutions to quantum hydrodynamic models in half space.J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. Zbl 1359.76348, MR 3626024, 10.1063/1.4978331; reference:[7] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities.J. Differ. Equations 259 (2015), 2981-3003. Zbl 1319.35194, MR 3360663, 10.1016/j.jde.2015.04.007; reference:[8] Lai, N.-A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations.Nonlinear Anal., Real World Appl. 25 (2015), 112-117. Zbl 1327.35299, MR 3351014, 10.1016/j.nonrwa.2015.03.005; reference:[9] Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum.Math. Res. Lett. 20 (2013), 41-50. Zbl 1284.35329, MR 3126720, 10.4310/MRL.2013.v20.n1.a4; reference:[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations.J. Differ. Equations 245 (2008), 1762-1774. Zbl 1154.35070, MR 2433485, 10.1016/j.jde.2008.07.007; reference:[11] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations.Math. Methods Appl. Sci. 40 (2017), 5262-5272. Zbl 1383.35034, MR 3689262, 10.1002/mma.4384; reference:[12] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density.Commun. Pure Appl. Math. 51 (1998), 229-240. Zbl 0937.35134, MR 1488513, 10.1002/(SICI)1097-0312(199803)51:33.0.CO;2-C; reference:[13] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations.Commun. Math. Phys. 321 (2013), 529-541. Zbl 1287.35059, MR 3063918, 10.1007/s00220-012-1610-0
-
2Academic Journal
المؤلفون: Li, Huanyuan
مصطلحات موضوعية: keyword:Navier-Stokes-Korteweg equations, keyword:capillary fluid, keyword:blow-up criterion, keyword:vacuum, keyword:strong solutions, msc:35D35, msc:35Q35, msc:76D45
وصف الملف: application/pdf
Relation: mr:MR4218601; zbl:07332688; reference:[1] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations.J. Math. Fluid Mech. 16 (2014), 721-725. Zbl 1307.35186, MR 3267544, 10.1007/s00021-014-0182-5; reference:[2] Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 59 (2004), 465-489. Zbl 1066.35070, MR 2094425, 10.1016/j.na.2004.07.020; reference:[3] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249, Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8; reference:[4] Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system.J. Differ. Equations 254 (2013), 511-527. Zbl 1253.35121, MR 2990041, 10.1016/j.jde.2012.08.029; reference:[5] Huang, X., Wang, Y.: Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system.SIAM J. Math. Anal. 46 (2014), 1771-1788. Zbl 1302.35294, MR 3200422, 10.1137/120894865; reference:[6] Huang, X., Wang, Y.: Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity.J. Differ. Equations 259 (2015), 1606-1627. Zbl 1318.35064, MR 3345862, 10.1016/j.jde.2015.03.008; reference:[7] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/S0036141004442197; reference:[8] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023; reference:[9] Li, H.: A blow-up criterion for the density-dependent Navier-Stokes-Korteweg equations in dimension two.Acta Appl. Math. 166 (2020), 73-83. Zbl 07181473, MR 4077229, 10.1007/s10440-019-00255-3; reference:[10] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). Zbl 0983.35004, MR 3013225, 10.1007/978-3-0348-0551-3; reference:[11] Tan, Z., Wang, Y.: Strong solutions for the incompressible fluid models of Korteweg type.Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 799-809. Zbl 1228.76038, MR 2675787, 10.1016/S0252-9602(10)60079-3; reference:[12] Wang, T.: Unique solvability for the density-dependent incompressible Navier-Stokes-Korteweg system.J. Math. Anal. Appl. 455 (2017), 606-618. Zbl 1373.35257, MR 3665121, 10.1016/j.jmaa.2017.05.074; reference:[13] Xu, X., Zhang, J.: A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum.Math. Models Methods Appl. Sci. 22 (2012), Article ID 1150010, 23 pages. Zbl 1388.76452, MR 2887666, 10.1142/S0218202511500102
-
3Academic Journal
المؤلفون: Dong, Jianwei, Zhu, Junhui, Wang, Yanping
مصطلحات موضوعية: keyword:compressible isentropic Navier-Stokes-Poisson equations, keyword:unipolar, keyword:bipolar, keyword:smooth solution, keyword:blow-up, msc:35B44, msc:35Q35
وصف الملف: application/pdf
Relation: mr:MR4078344; zbl:07217119; reference:[1] Cai, H., Tan, Z.: Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations.Nonlinear Anal., Real World Appl. 32 (2016), 260-293. Zbl 1348.35183, MR 3514925, 10.1016/j.nonrwa.2016.04.010; reference:[2] Cai, H., Tan, Z.: Asymptotic stability of stationary solutions to the compressible bipolar Navier-Stokes-Poisson equations.Math. Methods Appl. Sci. 40 (2017), 4493-4513. Zbl 1373.35233, MR 3672880, 10.1002/mma.4320; reference:[3] Cho, Y., Jin, B.: Blow up of viscous heat-conducting compressible flows.J. Math. Anal. Appl. 320 (2006), 819-826. Zbl 1121.35110, MR 2225997, 10.1016/j.jmaa.2005.08.005; reference:[4] Du, D. P., Li, J. Y., Zhang, K. J.: Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids.Commun. Math. Sci. 11 (2013), 541-546. Zbl 1305.76089, MR 3002564, 10.4310/CMS.2013.v11.n2.a11; reference:[5] Hsiao, L., Li, H. L.: Compressible Navier-Stokes-Poisson equations.Acta Math. Sci., Ser. B 30 (2010), 1937-1948. Zbl 1240.35406, MR 2778703, 10.1016/S0252-9602(10)60184-1; reference:[6] Hsiao, L., Li, H. L., Yang, T., Zou, C.: Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbb{R}^{3}$.Acta Math. Sci., Ser. B 31 (2011), 2169-2194. Zbl 1265.35265, MR 2931498, 10.1016/S0252-9602(11)60392-5; reference:[7] Jiang, F., Tan, Z.: Blow-up of viscous compressible reactive self-gravitating gas.Acta Math. Appl. Sin., Engl. Ser. 28 (2012), 401-408. Zbl 1359.35131, MR 2914383, 10.1007/s10255-012-0152-8; reference:[8] Jiu, Q. S., Wang, Y. X., Xin, Z. P.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities.J. Differ. Equations 259 (2015), 2981-3003. Zbl 1319.35194, MR 3360663, 10.1016/j.jde.2015.04.007; reference:[9] Lai, N. A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations.Nonlinear Anal., Real World Appl. 25 (2015), 112-117. Zbl 1327.35299, MR 3351014, 10.1016/j.nonrwa.2015.03.005; reference:[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations.J. Differ. Equations 245 (2008), 1762-1774. Zbl 1154.35070, MR 2433485, 10.1016/j.jde.2008.07.007; reference:[11] Tan, Z., Wang, Y. J.: Blow-up of smooth solutions to the Navier-Stokes equations of compressible viscous heat-conducting fluids.J. Aust. Math. Soc. 88 (2010), 239-246. Zbl 1191.35210, MR 2629933, 10.1017/S144678871000008X; reference:[12] Tang, T., Zhang, Z. J.: Blow-up of smooth solution to the compressible Navier-Stokes-Poisson equations.Bull. Malays. Math. Sci. Soc. 39 (2016), 1487-1497. Zbl 1358.35133, MR 3549976, 10.1007/s40840-015-0256-4; reference:[13] Wang, G. W., Guo, B. L.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations.Math. Methods Appl. Sci. 40 (2017), 5262-5272. Zbl 1383.35034, MR 3689262, 10.1002/mma.4384; reference:[14] Wang, Y. Z., Wang, K. Y.: Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions.J. Differ. Equations 259 (2015), 25-47. Zbl 1317.35211, MR 3335919, 10.1016/j.jde.2015.01.042; reference:[15] Xie, H. Z.: Blow-up of smooth solutions to the Navier-Stokes-Poisson equations.Math. Methods Appl. Sci. 34 (2011), 242-248. Zbl 1206.35201, MR 2779329, 10.1002/mma.1353; reference:[16] Xin, Z. P.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density.Commun. Pure Appl. Math. 51 (1998), 229-240. Zbl 0937.35134, MR 1488513, 10.1002/(SICI)1097-0312(199803)51:3\229::AID-CPA1\3.0.CO;2-C; reference:[17] Xin, Z. P., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations.Commun. Math. Phys. 321 (2013), 529-541. Zbl 1287.35059, MR 3063918, 10.1007/s00220-012-1610-0; reference:[18] Zhao, Z. Y., Li, Y. P.: Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force.Nonlinear Anal., Real World Appl. 16 (2014), 146-162. Zbl 1297.35195, MR 3123807, 10.1016/j.nonrwa.2013.09.014; reference:[19] Zou, C.: Asymptotical behavior of bipolar non-isentropic compressible Navier-Stokes-Poisson system.Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 813-832. Zbl 1364.35291, MR 3552850, 10.1007/s10255-016-0596-3
-
4Academic Journal
المؤلفون: Ling, Amy Poh Ai, Shimojō, Masahiko
مصطلحات موضوعية: keyword:quasilinear heat equation, keyword:total blow-up, keyword:blow-up only at space infinity, msc:35B44, msc:35K59
وصف الملف: application/pdf
Relation: mr:MR3985858; zbl:Zbl 07088852; reference:[1] Galaktionov, V. A.: Asymptotic behavior of unbounded solutions of the nonlinear equation $u_t=(u^\sigma u_x)_x+u^\beta$ near a ``singular'' point.Sov. Math., Dokl. 33 (1986), 840-844 translated from Dokl. Akad. Nauk SSSR 288 1986 1293-1297. Zbl 0629.35061, MR 0852454; reference:[2] Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., Samarskii, A. A.: Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla (u^{\sigma }\nabla u)+u^{\beta}$.Sov. Phys., Dokl. 25 (1980), 458-459 translated from Dokl. Akad. Nauk SSSR 252 1980 1362-1364. Zbl 515.35045, MR 0581597; reference:[3] Giga, Y., Umeda, N.: Blow-up directions at space infinity for solutions of semilinear heat equations.Bol. Soc. Parana. Mat. (3) 23 (2005), 9-28 correction ibid. 24 2006 19-24. Zbl 1173.35531, MR 2242285, 10.5269/bspm.v23i1-2.7450; reference:[4] Giga, Y., Umeda, N.: On blow-up at space infinity for semilinear heat equations.J. Math. Anal. Appl. 316 (2006), 538-555. Zbl 1106.35029, MR 2206688, 10.1016/j.jmaa.2005.05.007; reference:[5] Lacey, A. A.: The form of blow-up for nonlinear parabolic equations.Proc. R. Soc. Edinb., Sect. A 98 (1984), 183-202. Zbl 0556.35077, MR 0765494, 10.1017/S0308210500025609; reference:[6] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23. AMS, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023; reference:[7] Mochizuki, K., Suzuki, R.: Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in $R^N$.J. Math. Soc. Japan 44 (1992), 485-504. Zbl 0805.35065, MR 1167379, 10.2969/jmsj/04430485; reference:[8] Oleinik, O. A., Kalašinkov, A. S., Chou, Y.-L.: The Cauchy problem and boundary problems for equations of the type of non-stationary filtration.Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 667-704 Russian. Zbl 0093.10302, MR 0099834; reference:[9] Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P.: Blow-up in Quasilinear Parabolic Equations.De Gruyter Expositions in Mathematics 19. Walter de Gruyter, Berlin (1995). Zbl 1020.35001, MR 1330922, 10.1515/9783110889864.535; reference:[10] Seki, Y.: On directional blow-up for quasilinear parabolic equations with fast diffusion.J. Math. Anal. Appl. 338 (2008), 572-587. Zbl 1144.35030, MR 2386440, 10.1016/j.jmaa.2007.05.033; reference:[11] Seki, Y., Umeda, N., Suzuki, R.: Blow-up directions for quasilinear parabolic equations.Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 379-405. Zbl 1167.35393, MR 2406697, 10.1017/S0308210506000801; reference:[12] Shimojō, M.: The global profile of blow-up at space infinity in semilinear heat equations.J. Math. Kyoto Univ. 48 (2008), 339-361. Zbl 1184.35078, MR 2436740, 10.1215/kjm/1250271415; reference:[13] Suzuki, R.: On blow-up sets and asymptotic behavior of interfaces of one-dimensional quasilinear degenerate parabolic equations.Publ. Res. Inst. Math. Sci. 27 (1991), 375-398. Zbl 0789.35024, MR 1121244, 10.2977/prims/1195169661
-
5Conference
المؤلفون: Anada, Koichi, Ishiwata, Tetsuya, Ushijima, Takeo
مصطلحات موضوعية: keyword:Blow-up rate, type II blow-up, numerical estimate, scale invariance, rescaling algorithm, curvature flow, msc:35B44, msc:35K59, msc:65M99
وصف الملف: application/pdf
Relation: reference:[1] Anada, K., Fukuda, I., Tsutsumi, M.: Regional blow-up and decay of solutions to the Initial-Boundary value problem for $u_t = uu_{xx} − \gamma(u_x)^2 + ku^2$., Funkcialaj Ekvacioj, 39 (1996), pp. 363–387. MR 1433906; reference:[2] Anada, K., Ishiwata, T.: Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation., J. Differential Equations, 262 (2017), pp. 181–271. MR 3567485, 10.1016/j.jde.2016.09.023; reference:[3] Anada, K., Ishiwata, T., Ushijima, T.: A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm., to appear in Japan J. Ind. Appl. Math. MR 3768236; reference:[5] Andrews, B.: Singularities in crystalline curvature flows., Asian J. Math., 6 (2002), pp. 101–122. MR 1902649, 10.4310/AJM.2002.v6.n1.a6; reference:[6] Angenent, S. B.: On the formation of singularities in the curve shortening flow., J. Diff. Geo. 33 (1991), pp. 601–633. MR 1100205, 10.4310/jdg/1214446558; reference:[7] Angenent, S. B., Velázquez, J. J. L.: Asymptotic shape of cusp singularities in curve shortening., Duke Math. J., 77 (1995), pp. 71–110. MR 1317628, 10.1215/S0012-7094-95-07704-7; reference:[8] Berger, M., Kohn, R. V.: A rescaling algorithm for the numerical calculation of blowing-up solutions., Cmmm. Pure Appl. Math., 41 (1988), pp. 841–863. MR 0948774, 10.1002/cpa.3160410606; reference:[9] Friedman, A., McLeod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations., Arch. Rational Mech. Anal., 96 (1987), pp. 55–80. MR 0853975, 10.1007/BF00251413; reference:[10] Ishiwata, T., Yazaki, S.: On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion., J. Comput. Appl. Math., 159 (2003), pp. 55–64. MR 2022315, 10.1016/S0377-0427(03)00556-9; reference:[11] Watterson, P. A.: Force-free magnetic evolution in the reversed-field pinch., Thesis, Cambridge University (1985).; reference:[12] Winkler, M.: Blow-up in a degenerate parabolic equation., Indiana Univ. Math. J., 53 (2004), pp. 1415–1442. MR 2104284, 10.1512/iumj.2004.53.2451
-
6Academic Journal
المؤلفون: Ming, Sen, Yang, Han, Chen, Zili, Yong, Ls
مصطلحات موضوعية: keyword:liquid crystals system, keyword:critical Besov space, keyword:negative index, keyword:well-posedness, keyword:blow-up, msc:35B44, msc:35Q35, msc:76A15
وصف الملف: application/pdf
Relation: mr:MR3632997; zbl:Zbl 06738503; reference:[1] Abidi, H.: Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique.Rev. Mat. Iberoam. 23 (2007), 537-586 French. Zbl 1175.35099, MR 2371437, 10.4171/RMI/505; reference:[2] Abidi, H., Gui, G., Zhang, P.: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces.Arch. Ration. Mech. Anal. 204 (2012), 189-230. Zbl 1314.76021, MR 2898739, 10.1007/s00205-011-0473-4; reference:[3] Abidi, H., Zhang, P.: On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity.Available at Arxiv:1301.2371. MR 3344050; reference:[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations.Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). Zbl 1227.35004, MR 2768550, 10.1007/978-3-642-16830-7; reference:[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations.Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. Zbl 1222.35139, MR 2099035, 10.1016/s1874-5792(05)80006-0; reference:[6] Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows.J. Differ. Equations 255 (2013), 24-57. Zbl 1282.35087, MR 3045633, 10.1016/j.jde.2013.03.009; reference:[7] Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces.J. Differ. Equations 252 (2012), 2698-2724. Zbl 1234.35193, MR 2860636, 10.1016/j.jde.2011.09.035; reference:[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases.Commun. Partial Differ. Equations 26 (2001), 1183-1233. Zbl 1007.35071, MR 1855277, 10.1081/PDE-100106132; reference:[9] Danchin, R., Mucha, P. B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density.Commun. Pure Appl. Math. 65 (2012), 1458-1480. Zbl 1247.35088, MR 2957705, 10.1002/cpa.21409; reference:[10] Du, Y., Wang, K.: Regularity of the solutions to the liquid crystal equations with small rough data.J. Differ. Equations 256 (2014), 65-81. Zbl 1320.35125, MR 3115835, 10.1016/j.jde.2013.07.066; reference:[11] Ericksen, J. L.: Hydrostatic theory of liquid crystals.Arch. Ration. Mech. Anal. 9 (1962), 371-378. Zbl 0105.23403, MR 0137403, 10.1007/bf00253358; reference:[12] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I.Arch. Ration. Mech. Anal. 16 (1964), 269-315. Zbl 0126.42301, MR 0166499, 10.1007/BF00276188; reference:[13] Hao, Y., Liu, X.: The existence and blow-up criterion of liquid crystals system in critical Besov space.Commun. Pure Appl. Anal. 13 (2014), 225-236. Zbl 1273.76352, MR 3082558, 10.3934/cpaa.2014.13.225; reference:[14] Hong, M.-C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two.Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. Zbl 1213.35014, MR 2745194, 10.1007/s00526-010-0331-5; reference:[15] Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity.J. Math. Pures Appl. (9) 100 (2013), 806-831. Zbl 1290.35184, MR 3125269, 10.1016/j.matpur.2013.03.003; reference:[16] Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions.Arch. Ration. Mech. Anal. 214 (2014), 403-451. Zbl 1307.35225, MR 3255696, 10.1007/s00205-014-0768-3; reference:[17] Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals.J. Differ. Equations 252 (2012), 745-767. Zbl 1277.35121, MR 2852225, 10.1016/j.jde.2011.08.045; reference:[18] Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena.Commun. Pure Appl. Anal. 42 (1989), 789-814. Zbl 0703.35173, MR 1003435, 10.1002/cpa.3160420605; reference:[19] Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions.Arch. Ration. Mech. Anal. 197 (2010), 297-336. Zbl 1346.76011, MR 2646822, 10.1007/s00205-009-0278-x; reference:[20] Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals.Discrete Contin. Dyn. Syst. 2 (1996), 1-22. Zbl 0948.35098, MR 1367385, 10.3934/dcds.1996.2.1; reference:[21] Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system.Arch. Ration. Mech. Anal. 154 (2000), 135-156. Zbl 0963.35158, MR 1784963, 10.1007/s002050000102; reference:[22] Lin, J., Ding, S.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces.Math. Methods Appl. Sci. 35 (2012), 158-173. Zbl 1242.35006, MR 2876822, 10.1002/mma.1548; reference:[23] Liu, Q., Zhang, T., Zhao, J.: Global solutions to the 3D incompressible nematic liquid crystal system.J. Differ. Equations 258 (2015), 1519-1547. Zbl 1308.35222, MR 3295591, 10.1016/j.jde.2014.11.002; reference:[24] Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density.Commun. Partial Differ. Equations 38 (2013), 1208-1234. Zbl 1314.35086, MR 3169743, 10.1080/03605302.2013.780079; reference:[25] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data.Arch. Ration. Mech. Anal. 200 (2011), 1-19. Zbl 1285.35085, MR 2781584, 10.1007/s00205-010-0343-5; reference:[26] Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals.Math. Methods. Appl. Sci. 38 (2015), 2680-2702. Zbl 06523185, MR 3382698, 10.1002/mma.3248; reference:[27] Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows.J. Differ. Equations 252 (2012), 1169-1181. Zbl 1336.76005, MR 2853534, 10.1016/j.jde.2011.08.028; reference:[28] Zhao, J., Liu, Q., Cui, S.: Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows.Commun. Pure Appl. Anal. 12 (2013), 341-357. Zbl 1264.35007, MR 2972434, 10.3934/cpaa.2013.12.341
-
7Academic Journal
المؤلفون: Ngoc, Le Thi Phuong, Long, Nguyen Thanh
مصطلحات موضوعية: keyword:nonlinear Love equation, keyword:Faedo-Galerkin method, keyword:local existence, keyword:blow up, keyword:exponential decay, msc:35L20, msc:35L70, msc:35Q74, msc:37B25
وصف الملف: application/pdf
Relation: mr:MR3470772; zbl:Zbl 06562152; reference:[1] Albert, J.: On the decay of solutions of the generalized Benjamin-Bona-Mahony equation.J. Math. Anal. Appl. 141 (1989), 527-537. Zbl 0697.35116, MR 1009061, 10.1016/0022-247X(89)90195-9; reference:[2] Amick, C. J., Bona, J. L., Schonbek, M. E.: Decay of solutions of some nonlinear wave equations.J. Differ. Equations 81 (1989), 1-49. Zbl 0689.35081, MR 1012198, 10.1016/0022-0396(89)90176-9; reference:[3] Benaissa, A., Messaoudi, S. A.: Exponential decay of solutions of a nonlinearly damped wave equation.NoDEA, Nonlinear Differ. Equ. Appl. 12 (2005), 391-399. Zbl 1102.35071, MR 2199380, 10.1007/s00030-005-0008-5; reference:[4] Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces.International Journal of Engineering, Science and Technology 1 (2009), 228-244. MR 2380170; reference:[5] Clarkson, P. A.: New similarity reductions and Painlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations.J. Phys. A, Math. Gen. 22 (1989), 3821-3848. Zbl 0711.35113, MR 1015235, 10.1088/0305-4470/22/18/020; reference:[6] Dutta, S.: On the propagation of Love type waves in an infinite cylinder with rigidity and density varying linearly with the radial distance.Pure Appl. Geophys. 98 (1972), 35-39. 10.1007/BF00875578; reference:[7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires.Dunod; Gauthier-Villars, Paris (1969), French. MR 0259693; reference:[8] Long, N. T., Ngoc, L. T. P.: On a nonlinear wave equation with boundary conditions of two-point type.J. Math. Anal. Appl. 385 (2012), 1070-1093. Zbl 1228.35151, MR 2834912, 10.1016/j.jmaa.2011.07.034; reference:[9] Makhankov, V. G.: Dynamics of classical solitons (in non-integrable systems).Phys. Rep. 35 (1978), 1-128. MR 0481361, 10.1016/0370-1573(78)90074-1; reference:[10] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation.Math. Nachr. 260 (2003), 58-66. Zbl 1035.35082, MR 2017703, 10.1002/mana.200310104; reference:[11] Nakao, M., Ono, K.: Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation.Funkc. Ekvacioj, Ser. Int. 38 (1995), 417-431. Zbl 0855.35081, MR 1374429; reference:[12] Ngoc, L. T. P., Duy, N. T., Long, N. T.: A linear recursive scheme associated with the Love equation.Acta Math. Vietnam. 38 (2013), 551-562. Zbl 1310.35174, MR 3129917, 10.1007/s40306-013-0034-z; reference:[13] Ngoc, L. T. P., Duy, N. T., Long, N. T.: Existence and properties of solutions of a boundary problem for a Love's equation.Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. Zbl 1304.35231, MR 3295564; reference:[14] Ngoc, L. T. P., Duy, N. T., Long, N. T.: On a high-order iterative scheme for a nonlinear Love equation.Appl. Math., Praha 60 (2015), 285-298. Zbl 1363.65180, MR 3419963, 10.1007/s10492-015-0096-4; reference:[15] Ngoc, L. T. P., Long, N. T.: Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions.Commun. Pure Appl. Anal. 12 (2013), 2001-2029. Zbl 1267.35119, MR 3015668, 10.3934/cpaa.2013.12.2001; reference:[16] Ogino, T., Takeda, S.: Computer simulation and analysis for the spherical and cylindrical ion-acoustic solitons.J. Phys. Soc. Japan 41 (1976), 257-264. 10.1143/JPSJ.41.257; reference:[17] Paul, M. K.: On propagation of Love-type waves on a spherical model with rigidity and density both varying exponentially with the radial distance.Pure Appl. Geophys. 59 (1964), 33-37. Zbl 0135.23902, 10.1007/BF00880505; reference:[18] Radochová, V.: Remark to the comparison of solution properties of Love's equation with those of wave equation.Apl. Mat. 23 (1978), 199-207. MR 0492985; reference:[19] Seyler, C. E., Fenstermacher, D. L.: A symmetric regularized-long-wave equation.Phys. Fluids 27 (1984), 4-7. Zbl 0544.76170, 10.1063/1.864487; reference:[20] Truong, L. X., Ngoc, L. T. P., Dinh, A. P. N., Long, N. T.: Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6933-6949. Zbl 1227.35075, MR 2833683, 10.1016/j.na.2011.07.015
-
8Academic Journal
مصطلحات موضوعية: keyword:higher order parabolic equation, keyword:existence of solution, keyword:blow-up in finite time, keyword:higher order elliptic equation, keyword:variational method, keyword:strongly singular boundary value problem, msc:34B16, msc:35G20, msc:35J50, msc:35J60, msc:35K25, msc:35K91
وصف الملف: application/pdf
Relation: mr:MR3432540; zbl:Zbl 06537671; reference:[1] Escudero, C., Gazzola, F., Peral, I.: Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian.J. Math. Pures Appl. (9) 103 (2015), 924-957. MR 3318175; reference:[2] Escudero, C., Hakl, R., Peral, I., Torres, P. J.: Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth.Math. Methods Appl. Sci. 37 (2014), 793-807. MR 3188526, 10.1002/mma.2836; reference:[3] Escudero, C., Hakl, R., Peral, I., Torres, P. J.: On radial stationary solutions to a model of non-equilibrium growth.Eur. J. Appl. Math. 24 (2013), 437-453. Zbl 1266.91051, MR 3053654, 10.1017/S0956792512000484; reference:[4] Escudero, C., Peral, I.: Some fourth order nonlinear elliptic problems related to epitaxial growth.J. Differ. Equations 254 (2013), 2515-2531. Zbl 1284.35435, MR 3016212, 10.1016/j.jde.2012.12.012
-
9Academic Journal
المؤلفون: Földes, Juraj
مصطلحات موضوعية: keyword:a priori estimates, keyword:Liouville theorems, keyword:blow-up rate, keyword:positive solution, keyword:indefinite parabolic problem, msc:35B09, msc:35B44, msc:35B45, msc:35B53, msc:35J61, msc:35K59
وصف الملف: application/pdf
Relation: mr:MR2782767; zbl:Zbl 1224.35013; reference:[1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems.Trans. Am. Math. Soc. 360 (2008), 3493-3539. MR 2386234, 10.1090/S0002-9947-08-04404-8; reference:[2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. Zbl 0625.35045, MR 0808425; reference:[3] Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. MR 1145316; reference:[4] Baras, P., Cohen, L.: Complete blow-up after {$T\sb { max}$} for the solution of a semilinear heat equation.J. Funct. Anal. 71 (1987), 142-174. Zbl 0653.35037, MR 0879705, 10.1016/0022-1236(87)90020-6; reference:[5] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term.In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). MR 1648222; reference:[6] Cabré, X.: On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations.Commun. Pure Appl. Math. 48 (1995), 539-570. MR 1329831, 10.1002/cpa.3160480504; reference:[7] Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations.Adv. Diff. Equ. 10 (2005), 841-860. Zbl 1161.35388, MR 2150868; reference:[8] Farina, A.: Liouville-type theorems for elliptic problems.Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). Zbl 1191.35128, MR 2569331; reference:[9] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains.NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. Zbl 0993.35046, MR 1867324, 10.1007/PL00001459; reference:[10] Fila, M., Souplet, P., Weissler, F. B.: Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions.Math. Ann. 320 (2001), 87-113. MR 1835063, 10.1007/PL00004471; reference:[11] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations.Indiana Univ. Math. J. 34 (1985), 425-447. Zbl 0576.35068, MR 0783924, 10.1512/iumj.1985.34.34025; reference:[12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations.Commun. Partial Differ. Equations 6 (1981), 883-901. Zbl 0462.35041, MR 0619749, 10.1080/03605308108820196; reference:[13] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables.Indiana Univ. Math. J. 36 (1987), 1-40. Zbl 0601.35052, MR 0876989, 10.1512/iumj.1987.36.36001; reference:[14] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity.Indiana Univ. Math. J. 53 (2004), 483-514. Zbl 1058.35096, MR 2060042, 10.1512/iumj.2004.53.2401; reference:[15] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain.Math. Methods Appl. Sci. 27 (2004), 1771-1782. Zbl 1066.35043, MR 2087296, 10.1002/mma.562; reference:[16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics.Springer Berlin (2001). Reprint of the 1998 edition. MR 1814364; reference:[17] Herrero, M. A., Velázquez, J. J. L.: Blow-up behaviour of one-dimensional semilinear parabolic equations.Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. MR 1220032, 10.1016/S0294-1449(16)30217-7; reference:[18] Krylov, N. V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7.D. Reidel Publishing Co. Dordrecht (1987). MR 0901759; reference:[19] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing Co. River Edge, NJ (1996). Zbl 0884.35001, MR 1465184; reference:[20] López-Gómez, J., Quittner, P.: Complete and energy blow-up in indefinite superlinear parabolic problems.Discrete Contin. Dyn. Syst. 14 (2006), 169-186. MR 2170308; reference:[21] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16.Birkhäuser Basel (1995). MR 1329547; reference:[22] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations.Commun. Pure Appl. Math. 51 (1998), 139-196. Zbl 0899.35044, MR 1488298, 10.1002/(SICI)1097-0312(199802)51:23.0.CO;2-C; reference:[23] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations.In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). MR 2185228, 10.1007/3-7643-7385-7_22; reference:[24] Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation.Nonlinear Anal. 64 (2006), 1679-1689. MR 2197355; reference:[25] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems.Duke Math. J. 139 (2007), 555-579. MR 2350853, 10.1215/S0012-7094-07-13935-8; reference:[26] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations.Indiana Univ. Math. J. 56 (2007), 879-908. MR 2317549, 10.1512/iumj.2007.56.2911; reference:[27] Quittner, P., Simondon, F.: A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems.J. Math. Anal. Appl. 304 (2005), 614-631. Zbl 1071.35026, MR 2126555, 10.1016/j.jmaa.2004.09.044; reference:[28] Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks.Birkhäuser Basel (2007). MR 2346798; reference:[29] Quittner, P., Souplet, P., Winkler, M.: Initial blow-up rates and universal bounds for nonlinear heat equations.J. Differ. Equations 196 (2004), 316-339. Zbl 1044.35027, MR 2028111, 10.1016/j.jde.2003.10.007; reference:[30] Serrin, J.: Entire solutions of nonlinear Poisson equations.Proc. London. Math. Soc. (3) 24 (1972), 348-366. Zbl 0229.35035, MR 0289961, 10.1112/plms/s3-24.2.348; reference:[31] Serrin, J.: Entire solutions of quasilinear elliptic equations.J. Math. Anal. Appl. 352 (2009), 3-14. Zbl 1180.35243, MR 2499881, 10.1016/j.jmaa.2008.10.036; reference:[32] Taliaferro, S. D.: Isolated singularities of nonlinear parabolic inequalities.Math. Ann. 338 (2007), 555-586. Zbl 1120.35003, MR 2317931, 10.1007/s00208-007-0088-0; reference:[33] Taliaferro, S. D.: Blow-up of solutions of nonlinear parabolic inequalities.Trans. Amer. Math. Soc. 361 (2009), 3289-3302. Zbl 1175.35072, MR 2485427, 10.1090/S0002-9947-09-04770-9; reference:[34] Weissler, F. B.: Single point blow-up for a semilinear initial value problem.J. Differ. Equations 55 (1984), 204-224. Zbl 0555.35061, MR 0764124, 10.1016/0022-0396(84)90081-0; reference:[35] Weissler, F. B.: An {$L\sp \infty$} blow-up estimate for a nonlinear heat equation.Commun. Pure Appl. Math. 38 (1985), 291-295. Zbl 0592.35071, MR 0784475, 10.1002/cpa.3160380303; reference:[36] Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems.Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. Zbl 1180.35147, MR 2495531, 10.1007/s10114-008-5615-8
-
10Academic Journal
المؤلفون: Chen, Jianqing
مصطلحات موضوعية: keyword:interpolation inequality, keyword:inhomogeneous nonlinear Schrödinger equation, keyword:harmonic potential, keyword:blow-up, keyword:global existence, keyword:standing waves, keyword:strong instability, msc:35J20, msc:35Q55
وصف الملف: application/pdf
Relation: mr:MR2672412; zbl:Zbl 1224.35083; reference:[1] Baym, G., Pethick, C. J.: Ground state properties of magnetically trapped Bose-condensed rubidium gas.Phys. Rev. Lett. 76 (1996), 6-9. 10.1103/PhysRevLett.76.6; reference:[2] Benjamin, T. B.: The stability of solitary waves.Proc. Royal Soc. London, Ser. A. 328 (1972), 153-183. MR 0338584; reference:[3] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires.C. R. Acad. Sci. Paris I 293 (1981), 489-492. MR 0646873; reference:[4] Bona, J. L.: On the stability theory of solitary waves.Proc. Royal Soc. London, Ser. A. 344 (1975), 363-374. Zbl 0328.76016, MR 0386438; reference:[5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compositio Math. 53 (1984), 259-275. Zbl 0563.46024, MR 0768824; reference:[6] Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations.Textos de Metodos Matematicos, 22, Rio de Janeiro (1989).; reference:[7] Cazenave, T., Lions, P. L.: Orbital satbility of standing waves for some nonlinear Schrödinger equations.Comm. Math. Phys. 85 (1982), 549-561. MR 0677997, 10.1007/BF01403504; reference:[8] Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation.Phys. D 227 (2007), 142-148. Zbl 1116.35111, MR 2332502, 10.1016/j.physd.2007.01.004; reference:[9] Chen, J., Guo, B.: Sharp global existence and blowing up results for inhomogeneous Schrödinger equations.Discrete Contin. Dynam. Systems 8 (2007), 357-367. Zbl 1151.35089, MR 2317813, 10.3934/dcdsb.2007.8.357; reference:[10] Fibich, G., Wang, X. P.: Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearity.Phys. D. 175 (2003), 96-108. MR 1957907, 10.1016/S0167-2789(02)00626-7; reference:[11] Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential.Discrete Contin. Dyn. Syst. 7 (2001), 525-544. Zbl 0992.35094, MR 1815766, 10.3934/dcds.2001.7.525; reference:[12] Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials.Differential Integral Equations 16 (2003), 111-128. Zbl 1031.35132, MR 1948875; reference:[13] Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities.J. Math. Kyoto Univ. 45 (2005), 145-158. MR 2138804, 10.1215/kjm/1250282971; reference:[14] Gill, T. S.: Optical guiding of laser beam in nonuniform plasma.Pramana Journal of Physics 55 (2000), 845-852.; reference:[15] Ginibre, J., Velo, G.: On the class of nonlinear Schrödinger equations I, II.J. Funct. Anal. 32 (1979), 1-32, 33-71. MR 0533219, 10.1016/0022-1236(79)90076-4; reference:[16] Glassey, R. T.: On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation.J. Math. Phys. 18 (1977), 1794-1797. MR 0460850, 10.1063/1.523491; reference:[17] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I.J. Funct. Anal. 74 (1987), 160-197. Zbl 0656.35122, MR 0901236, 10.1016/0022-1236(87)90044-9; reference:[18] Liu, C. S., Tripathi, V. K.: Laser guiding in an axially nonuniform plasma channel.Phys. Plasmas 1 (1994), 3100-3103. 10.1063/1.870501; reference:[19] Liu, Y., Wang, X. P., Wang, K.: Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity.Trans. Amer. Math. Soc. 358 (2006), 2105-2122. MR 2197450, 10.1090/S0002-9947-05-03763-3; reference:[20] Merle, F.: Nonexistence of minimal blow up solutions of equations $iu_t=-\triangle u-K(x) %7Cu%7C^{4/N}u$ in $\Bbb R^N$.Ann. Inst. H. Poincaré, Phys. Théor. 64 (1996), 33-85. Zbl 0846.35060, MR 1378233; reference:[21] Yong-Geun, Oh: Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equation with potentials.J. Differential Equations 81 (1989), 255-274. MR 1016082, 10.1016/0022-0396(89)90123-X; reference:[22] Rose, H. A., Weinstein, M. I.: On the bound states of the nonlinear Schrödinger equation with linear potential.Phys. D 30 (1988), 207-218. MR 0939275, 10.1016/0167-2789(88)90107-8; reference:[23] Rother, W.: Some existence results for the equation $-\triangle u+K(x)u^p=0$.Comm. Partial Differential Equations 15 (1990), 1461-1473. MR 1077474, 10.1080/03605309908820733; reference:[24] Shatah, J., Strauss, W.: Instability of nonlinear bound states.Comm. Math. Phys. 100 (1985), 173-190. Zbl 0603.35007, MR 0804458, 10.1007/BF01212446; reference:[25] Sintzoff, P., Willem, M.: A semilinear elliptic equation on $\Bbb R^N$ with unbounded coefficients.Variational and topological methods in the study of nonlinear phenomena 49 (Pisa 2000) 105-113 Birkhauser, Boston, 2002. MR 1879738; reference:[26] Strauss, W.: Existence of solitary waves in higher dimensions.Comm. Math. Phys. 55 (1977), 149-162. Zbl 0356.35028, MR 0454365, 10.1007/BF01626517; reference:[27] Tsurumi, T., Waditi, M.: Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential.J. Phys. Soc. Japan 66 (1997), 3031-3034. 10.1143/JPSJ.66.3031; reference:[28] Tsurumi, T., Waditi, M.: Instability of the Bose-Einstein condensate under magnetic trap.J. Phys. Soc. Japan 66 (1997), 3035-3039.; reference:[29] Wang, Y.: Strong instability of standing waves for Hartree equation with harmonic potential.Phys. D 237 (2008), 998-1005. Zbl 1143.35372, MR 2417084, 10.1016/j.physd.2007.11.018; reference:[30] Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates.Comm. Math. Phys. 87 (1983), 567-576. Zbl 0527.35023, MR 0691044, 10.1007/BF01208265; reference:[31] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston (1996). Zbl 0856.49001, MR 1400007; reference:[32] Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential.Comm. Partial Differential Equations 30 (2005), 1429-1443. MR 2182299, 10.1080/03605300500299539
-
11Academic Journal
المؤلفون: Chen, Yujuan
مصطلحات موضوعية: keyword:strongly coupled, keyword:degenerate parabolic system, keyword:nonlocal source, keyword:global existence, keyword:blow-up, msc:35D55, msc:35K05, msc:35K59, msc:35K65, msc:45K05
وصف الملف: application/pdf
Relation: mr:MR2672409; zbl:Zbl 1224.35157; reference:[1] Anderson, J. R., Deng, K.: Global existence for degenerate parabolic equations with a non-local forcing.Math. Methods Appl. Sci. 20 (1997), 1069-1087. Zbl 0883.35066, MR 1465394, 10.1002/(SICI)1099-1476(19970910)20:133.0.CO;2-Y; reference:[2] Chen, H. W.: Analysis of blow-up for a nonlinear degenerate parabolic equation.J. Math. Anal. Appl. 192 (1995), 180-193. MR 1329419, 10.1006/jmaa.1995.1166; reference:[3] Chen, Y., Gao, H.: Asymptotic blow-up behavior for a nonlocal degenerate parabolic equation.J. Math. Anal. Appl. 330 (2007), 852-863. Zbl 1113.35100, MR 2308412, 10.1016/j.jmaa.2006.08.014; reference:[4] Deng, W., Li, Y., Xie, C.: Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations.Appl. Math. Lett. 16 (2003), 803-808. Zbl 1059.35066, MR 1986054, 10.1016/S0893-9659(03)80118-0; reference:[5] Deng, W., Li, Y., Xie, C.: Global existence and nonexistence for a class of degenerate parabolic systems.Nonlinear Anal., Theory Methods Appl. 55 (2003), 233-244. Zbl 1032.35077, MR 2007471, 10.1016/S0362-546X(03)00226-8; reference:[6] Duan, Z. W., Deng, W., Xie, C.: Uniform blow-up profile for a degenerate parabolic system with nonlocal source.Comput. Math. Appl. 47 (2004), 977-995. MR 2060331, 10.1016/S0898-1221(04)90081-8; reference:[7] Duan, Z. W., Zhou, L.: Global and blow-up solutions for nonlinear degenerate parabolic systems with crosswise-diffusion.J. Math. Anal. Appl. 244 (2000), 263-278. Zbl 0959.35100, MR 1753038, 10.1006/jmaa.1999.6665; reference:[8] Friedman, A., Mcleod, B.: Blow-up of positive solutions of semilinear heat equations.Indiana Univ. Math. J. 34 (1985), 425-447. Zbl 0576.35068, MR 0783924, 10.1512/iumj.1985.34.34025; reference:[9] Friedman, A., Mcleod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations.Arch. Ration. Mech. Appl. 96 (1987), 55-80. MR 0853975, 10.1007/BF00251413; reference:[10] Gage, M. E.: On the size of the blow-up set for a quasilinear parabolic equation.Contemp. Math. 127 (1992), 41-58. Zbl 0770.35029, MR 1155408, 10.1090/conm/127/1155408; reference:[11] Ladyzenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.American Mathematical Society Providence (1968).; reference:[12] Pao, C. V.: Nonlinear Parabolic and Elliptic Equations.Plenum Press New York (1992). Zbl 0777.35001, MR 1212084; reference:[13] Passo, R. Dal, Luckhaus, S.: A degenerate diffusion problem not in divergence form.J. Differ. Equations 69 (1987), 1-14. MR 0897437, 10.1016/0022-0396(87)90099-4; reference:[14] Wang, M. X.: Some degenerate and quasilinear parabolic systems not in divergence form.J. Math. Anal. Appl. 274 (2002), 424-436. Zbl 1121.35321, MR 1936706, 10.1016/S0022-247X(02)00347-5; reference:[15] Wang, M. X., Xie, C. H.: A degenerate and strongly coupled quasilinear parabolic system not in divergence form.Z. Angew. Math. Phys. 55 (2004), 741-755. Zbl 1181.35132, MR 2087763, 10.1007/s00033-004-1133-4; reference:[16] Wang, S., Wang, M. X., Xie, C. H.: A nonlinear degenerate diffusion equation not in divergence form.Z. Angew. Math. Phys. 51 (2000), 149-159. Zbl 0961.35077, MR 1745296, 10.1007/PL00001503; reference:[17] Wiegner, M.: A degenerate diffusion equation with a nonlinear source term.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1977-1995. Zbl 0874.35061, MR 1436366, 10.1016/S0362-546X(96)00027-2; reference:[18] Zimmer, T.: On a degenerate parabolic equation. IWR Heidelberg.Preprint 93-05 (1993).
-
12Academic Journal
المؤلفون: Jiang, Lingyu, Wang, Yidong
مصطلحات موضوعية: keyword:compressible Navier-Stokes equations, keyword:classical solutions, keyword:blow up criterion, msc:35B44, msc:35Q30, msc:35Q35, msc:76D03
وصف الملف: application/pdf
Relation: mr:MR2595083; zbl:Zbl 1224.35317; reference:[1] Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations.Comm. Math. Phys. 94 (1984), 61-66. Zbl 0573.76029, MR 0763762, 10.1007/BF01212349; reference:[2] Choe, H. J., Jin, B. J.: Regularity of weak solutions of the compressible Navier-Stokes equations.J. Korean Math. Soc. 40 (2003), 1031-1050. Zbl 1034.76049, MR 2013486, 10.4134/JKMS.2003.40.6.1031; reference:[3] Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations.Comm. P. D. E. 22 (1997), 977-1008. Zbl 0885.35089, MR 1452175, 10.1080/03605309708821291; reference:[4] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations.J. Math. Fluid Mech. 3 (2001), 358-392. MR 1867887, 10.1007/PL00000976; reference:[5] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing movement of compressible viscous fluids.K$\bar o$dai Math. Sem. Rep. 23 (1971), 60-120. MR 0283426, 10.2996/kmj/1138846265; reference:[6] Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations.Comm. Math. Phys. 214 (2000), 191-200. Zbl 0985.46015, MR 1794270, 10.1007/s002200000267; reference:[7] Lions, P. L.: Mathematical Topics in Fluid Mechanics, Vol 2. Compressible Models.Oxford lecture series in Mathematics and its Applications, 10, Oxford Sciences Publications. The Clarendon Press, Oxford University Press, New York (1998). Zbl 0908.76004, MR 1637634; reference:[8] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion.Publ. RIMS. Kyoto Univ. 13 (1977), 193-253. Zbl 0366.35070, 10.2977/prims/1195190106; reference:[9] Xin, Z. P.: Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density.Comm. Pure Appl. Math. 51 (1998), 229-240. MR 1488513, 10.1002/(SICI)1097-0312(199803)51:33.0.CO;2-C; reference:[10] Vaigant, V. A., Kazhikhov, A. V.: On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid.Russian Sibirsk. Mat. Zh. 36 (1995), 1283-1316 translation in it Siberian Math. J. {\it 36} (1995). MR 1375428
-
13Academic Journal
المؤلفون: Neustupa, Jiří
مصطلحات موضوعية: keyword:Navier-Stokes equations, keyword:blow-up, keyword:weak solution, msc:35D40, msc:35Q30, msc:76D05
وصف الملف: application/pdf
Relation: zbl:Zbl 1265.35249; reference:[1] Darrigol, O.: Between hydrodynamics and elasticity theory: the first five births of the Navier-Stokes equation.Arch. Hist. Exact Sci. 56 (2002), 95–150. Zbl 0998.01014, MR 1882467; reference:[2] Feistauer, M.: Mathematical Methods in Fluid Dynamics.Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific & Technical, Harlow 1993. Zbl 0819.76001, MR 1266627; reference:[3] Galdi, G. P., Heywood, J., Rannacher, R.: Fundamental Directions in Mathematical Fluid Mechanics.Series “Advances in Mathematical Fluid Mechanics”, Vol. 1, Birkhauser-Verlag, Basel 2000. Zbl 0948.00020, MR 1798752; reference:[4] Ladyženskaja, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York 1969. MR 0254401; reference:[5] Lions, P. L.: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models.Clarendon Press, Oxford 1996. Zbl 0866.76002, MR 1422251; reference:[6] Neustupa, J., Penel, P.: Mathematical Fluid Mechanics: Recent Results and Open Problems.Series “Advances in Mathematical Fluid Mechanics”, Vol. 2, BirkhauserV̄erlag, Basel 2001. MR 1865046; reference:[7] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.Birkhauser Advanced Texts, Birkhauser-Verlag, Basel 2001. Zbl 0983.35004, MR 1928881; reference:[8] Temam, R.: Navier-Stokes Equations.North-Holland, Amsterdam-New York-Oxford 1977. Zbl 0383.35057, MR 0769654
-
14Academic Journal
المؤلفون: Perthame, Benoît
مصطلحات موضوعية: keyword:chemotaxis, keyword:angiogenesis, keyword:degenerate parabolic equations, keyword:kinetic equations, keyword:global weak solutions, keyword:blow-up, msc:35B40, msc:35B60, msc:35Q80, msc:92C17, msc:92C50
وصف الملف: application/pdf
Relation: mr:MR2099980; zbl:Zbl 1099.35157; reference:[1] W. Alt: Biased random walk models for chemotaxis and related diffusion approximations.J. Math. Biol. 9 (1980), 147–177. Zbl 0434.92001, MR 0661424, 10.1007/BF00275919; reference:[2] W. Alt, G. Hoffmann: Biological motion. Proceedings of a workshop held in Königswinter, Germany, March 16–19, 1989. Lecture Notes in Biomathematics, 89.Springer-Verlag, Berlin, 1990.; reference:[3] A. R. A. Anderson, M. A. J. Chaplain: A mathematical model for capillary network formation in the absence of endothelial cell proliferation.Appl. Math. Lett. 11 (1998), 109–114. 10.1016/S0893-9659(98)00041-X; reference:[4] C. Bardos, R. Santos, and R. Sentis: Diffusion approximation and computation of the critical size.Trans. Amer. Math. Soc. 284 (1984), 617–649. MR 0743736, 10.1090/S0002-9947-1984-0743736-0; reference:[5] N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system.Math. Comput. Modelling 32 (2000), 413–452. MR 1775113, 10.1016/S0895-7177(00)00143-6; reference:[6] M. D. Betterton, M. P. Brenner: Collapsing bacterial cylinders.Phys. Rev. E 64 (2001). 10.1103/PhysRevE.64.061904; reference:[7] P. Biler: Global solutions to some parabolic-elliptic systems of chemotaxis.Adv. Math. Sci. Appl. 9 (1999), 347–359. Zbl 0941.35009, MR 1690388; reference:[8] P. Biler, T. Nadzieja: A class of nonlocal parabolic problems occurring in statistical mechanics.Colloq. Math. 66 (1993), 131–145. MR 1242651, 10.4064/cm-66-1-131-145; reference:[9] P. Biler, T. Nadzieja: Global and exploding solutions in a model of self-gravitating systems.Rep. Math. Phys. 52 (2003), 205–225. MR 2016216, 10.1016/S0034-4877(03)90013-9; reference:[10] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. C. Venkataramani: Diffusion, attraction and collapse.Nonlinearity 12 (1999), 1071–1098. MR 1709861, 10.1088/0951-7715/12/4/320; reference:[11] M. P. Brenner, L. Levitov, and E. O. Budrene: Physical mechanisms for chemotactic pattern formation by bacteria.Biophysical Journal 74 (1995), 1677–1693. 10.1016/S0006-3495(98)77880-4; reference:[12] C. Cercignani, R. Illner, and M. Pulvirenti: The Mathematical Theory of Dilute Gases.Applied Math. Sciences Vol. 106, Springer-Verlag, New York, 1994. MR 1307620; reference:[13] F. Chalub, P. Markowich, B. Perthame, and C. Schmeiser: Kinetic models for chemotaxis and their drift-diffusion limits.Monatsh. Math. 142 (2004), 123–141. MR 2065025, 10.1007/s00605-004-0234-7; reference:[14] M. A. J. Chaplain: Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development.Math. Comput. Modelling 23 (1996), 47–87. 10.1016/0895-7177(96)00019-2; reference:[15] M. A. J. Chaplain, L. Preziosi: Macroscopic modelling of the growth and developement of tumor masses.Preprint No. 27, Politecnico di Torino, 2000.; reference:[16] L. Corrias, B. Perthame, and H. Zaag: A chemotaxis model motivated by angiogenesis.C. R. Acad. Sci. Paris, Ser. I 336 (2003), 141–146. MR 1969568, 10.1016/S1631-073X(02)00008-0; reference:[17] L. Corrias, B. Perthame, and H. Zaag: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions.Milano J. Math. 72 (2004), 1–29. MR 2099126, 10.1007/s00032-003-0026-x; reference:[18] F. A. Davidson, A. R. A. Anderson, and M. A. J. Chaplain: Steady-state solutions of a generic model for the formation of capillary networks.Appl. Math. Lett. 13 (2000), 127–132. MR 1760274, 10.1016/S0893-9659(00)00044-6; reference:[19] P. Degond, T. Goudon, and F. Poupaud: Diffusion limit for nonhomogeneous and non-micro-reversible processes.Indiana Univ. Math. J. 49 (2000), 1175–1198. MR 1803225; reference:[20] Y. Dolak, T. Hillen: Cattaneo models for chemotaxis, numerical solution and pattern formation.J. Math. Biol. 46 (2003), 461–478. MR 1963070; reference:[21] J. Dolbeault, B. Perthame: Optimal critical mass in the two dimensional Keller-Segel model in $\mathbb{R}^2$.C. R. Acad. Sci. (2004) (to appear). MR 2103197; reference:[22] Y. Dolak, C. Schmeiser: Kinetic Models for Chemotaxis. ANUM preprint.(2003). MR 2093271; reference:[23] L. C. Evans: Partial Differential Equations.Amer. Math. Soc., Providence, 1998. Zbl 0902.35002; reference:[24] F. Filbet, P. Laurençot, and B. Perthame: Derivation of hyperbolic models for chemosensitive movement. Preprint.Ecole Normale Supérieure, 2003. MR 2120548; reference:[25] M. A. Fontelos, A. Friedman, and B. Hu: Mathematical analysis of a model for the initiation of angiogenesis.SIAM J. Math. Anal. 33 (2002), 1330–1355. MR 1920634, 10.1137/S0036141001385046; reference:[26] A. Friedman, I. Tello: Stability of solutions of chemotaxis equations in reinforced random walks.J. Math. Anal. Appl. 272 (2002), 138–163. MR 1930708, 10.1016/S0022-247X(02)00147-6; reference:[27] H. Gajewski, K. Zacharias: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77–114. MR 1654677, 10.1002/mana.19981950106; reference:[28] A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, and F. Bussolino: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation.Phys. Rev. Lett. 90 (2003), . 10.1103/PhysRevLett.90.118101; reference:[29] I. Gasser, P.-E. Jabin, and B. Perthame: Regularity and propagation of moments in some nonlinear Vlasov systems.Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1259–1273. MR 1809103, 10.1017/S0308210500000676; reference:[30] R. T. Glassey: The Cauchy Problem in Kinetic Theory.SIAM, Philadelphia, 1996. Zbl 0858.76001, MR 1379589; reference:[31] M. A. Herrero, J. J. L. Velázquez: Singularity patterns in a chemotaxis model.Math. Ann. 306 (1996), 583–623. MR 1415081, 10.1007/BF01445268; reference:[32] M. A. Herrero, E. Medina, and J. J. L. Velázquez: Finite-time aggregation into a single point in a reaction-diffusion system.Nonlinearity 10 (1997), 1739–1754. MR 1483563, 10.1088/0951-7715/10/6/016; reference:[33] T. Hillen, H. Othmer: The diffusion limit of transport equations derived from velocity-jump processes.SIAM J. Appl. Math. 61 (2000), 751–775. MR 1788017, 10.1137/S0036139999358167; reference:[34] D. Horstmann: Lyapunov functions and $L^p$ estimates for a class of reaction-diffusion systems.Colloq. Math. 87 (2001), 113–127. Zbl 0966.35022, MR 1812147, 10.4064/cm87-1-7; reference:[35] D. Horstmann: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences.Jahresber. Dtsch. Math.-Ver. Vol. 105, 2003, pp. 103–165. Zbl 1071.35001, MR 2013508; reference:[36] H. J. Hwang, K. Kang, and A. Stevens: Global solutions of nonlinear transport equations for chemosensitive movement.SIAM J. Math. Anal (to appear). MR 2139206; reference:[37] W. Jäger, S. Luckhaus: On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans. Amer. Math. Soc. 329 (1992), 819–824. MR 1046835, 10.1090/S0002-9947-1992-1046835-6; reference:[38] E. F. Keller: Assessing the Keller-Segel model: How has it fared? Biological growth and spread.Proc. Conf., Heidelberg, 1979. Lecture Notes in Biomath. Vol. 38, Springer-Verlag, Berlin-New York, 1980, pp. 379–387. MR 0609374; reference:[39] E. F. Keller, L. A. Segel: Initiation of slime mold aggregation viewed as an instability.J. Theoret. Biol. 26 (1970), 399–415. 10.1016/0022-5193(70)90092-5; reference:[40] E. F. Keller, L. A. Segel: Model for chemotaxis.J. Theoret. Biol. 30 (1971), 225–234. 10.1016/0022-5193(71)90050-6; reference:[41] E. F. Keller, L. A. Segel: Travelling bands of chemotactic bacteria: a theoretical analysis.J. Theoret. Biol. 30 (1971), 235–248. 10.1016/0022-5193(71)90051-8; reference:[42] H. A. Levine, B. D. Sleeman: A system of reaction diffusion equations arising in the theory of reinforced random walks.SIAM J. Appl. Math. 57 (1997), 683–730. MR 1450846, 10.1137/S0036139995291106; reference:[43] H. A. Levine, B. D. Sleeman: Partial differential equations of chemotaxis and angiogenesis.Math. Methods Appl. Sci. 24 (2001), 405–426. MR 1821934, 10.1002/mma.212; reference:[44] H. A. Levine, M. Nilsen-Hamilton, and B. D. Sleeman: Mathematical modelling of the onset of capillary formation initiating angiogenesis.J. Math. Biol. 42 (2001), 195–238. MR 1828815; reference:[45] P. K. Maini: Applications of mathematical modelling to biological pattern formation. Coherent Structures in Complex Systems (Sitges, 2000).Lecture Notes in Phys. Vol. 567, Springer-Verlag, Berlin, 2001, pp. 205–217. MR 1995108; reference:[46] D. Manoussaki: Modeling and simulation of the formation of vascular networks.ESAIM Proc. 12 (2002 (electronic)), 108–114. 10.1051/proc:2002018; reference:[47] A. Marrocco: 2D simulation of chemotactic bacteria agreggation.ESAIM: Math. Model. Numer. Anal. 37 (2003), 617–630. MR 2018433, 10.1051/m2an:2003048; reference:[48] P. Michel, S. Mischler, and B. Perthame: General entropy equations for structured population models and scattering.C. R. Acad. Sci. Paris (to appear). MR 2065377; reference:[49] J. D. Murray: Mathematical Biology, Vol. 2, third revised edition. Spatial Models and Biomedical Applications.Springer-Verlag, , 2003. MR 1952568; reference:[50] T. Nagai: Blow-up of radially symmetric solutions to a chemotaxis system.Adv. Math. Sci. Appl. 5 (1995), 581–601. Zbl 0843.92007, MR 1361006; reference:[51] T. Nagai, T. Senba: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis.Adv. Math. Sci. Appl. 8 (1998), 145–156. MR 1623326; reference:[52] J. Nieto, F. Poupaud, and J. Soler: High field limit for the Vlasov-Poisson-Fokker-Planck system.Arch. Rational. Mech. Anal. 158 (2001), 29–59. MR 1834113, 10.1007/s002050100139; reference:[53] H. G. Othmer, A. Stevens: Aggregation, blowup and collapse: the ABC’s of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044–1081. MR 1462051, 10.1137/S0036139995288976; reference:[54] H. G. Othmer, S. R. Dunbar, and W. Alt: Models of dispersal in biological systems.J. Math. Biol. 26 (1988), 263–298. MR 0949094, 10.1007/BF00277392; reference:[55] C. S. Patlak: Random walk with persistence and external bias.Bull. Math. Biophys. 15 (1953), 311–338. MR 0081586, 10.1007/BF02476407; reference:[56] B. Perthame: Mathematical tools for kinetic equations.Bull. Amer. Math. Soc. (NS) 41 (2004), 205–244. Zbl 1151.82351, MR 2043752, 10.1090/S0273-0979-04-01004-3; reference:[57] M. Rascle: On a system of non-linear strongly coupled partial differential equations arising in biology. Proc. Conf. on Ordinary and Partial Differential Equation.Lectures Notes in Math. Vol. 846, Everitt and Sleeman (eds.), Springer-Verlag, New-York, 1981, pp. 290–298.; reference:[58] M. Rascle, C. Ziti: Finite time blow-up in some models of chemotaxis.J. Math. Biol. 33 (1995), 388–414. MR 1320430, 10.1007/BF00176379; reference:[59] G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, and F. Bussolino: Modeling the early stages of vascular network assembly.The EMBO Journal 22 (2003), 1771–1779. 10.1093/emboj/cdg176; reference:[60] T. Sanba and T. Suzuki: Weak solutions to a parabolic-elliptic system of chemotaxis.J. Functional. Analysis 47 (2001), 17–51. MR 1909263; reference:[61] H. R. Schwetlick: Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. H. Poincaré.Anal. non Linéaire 17 (2000), 523–550. MR 1782743, 10.1016/S0294-1449(00)00127-X; reference:[62] A. Stevens: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems.SIAM J. Appl. Math. 61 (2000), 183–212. Zbl 0963.60093, MR 1776393, 10.1137/S0036139998342065; reference:[63] A. Stevens, M. Schwelick: Work in preparation.; reference:[64] M. I. Weinstein: Nonlinear Schrödinger equations and sharp interpolation estimates.Comm. Math. Phys. 87 (1983), 567–576. Zbl 0527.35023, MR 0691044, 10.1007/BF01208265; reference:[65] Y. Yang, H. Chen, and W. Liu: On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis.SIAM J. Math. Anal. 33 (2001), 763–785. MR 1884721, 10.1137/S0036141000337796
-
15Academic Journal
المؤلفون: Quittner, Pavol
مصطلحات موضوعية: keyword:a priori estimate, keyword:blow-up rate, keyword:periodic solution, keyword:multiplicity, msc:35B45, msc:35J65, msc:35K20, msc:35K55, msc:35K60
وصف الملف: application/pdf
Relation: mr:MR1981537; zbl:Zbl 1010.35017; reference:[1] H. Amann, P. Quittner: Elliptic boundary value problems involving measures: existence, regularity, and multiplicity.Adv. Differ. Equ. 3 (1998), 753–813. MR 1659273; reference:[2] P. Baras, L. Cohen: Complete blow-up after $T_{\max }$ for the solution of a semilinear heat equation.J. Funct. Anal. 71 (1987), 142–174. MR 0879705, 10.1016/0022-1236(87)90020-6; reference:[3] P. Baras, M. Pierre: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones.Analyse Non Linéaire, Ann. Inst. H. Poincaré 2 (1985), 185–212. Zbl 0599.35073, MR 0797270, 10.1016/S0294-1449(16)30402-4; reference:[4] M.-F. Bidaut-Véron: Initial blow-up for the solutions of a semilinear parabolic equation with source term.Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, pp. 189–198. MR 1648222; reference:[5] H. Brézis, R. E. L. Turner: On a class of superlinear elliptic problems.Commun. Partial Differ. Equations 2 (1977), 601–614. MR 0509489, 10.1080/03605307708820041; reference:[6] T. Cazenave, P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires.Commun. Partial Differ. Equations 9 (1984), 955–978. MR 0755928, 10.1080/03605308408820353; reference:[7] M. Chipot, M. Fila, P. Quittner: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.Acta Math. Univ. Comen. 60 (1991), 35–103. MR 1120596; reference:[8] M. J. Esteban: On periodic solutions of superlinear parabolic problems.Trans. Amer. Math. Soc. 293 (1986), 171–189. Zbl 0619.35058, MR 0814919, 10.1090/S0002-9947-1986-0814919-8; reference:[9] M. J. Esteban: A remark on the existence of positive periodic solutions of superlinear parabolic problems.Proc. Amer. Math. Soc. 102 (1988), 131–136. Zbl 0653.35039, MR 0915730, 10.1090/S0002-9939-1988-0915730-7; reference:[10] C. Fermanian Kammerer, F. Merle, H. Zaag: Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view.Math. Ann. 317 (2000), 347–387. MR 1764243, 10.1007/s002080000096; reference:[11] D. G. de Figueiredo, P.-L. Lions, R. D. Nussbaum: A priori estimates and existence of positive solutions of semilinear elliptic equations.J. Math. Pures Appl. 61 (1982), 41–63. MR 0664341; reference:[12] M. Fila: Boundedness of global solutions of nonlinear parabolic problems.Proc. of the 4th European Conf. on Elliptic and Parabolic Problems, Rolduc 2001, to appear.; reference:[13] M. Fila, P. Poláčik: Global solutions of a semilinear parabolic equation.Adv. Differ. Equ. 4 (1999), 163–196. MR 1674359; reference:[14] M. Fila, P. Souplet, F. Weissler: Linear and nonlinear heat equations in $L^q_\delta $ spaces and universal bounds for global solutions.Math. Ann. 320 (2001), 87–113. MR 1835063, 10.1007/PL00004471; reference:[15] S. Filippas, M. A. Herrero, J. J. L. Velázquez: Fast blow-up mechanism for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity.R. Soc. Lond. Proc. Ser. A 456 (2000), 2957–2982. MR 1843848, 10.1098/rspa.2000.0648; reference:[16] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions.Commun. Pure Applied Math. 50 (1997), 1–67. 10.1002/(SICI)1097-0312(199701)50:13.0.CO;2-H; reference:[17] B. Gidas, J. Spruck: A priori bounds for positive solutions of nonlinear elliptic equations.Commun. Partial Differ. Equations 6 (1981), 883–901. MR 0619749, 10.1080/03605308108820196; reference:[18] Y. Giga: A bound for global solutions of semilinear heat equations.Commun. Math. Phys. 103 (1986), 415–421. Zbl 0595.35057, MR 0832917, 10.1007/BF01211756; reference:[19] Y. Giga, R. V. Kohn: Characterizing blowup using similarity variables.Indiana Univ. Math. J. 36 (1987), 1–40. MR 0876989, 10.1512/iumj.1987.36.36001; reference:[20] M. A. Herrero, J. J. L. Velázquez: Explosion de solutions d’équations paraboliques semilinéaires supercritiques.C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 141–145. MR 1288393; reference:[21] M. A. Herrero, J. J. L. Velázquez: A blow up result for semilinear heat equations in the supercritical case.Preprint.; reference:[22] J. Húska: Periodic solutions in superlinear parabolic problems.Acta Math. Univ. Comen (to appear). MR 1943012; reference:[23] H. A. Levine: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$.Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 0348216, 10.1007/BF00263041; reference:[24] J. Matos, Ph. Souplet: Universal blow-up estimates and decay rates for a semilinear heat equation.Preprint.; reference:[25] W.-M. Ni, P. E. Sacks, J. Tavantzis: On the asymptotic behavior of solutions of certain quasilinear parabolic equations.J. Differ. Equations 54 (1984), 97–120. MR 0756548, 10.1016/0022-0396(84)90145-1; reference:[26] R. D. Nussbaum: Positive solutions of nonlinear elliptic boundary value problems.J. Math. Anal. Appl. 51 (1975), 461–482. Zbl 0304.35047, MR 0382850, 10.1016/0022-247X(75)90133-X; reference:[27] S. I. Pohozaev: Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.Soviet Math. Dokl. 5 (1965), 1408–1411. MR 0192184; reference:[28] P. Quittner: A priori bounds for global solutions of a semilinear parabolic problem.Acta Math. Univ. Comen. 68 (1999), 195–203. Zbl 0940.35112, MR 1757788; reference:[29] P. Quittner: A priori estimates of global solutions and multiple equilibria of a superlinear parabolic problem involving measure.Electronic J. Differ. Equations 2001 (2001), no. 29, 1–17. MR 1836797; reference:[30] P. Quittner: Universal bound for global positive solutions of a superlinear parabolic problem.Math. Ann. 320 (2001), 299–305. Zbl 0981.35010, MR 1839765, 10.1007/PL00004475; reference:[31] P. Quittner: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems.Houston J. Math (to appear). Zbl 1034.35013, MR 1998164; reference:[32] P. Quittner: Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems.NoDEA, Nonlinear Differ. Equations Appl (to appear). Zbl 1058.35120, MR 2210288; reference:[33] P. Quittner, Ph. Souplet: A priori estimates of global solutions of superlinear parabolic problems without variational structure.Discrete Contin. Dyn. Systems (to appear). MR 1974428; reference:[34] P. Quittner, Ph. Souplet: Bounds of solutions of parabolic problems with nonlinear boundary conditions.In preparation.; reference:[35] P. Quittner, Ph. Souplet, M. Winkler: Initial blow-up rates and universal bounds for nonlinear heat equations.Preprint. MR 2028111; reference:[36] R. E. L. Turner: A priori bounds for positive solutions of nonlinear elliptic equations in two variables.Duke Math. J. 41 (1974), 759–774. Zbl 0294.35033, MR 0364859; reference:[37] H. Zaag: A remark on the energy blow-up behavior for nonlinear heat equations.Duke Math. J. 103 (2000), 545–556. Zbl 0971.35042, MR 1763658, 10.1215/S0012-7094-00-10336-5
-
16Academic Journal
المؤلفون: Boni, Théodore K.
مصطلحات موضوعية: keyword:blow-up, keyword:global existence, keyword:asymptotic behavior, keyword:maximum principle, msc:35B40, msc:35K55, msc:35K60
وصف الملف: application/pdf
Relation: mr:MR1732489; zbl:Zbl 1011.35078; reference:[1] Boni T.K.: Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre.C.R. Acad. Paris, t. 326, Série I, 1 (1998), 317-322. Zbl 0913.35069, MR 1648453; reference:[2] Chipot M., Fila M., Quittner P.: Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.Acta Math. Univ. Comenianae, Vol. LX, 1 (1991), 35-103. Zbl 0743.35038, MR 1120596; reference:[3] Egorov Yu.V., Kondratiev V.A.: On blow-up solutions for parabolic equations of second order.in `Differential Equations, Asymptotic Analysis and Mathematical Physics', Berlin, Academie Verlag, 1997, pp.77-84. Zbl 0879.35081, MR 1456179; reference:[4] Friedman A., McLeod B.: Blow-up of positive solutions of semilinear heat equations.Indiana Univ. Math. J. 34 (1985), 425-447. Zbl 0576.35068, MR 0783924; reference:[5] Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations.Prentice Hall, Englewood Cliffs, NJ, 1967. Zbl 0549.35002, MR 0219861; reference:[6] Rossi J.D.: The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition.Acta Math. Univ. Comenianae, Vol. LXVII, 2 (1998), 343-350. Zbl 0924.35017, MR 1739446; reference:[7] Walter W.: Differential-und Integral-Ungleichungen.Springer, Berlin, 1964. Zbl 0119.12205, MR 0172076
-
17Academic Journal
المؤلفون: Quittner, Pavol
مصطلحات موضوعية: keyword:Blow-up, keyword:global existence, keyword:apriori estimates, msc:35B40, msc:35K50, msc:35K60
وصف الملف: application/pdf
Relation: mr:MR1629705; zbl:Zbl 0911.35062; reference:[1] H. Brézis, R. E. L. Turner: On a class of superlinear elliptic problems.Comm. Partial Differ. Equations, 2 (1977), 601–614 MR 0509489; reference:[2] M. Fila: Boundedness of global solutions of nonlinear diffusion equations.J. Differ. Equations, 98 (1992), 226–240 Zbl 0764.35010, MR 1170469; reference:[3] M. Fila, H. Levine: On the boundedness of global solutions of abstract semi-linear parabolic equations.J. Math. Anal. Appl., 216 (1997), 654–666 MR 1489604; reference:[4] Y. Giga: A bound for global solutions of semilinear heat equations.Comm. Math. Phys., 103 (1986), 415–421 Zbl 0595.35057, MR 0832917; reference:[5] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions.Comm. Pure Applied Math., 50 (1997), 1–67 MR 1423231; reference:[6] T. Gu, M. Wang: Existence of positive stationary solutions and threshold results for a reaction-diffusion system.J. Diff. Equations, 130, (1996), 277–291 Zbl 0858.35059, MR 1410888; reference:[7] P. Quittner: Global solutions in parabolic blow-up problems with perturbations.Proc. 3rd European Conf. on Elliptic and Parabolic Problems, Pont-à-Mousson 1997, (to appear) MR 1628115; reference:[8] P. Quittner: Signed solutions for a semilinear elliptic problem.Differential and Integral Equations, (to appear) Zbl 1131.35339, MR 1666269
-
18Academic Journal
المؤلفون: Chen, Guowang, Wang, Shubin
مصطلحات موضوعية: keyword:nonlinear hyperbolic equation, keyword:initial boundary value problem, keyword:classical \linebreak global solution, keyword:blow up of solutions, msc:35L35, msc:35L75, msc:35Q72, msc:74H45, msc:74K10
وصف الملف: application/pdf
Relation: mr:MR1364488; zbl:Zbl 0839.35085; reference:[1] Zhuang Wei, Yang Guitong: Propagation of solitary waves in the nonlinear rods.Applied Mathematics and Mechanics 7 (1986), 571-581.; reference:[2] Zhang Shangyuan, Zhuang Wei: Strain solitary waves in the nonlinear elastic rods (in Chinese).Acta Mechanica Sinica 20 (1988), 58-66.; reference:[3] Chen Guowang, Yang Zhijian, Zhao Zhancai: Initial value problems and first boundary problems for a class of quasilinear wave equations.Acta Mathematicae Applicate Sinica 9 (1993), 289-301. Zbl 0822.35094, MR 1259814; reference:[4] Levine H.A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations.SIAM J. Math. Anal. 5 (1974), 138-146. Zbl 0243.35069, MR 0399682; reference:[5] Levine H.A.: Instability & nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+F(u)$.Trans. of AMS 192 (1974), 1-21. MR 0344697
-
19Academic Journal
المؤلفون: Stará, Jana, John, Oldřich
مصطلحات موضوعية: keyword:parabolic systems, keyword:regularity of weak solutions, keyword:blow up, msc:35B65, msc:35D10, msc:35K40, msc:35K50, msc:35K55
وصف الملف: application/pdf
Relation: mr:MR1364491; zbl:Zbl 0846.35024; reference:[1] Stará J., John O., Malý J.: Counterexample to the regularity of weak solution of the quasilinear parabolic systems.Comment. Math. Univ. Carolinae 27 1 (1986), 123-136. MR 0843425; reference:[2] Struwe M.: A counterexample in regularity theory for parabolic systems.Czech. Math. Journal 34 109 (1984), 183-188. Zbl 0573.35053, MR 0743484; reference:[3] Kalita E.: On the Hölder continuity of solutions of nonlinear parabolic systems.Comment. Math. Univ. Carolinae 35 4 (1994), 675-680. Zbl 0814.35011, MR 1321237; reference:[4] Koshelev A.I.: Regularity of solutions of quasilinear elliptic systems.Uspekhi Mat. Nauk 33 (1978), 3-49. MR 0510669; reference:[5] Koshelev A.I., Chelkak S.I.: Regularity of solutions of quasilinear elliptic systems.Teubner-Texte zur Mathematik, Band 77 (1985). Zbl 0581.35003, MR 0825485; reference:[6] John O., Malý J., Stará J.: Nowhere continuous solutions to elliptic systems.Comment. Math. Univ. Carolinae 30 1 (1989), 33-43. MR 0995699; reference:[7] Nečas J., Šverák V.: On regularity of solutions of nonlinear parabolic systems.Annali Scuola Norm. Sup. Pisa, Ser. IV, Vol. XVIII, Fasc. 1 (1991). MR 1118218; reference:[8] Gröger K., Rehberg J.: Local existence and uniqueness of solutions to nonsmooth parabolic systems.to appear.; reference:[9] John O., Stará J.: Remark on regularity of solutions to parabolic systems in two space dimensions.to appear.; reference:[10] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. UMI 4 (1968), 135-137. MR 0227827; reference:[11] Koshelev A.I.: Regularity of solutions for some quasilinear parabolic systems.Math. Nachr. 162 (1993), 59-88. Zbl 0811.35064, MR 1239576
-
20Academic Journal
المؤلفون: Quittner, Pavol
مصطلحات موضوعية: keyword:global existence, keyword:blow up, keyword:semilinear parabolic equation, keyword:stationary solution, msc:35B30, msc:35B40, msc:35J65, msc:35K60
وصف الملف: application/pdf
Relation: mr:MR1240209; zbl:Zbl 0794.35089; reference:[AW] Alfonsi L., Weissler F.B.: Blow up in $\Bbb R^n$ for a parabolic equation with a damping nonlinear gradient term.Nonlinear Diffusion Equations and Their Equilibrium States, 3, N.G. Lloyd, W.M. Ni, L.A. Peletier, J. Serrin (eds.), Birkhäuser, Boston-Basel-Berlin, 1992. MR 1167826; reference:[AH] Alikakos N.D., Hess P.: Liapunov operators and stabilization in strongly order preserving dynamical systems.Diff. Integral Equs. 4 (1991), 15-24. MR 1079608; reference:[A1] Amann H.: Parabolic evolution equations and nonlinear boundary conditions.J. Diff. Equations 72 (1988), 201-269. Zbl 0658.34011, MR 0932367; reference:[A2] Amann H.: Dynamic theory of quasilinear parabolic equations: II. Reaction-diffusion systems.Diff. Integral Equs. 3 (1990), 13-75. Zbl 0729.35062, MR 1014726; reference:[BT] Brézis H., Turner R.E.L.: On a class of superlinear elliptic problems.Comm. in P.D.E. 2 (1977), 601-614. MR 0509489; reference:[C] Chipot M.: On a class of nonlinear elliptic equations.Proceedings of the Banach Center, to appear. Zbl 0819.35051, MR 1205813; reference:[CFQ] Chipot M., Fila M., Quittner P.: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.Acta Math. Univ. Comenianae 60 (1991), 35-103. Zbl 0743.35038, MR 1120596; reference:[CW1] Chipot M., Weissler F.B.: Some blow up results for a nonlinear parabolic equation with a gradient term.SIAM J. Math. Anal. 20 (1989), 886-907. MR 1000727; reference:[CW2] Chipot M., Weissler F.B.: On the elliptic problem $\triangle u-%7C\nabla u%7C^q+łu^p=0$.Nonlinear Diffusion Equations and Their Equilibrium States, Vol. I, W.-M. Ni, L.A. Peletier, J.B. Serrin (eds.), Springer, New York, 1988, pp. 237-243. Zbl 0699.35102, MR 0956067; reference:[E] Escher J.: Global existence and nonexistence for semilinear parabolic systems with nonlinear boundary conditions.Math. Ann. 284 (1989), 285-305. Zbl 0652.35065, MR 1000112; reference:[FLN] de Figueiredo D.G., Lions P.-L., Nussbaum R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations.J. Math. pures et appl. 61 (1982), 41-63. Zbl 0452.35030, MR 0664341; reference:[F] Fila M.: Remarks on blow up for a nonlinear parabolic equation with a gradient term.Proc. Amer. Math. Soc. 111 (1991), 795-801. Zbl 0768.35047, MR 1052569; reference:[FQ1] Fila M., Quittner P.: The blow-up rate for the heat equation with a nonlinear boundary condition.Math. Meth. Appl. Sci. 14 (1991), 197-205. Zbl 0735.35014, MR 1099325; reference:[FQ2] Fila M., Quittner P.: Radial ground states for a semilinear elliptic equation with a gradient term.to appear in Adv. Math. Sci. Appl. MR 1239247; reference:[FK] Filo J., Kačur J.: Local existence of general nonlinear parabolic systems.to appear.; reference:[KP] Kawohl B., Peletier L.A.: Observations on blow up and dead cores for nonlinear parabolic equations.Math. Z. 202 (1989), 207-217. Zbl 0661.35053, MR 1013085; reference:[GT] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order.second edition, Springer, Berlin-Heidelberg-New York-Tokyo, 1983. Zbl 1042.35002, MR 0737190; reference:[LGMW] López Gómez J., Márquez V., Wolanski N.: Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition.IMA Preprint Series #810, May 1991. MR 1120912; reference:[Q1] Quittner P.: Blow-up for semilinear parabolic equations with a gradient term.Math. Meth. Appl. Sci. 14 (1991), 413-417. Zbl 0768.35049, MR 1119238; reference:[Q2] Quittner P.: On positive solutions of semilinear elliptic problems.Comment. Math. Univ. Carolinae 30 (1989), 579-585. Zbl 0698.35057, MR 1031874; reference:[S] Schaaf R.: Global Solution Branches of Two Point Boundary Value Problems.LNM 1458, Springer, Berlin-Heidelberg, 1990. Zbl 0780.34010, MR 1090827; reference:[SZ] Serrin J.B., Zou H.: Existence and non-existence results for ground states of quasilinear elliptic equations.to appear. Zbl 0795.35027; reference:[SW] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton, New Jersey, 1971. MR 0304972; reference:[S1] Struwe M.: Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces.Ann. Inst. Henri Poincaré, Analyse non linéaire 5 (1988), 425-464. Zbl 0664.35022, MR 0970849; reference:[S2] Struwe M.: Plateau's Problem and the Calculus of Variations.Mathematical Notes 35, Princeton, New Jersey, 1988. Zbl 0694.49028, MR 0992402; reference:[S3] Struwe M.: Variational methods and their applications to nonlinear partial differential equations and Hamiltonian systems.Springer, Berlin-Heidelberg, 1990. MR 1078018