يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"keyword:anti-periodic boundary condition"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Boussandel, Sahbi

    وصف الملف: application/pdf

    Relation: mr:MR3842961; zbl:Zbl 06945740; reference:[1] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. Zbl 0977.34061, MR 1790104, 10.1016/S0362-546X(99)00192-3; reference:[2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems.J. Differ. Equations 250 (2011), 929-948. Zbl 1209.47020, MR 2737819, 10.1016/j.jde.2010.09.009; reference:[3] Chen, Y.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 315 (2006), 337-348. Zbl 1100.34046, MR 2196551, 10.1016/j.jmaa.2005.08.001; reference:[4] Chen, Y., Cho, Y. J., Jung, J. S.: Antiperiodic solutions for semilinear evolution equations.Math. Comput. Modelling 40 (2004), 1123-1130. Zbl 1074.34058, MR 2113840, 10.1016/j.mcm.2003.06.007; reference:[5] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations.Math. Comput. Modelling 46 (2007), 1183-1190. Zbl 1142.34313, MR 2376702, 10.1016/j.mcm.2006.12.006; reference:[6] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for evolution equations associated with maximal monotone mappings.Appl. Math. Lett. 24 (2011), 302-307. Zbl 1215.34069, MR 2741034, 10.1016/j.aml.2010.10.010; reference:[7] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for evolution equations associated with monotone type mappings.Appl. Math. Lett. 23 (2010), 1320-1325. Zbl 1208.34098, MR 2718504, 10.1016/j.aml.2010.06.022; reference:[8] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for semilinear evolution equations in Banach spaces.J. Appl. Math. Comput. 38 (2012), 63-70. Zbl 1302.34097, MR 2886666, 10.1007/s12190-010-0463-y; reference:[9] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 273 (2002), 627-636. Zbl 1055.34113, MR 1932511, 10.1016/S0022-247X(02)00288-3; reference:[10] Chill, R., Fašangová, E.: Gradient Systems. Lecture Notes of the 13th International Internet Seminar.Matfyzpress, Praha (2010).; reference:[11] Haraux, A.: Anti-periodic solutions of some nonlinear evolution equations.Manuscr. Math. 63 (1989), 479-505. Zbl 0684.35010, MR 0991267, 10.1007/BF01171760; reference:[12] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations.J. Math. Soc. Japan 40 (1988), 541-553. Zbl 0679.35046, MR 0945351, 10.2969/jmsj/04030541; reference:[13] Okochi, H.: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators.J. Funct. Anal. 91 (1990), 246-258. Zbl 0735.35071, MR 1058971, 10.1016/0022-1236(90)90143-9; reference:[14] Okochi, H.: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains.Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. Zbl 0715.35091, MR 1049120, 10.1016/0362-546X(90)90105-P; reference:[15] Souplet, Ph.: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations.C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. Zbl 0809.35036, MR 1305673; reference:[16] Souplet, Ph.: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations.Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. Zbl 0892.35078, MR 1491628, 10.1016/S0362-546X(97)00477-X; reference:[17] Zhenhai, L.: Anti-periodic solutions to nonlinear evolution equations.J. Funct. Anal. 258 (2010), 2026-2033. Zbl 1184.35184, MR 2578462, 10.1016/j.jfa.2009.11.018