يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"keyword:Sobolev spaces"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Tami, Abdelkader

    وصف الملف: application/pdf

    Relation: mr:MR4022159; zbl:07144725; reference:[1] Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners.Math. Methods Appl. Sci. 2 (1980), 556-581. Zbl 0445.35023, MR 0595625, 10.1002/mma.1670020416; reference:[2] Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems. I.Proc. R. Soc. Edinb., Sect. A 123 (1993), 109-155. Zbl 0791.35032, MR 1204855, 10.1017/S0308210500021272; reference:[3] Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems. II.Proc. R. Soc. Edinb., Sect. A 123 (1993), 157-184. Zbl 0791.35033, MR 1204855, 10.1017/S0308210500021284; reference:[4] Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions.Lecture Notes in Mathematics 1341, Springer, Berlin (1988). Zbl 0668.35001, MR 0961439, 10.1007/BFb0086682; reference:[5] Dauge, M., Nicaise, S., Bourlard, M., Lubuma, J. M.-S.: Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. I. Résultats généraux pour le problème de Dirichlet.RAIRO, Modélisation Math. Anal. Numér. 24 (1990), 27-52 French. Zbl 0691.35023, MR 1034897, 10.1051/m2an/1990240100271; reference:[6] Grisvard, P.: Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyèdre.Boll. Unione Mat. Ital., IV. Ser. 5 (1972), 132-164 French. Zbl 0277.35035, MR 0312068; reference:[7] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24, Pitman Advanced Publishing Program, Pitman Publishing, Boston (1985). Zbl 0695.35060, MR 0775683, 10.1137/1.9781611972030; reference:[8] Kondrat'ev, V. A.: Boundary problems for elliptic equations in domains with conical or angular points.Trans. Mosc. Math. Soc. 16 (1967), 227-313 Translated from Trudy Moskov. Mat. Obšč. 16 1967 209-292. Zbl 0194.13405, MR 0226187; reference:[9] Maz'ya, V. G., Plamenevskij, B. A.: $L_p$-estimates of solutions of elliptic boundary value problems in domains with edges.Trans. Mosc. Math. Soc. (1980), 49-97. Zbl 0453.35025, MR 0514327; reference:[10] Maz'ya, V. G., Plamenevskij, B. A.: Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary.Transl., Ser. 2, Am. Math. Soc. 123 (1984), 1-56 Translated from Math. Nachr. 81 1978 25-82. Zbl 0554.35035, MR 0492821, 10.1002/mana.19780810103; reference:[11] Maz'ya, V., Rossmann, J.: On a problem of Babuška (Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points).Math. Nachr. 155 (1992), 199-220. Zbl 0794.35039, MR 1231265, 10.1002/mana.19921550115; reference:[12] Nicaise, S.: Polygonal interface problems for the biharmonic operator.Math. Methods Appl. Sci. 17 (1994), 21-39. Zbl 0820.35041, MR 1257586, 10.1002/mma.1670170104; reference:[13] Nicaise, S., Sändig, A.-M.: General interface problems. I.Math. Methods Appl. Sci. 17 (1994), 395-429. Zbl 0824.35014, MR 1274152, 10.1002/mma.1670170602; reference:[14] Nicaise, S., Sändig, A.-M.: General interface problems. II.Math. Methods Appl. Sci. 17 (1994), 431-450. Zbl 0824.35015, MR 1274152, 10.1002/mma.1670170603; reference:[15] Tami, A.: Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan.Ph.D. Thesis, Aix-Marseille University France (2016). Available at https://www.theses.fr/224126822 French.

  2. 2
    Conference
  3. 3
    Conference

    المؤلفون: Kolyada, Viktor I.

    وصف الملف: application/pdf

    Relation: reference:[1] Aubin T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations.Grundlehren der Mathematischen Wissenschaften, Bd. 252. Springer Verlag, New York, 1982. Zbl 0512.53044, 85j:58002. Zbl 0512.53044, MR 0681859; reference:[2] Bastero J., Milman M., Blasco F. J. Ruíz: A note on $L(\infty ,q)$ spaces and Sobolev embeddings.Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230. Zbl 1098.46023, MR 2004h:46025. MR 2010324, 10.1512/iumj.2003.52.2364; reference:[3] Bennett C., DeVore R., Sharpley R.: Weak-$L^\infty $ and BMO.Ann. Math. 113 (1981), 601–611. Zbl 0465.42015, MR 82h:46047. MR 0621018; reference:[4] Bennett C., Sharpley R.: Interpolation of Operators.Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057,MR 89e:46001. Zbl 0647.46057, MR 0928802; reference:[5] Besov O. V., in V. P. Il,’ skii S. M. Nikol,’ : Integral Representations of Functions and Imbedding Theorems. Vol. 1–2.Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D.C., John Wiley & Sons, New York, 1978, 1979. Zbl 0392.46022, 0392.46023, MR 80f:46030a, 80f:46030b. MR 0521808; reference:[6] Blozinski A. P.: Multivariate rearrangements and Banach function spaces with mixed norms.Trans. Amer. Math. Soc. 263 (1981), no. 1, 149–167. Zbl 0462.46020, 81k:46023. Zbl 0462.46020, MR 0590417, 10.1090/S0002-9947-1981-0590417-X; reference:[7] Bochkarev S. V.: A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure.Mat. Sb. 98, no. 3 (1975), 436–449; English transl. in Math. USSR-Sb. 27 (1975), 393–405. Zbl 0371.42010, MR 52#11459 Zbl 0335.42011, MR 0390634, 10.1070/SM1975v027n03ABEH002521; reference:[8] Bourdaud G., Meyer Y.: Fonctions qui opèrent sur les espaces de Sobolev.J. Funct. Anal. 97 (1991), no. 2, 351–360. Zbl 0737.46011, MR 92e:46062. Zbl 0737.46011, MR 1111186, 10.1016/0022-1236(91)90006-Q; reference:[9] Bourgain J., Brezis H., Mironescu P.: Another look at Sobolev spaces.Optimal Control and Partial Differential Equations. In honour of Professor Alain Bensoussan’s 60th Birthday. Proceedings of the conference, Paris, France, December 4, 2000 (J. L. Menaldi, E. Rofman, A. Sulem, eds.). IOS Press, Amsterdam, 2001, 439–455. Zbl 1103.46310. Zbl 1103.46310; reference:[10] Bourgain J., Brezis H., Mironescu P.: Limiting embedding theorems for $W^{s,p}$ when $s\uparrow 1$ and applications.J. Anal. Math. 87 (2002), 77–101. Zbl 1029.46030, MR 2003k:46035. MR 1945278, 10.1007/BF02868470; reference:[11] Brezis H.: How to recognize constant functions. Connections with Sobolev spaces.(Russian) Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59–74; English transl. in Russian Math. Surveys 57 (2002), no. 4, 693–708. Zbl 1072.46020, MR 2003m:46047. Zbl 1072.46020, MR 1942116; reference:[12] Brezis H., Mironescu P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces.J. Evol. Equ. 1 (2001), no. 4, 387–404. Zbl 1023.46031, MR 2002k:46073. Zbl 1023.46031, MR 1877265, 10.1007/PL00001378; reference:[13] Brudnyi, Yu. A.: Moduli of continuity and rearrangements.Mat. Zametki 18 (1975), 63–66; English transl. in Math. Notes 18 (1975), 619–621. Zbl 0322.26002, MR 52 #3442. MR 0382559; reference:[14] Budagov A. A.: Peano curves and moduli of continuity.Mat. Zametki 50 (1991), no. 2, 20–27; English transl. in Math. Notes 50 (1991), no. 1–2, 783–789. Zbl 0743.26008, MR 92k:26028. Zbl 0743.26008, MR 1139695; reference:[15] Cianchi A.: Second order derivatives and rearrangements.Duke Math. J. 105 (2000), 355–385. Zbl 1017.46023, MR 2002e:46035. Zbl 1017.46023, MR 1801766, 10.1215/S0012-7094-00-10531-5; reference:[16] Cianchi A.: Rearrangements of functions in Besov spaces.Math. Nachr. 230 (2001), 19–35. Zbl 1022.46021, MR 2002h:46052. Zbl 1022.46021, MR 1854875, 10.1002/1522-2616(200110)230:13.0.CO;2-D; reference:[17] Cianchi A.: Symmetrization and second-order Sobolev inequalities.Ann. Mat. Pura Appl., IV. Ser. 183 (2004), no. 1, 45–77. Zbl pre05058531, MR 2005b:46067. Zbl 1223.46033, MR 2044332, 10.1007/s10231-003-0080-6; reference:[18] Cianchi A., Pick L.: Sobolev embeddings into BMO, VMO, and $L^\infty $.Ark. Mat. 36 (1998), no. 2, 317–340. Zbl 1035.46502, MR 99k:46052. MR 1650446, 10.1007/BF02384772; reference:[19] Chong K. M., Rice N. M.: Equimeasurable rearrangements of functions.Queen’s Papers in Pure and Applied Mathematics 28, Queen’s University, Kingston, Ont., 1971. Zbl 0275.46024, MR 51 #8357. Zbl 0275.46024, MR 0372140; reference:[20] Cohen A., Dahmen W., Daubechies I., DeVore R.: Harmonic analysis of the space $BV$.Rev. Mat. Iberoamericana 19 (2003), no. 1, 235–263. Zbl 1044.42028, MR 2004f:42051. Zbl 1044.42028, MR 1993422, 10.4171/RMI/345; reference:[21] Fournier J.: Mixed norms and rearrangements: Sobolev’s inequality and Littlewood’s inequality.Ann. Mat. Pura Appl., IV. Ser. 148 (1987), 51–76. Zbl 0639.46034, MR 89e:46037. Zbl 0639.46034, MR 0932758, 10.1007/BF01774283; reference:[22] Gagliardo E.: Proprietà di alcune classi di funzioni in più variabili.Ricerche Mat. 7 (1958), 102–137. Zbl 0089.09401, MR 21 #1526 Zbl 0089.09401, MR 0102740; reference:[23] Garsia A. M.: Combinatorial inequalities and smoothness of functions.Bull. Amer. Math. Soc. 82 (1976), 157–170. Zbl 0351.26005, MR 58 #28362. Zbl 0351.26005, MR 0582776, 10.1090/S0002-9904-1976-13975-4; reference:[24] Garsia A. M., Rodemich E.: Monotonicity of certain functionals under rearrangement.Ann. Inst. Fourier (Grenoble) 24, no. 2 (1974), 67–116. Zbl 0274.26006, MR 54 #2894. Zbl 0274.26006, MR 0414802, 10.5802/aif.507; reference:[25] dman M. L. Gol,’ : Embedding of generalized Nikol’skii-Besov spaces into Lorentz spaces.Trudy Mat. Inst. Steklov 172 (1985), 128–139; English transl. in Proc. Stekolov Inst. Math. 172 (1985), 143–154. MR 87e:46047. MR 0810423; reference:[26] Hardy G. H., Littlewood J. E.: Some properties of fractional integrals. I.Math. Z. 27 (1928), no. 1, 565–606. JFM 54.0275.05, MR 1544927. MR 1544927, 10.1007/BF01171116; reference:[27] Hardy G. H., Littlewood J. E.: A convergence criterion for Fourier series.Math. Z. 28 (1928), no. 1, 612–634. JFM 54.0301.03, MR 1544980. MR 1544980, 10.1007/BF01181186; reference:[28] Kashin B. S.: Remarks on the estimation of Lebesgue functions of orthonormal systems.Mat. Sb. 106 (1978), no. 3, 380–385; English transl. in Math. USSR Sb. 35 (1979), no. 1, 57–62. Zbl 0417.42014, MR 58 #29787. MR 0619470; reference:[29] Klimov V. S.: Embedding theorems for Orlicz spaces and their applications to boundary value problems.Sib. Mat. Zh. 13 (1972), 334–348; English transl. in Siberian Math. J. 13 (1972), 231–240. Zbl 0246.46022, MR 48 #12033. MR 0333708, 10.1007/BF00971611; reference:[30] Kolyada V. I.: The embedding of certain classes of functions of several variables.Sib. Mat. Zh. 14 (1973), 766–790; English transl. in Siberian Math. J. 14 (1973). Zbl 0281.46027, MR 48 #12034. MR 0333709; reference:[31] Kolyada V. I.: On imbedding in classes $\varphi (L)$.Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 418–437; English transl. in Math. USSR Izv. 9 (1975), 395–413. Zbl 0334.46034, MR51 #11084. MR 0374888; reference:[32] Kolyada V. I.: On embedding of classes $H_p^{\omega _1,\dots ,\omega _\nu }$.Mat. Sb. 127 (1985), no. 3, 352–383; English transl. in Math. USSR-Sb. 55 (1986), no. 2, 351–381. Zbl 0581.41030, MR 87d:46040. MR 0798382; reference:[33] Kolyada V. I.: Estimates of rearrangements and embedding theorems.Mat. Sb. 136 (1988), 3–23; English transl. in Math. USSR-Sb. 64 (1989), no. 1, 1–21. Zbl 0693.46030. MR 0945897; reference:[34] Kolyada V. I.: On relations between moduli of continuity in different metrics., Trudy Mat. Inst. Steklov 181 (1988), 117–136; English transl. in Proc. Steklov Inst. Math. 181 (1989), 127–148. Zbl 0716.41018, MR 90k:41021. MR 0945427; reference:[35] Kolyada V. I.: Rearrangements of functions and embedding theorems.Uspekhi Matem. Nauk 44 (1989), no. 5, 61–95; English transl. in Russian Math. Surveys 44 (1989), no. 5, 73–118. MR 91i:46029. MR 1040269; reference:[36] Kolyada V. I.: On the differential properties of the rearrangements of functions.In: Progress in Approximation Theory (A. A. Gonchar and E. B. Saff, eds.). Springer Ser. Comput. Math. 19, Springer-Verlag, Berlin, 1992, 333–352. Zbl 0848.26013, MR 95j:26025. MR 1240790; reference:[37] Kolyada V. I.: On the embedding of Sobolev spaces.Mat. Zametki 54 (1993), no. 3, 48–71; English transl. in Math. Notes 54 (1993), no. 3, 908–922. Zbl 0821.46043, MR 94j:46042. MR 1248284; reference:[38] Kolyada V. I.: Rearrangement of functions and embedding of anisotropic spaces of Sobolev type.East J. Approx. 4 (1998), no. 2, 111–199. Zbl 0917.46019, MR 99g:46043b. Zbl 0917.46019, MR 1638343; reference:[39] Kolyada V. I.: Embeddings of fractional Sobolev spaces and estimates of Fourier transforms.Mat. Sb. 192 (2001), no. 7, 51–72; English transl. in Sb. Math. 192 (2001), no. 7, 979–1000. Zbl 1031.46040, MR 2002k:46080. MR 1861373; reference:[40] Kolyada V. I.: Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity.Uspekhi Mat. Nauk 60 (2005), no. 6, 139–156; English transl. in Russian Math. Surveys 60 (2005), no. 6, 1147–1164. MR 2007b:26026. Zbl 1145.26010, MR 2215758; reference:[41] Kolyada V. I.: Mixed norms and Sobolev type inequalities.Approximation and probability. Papers of the conference held on the occasion of the 70th anniversary of Prof. Zbigniew Ciesielski, Bedlewo, Poland, September 20–24, 2004. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publ. 72 (2006), 141–160. Zbl pre05082653. Zbl 1114.46024, MR 2325743; reference:[42] Kolyada V. I., Lerner A. K.: On limiting embeddings of Besov spaces.Studia Math. 171 (2005), no. 1, 1–13. Zbl 1090.46026, MR 2006m:46042. Zbl 1090.46026, MR 2182269, 10.4064/sm171-1-1; reference:[43] Krein S. G., Petunin, Yu. I., Semenov, and E. M.: Interpolation of linear operators.Nauka, Moscow 1978. Zbl 0499.46044, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54, Amer. Math. Soc., Providence, 1982. Zbl 0493.46058, MR 84j:46103. MR 0649411; reference:[44] Lieb E. H., Loss M.: Analysis.2nd ed. Graduate Studies in Mathematics, 14, Amer. Math. Soc., Providence, RI, 2001. Zbl 0966.26002, MR 2001i:00001. Zbl 0966.26002, MR 1817225; reference:[45] Loomis L. H., Whitney H.: An inequality related to the isoperimetric inequality.Bull. Amer. Math. Soc. 55 (1949), 961–962. Zbl 0035.38302, MR 11,166d. Zbl 0035.38302, MR 0031538, 10.1090/S0002-9904-1949-09320-5; reference:[46] Malý J., Pick L.: An elementary proof of sharp Sobolev embeddings.Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. Zbl 0990.46022, MR 2002j:46042. MR 1862137, 10.1090/S0002-9939-01-06060-9; reference:[47] ya V. Maz,’ Shaposhnikova T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces., J. Funct. Anal. 195 (2002), no. 2, 230–238. Zbl 1028.46050, MR 2003j:46051. MR 1940355, 10.1006/jfan.2002.3955; reference:[48] ya V. Maz,’ Shaposhnikova T.: On the Brezis and Mironescu conjecture concerning a Gagliardo–Nirenberg inequality for fractional Sobolev norms.J. Math. Pures Appl. 81, no. 9 (2002), 877–884. Zbl 1036.46026, MR 2003j:46052. MR 1940371; reference:[49] Milne S. C.: Peano curves and smoothness of functions.Adv. Math. 35 (1980), 129–157. Zbl 0449.26015, MR 82e:26017. Zbl 0449.26015, MR 0560132, 10.1016/0001-8708(80)90045-6; reference:[50] Neil R. O,’ : Convolution operators and $L(p,q)$ spaces.Duke Math. J. 30 (1963), 129–142. Zbl 0178.47701, MR 26 #4193. MR 0146673, 10.1215/S0012-7094-63-03015-1; reference:[51] Netrusov, Yu. V.: Embedding theorems for the Lizorkin-Triebel classes.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 159 (1987), 103–112 (in Russian); English transl. in J. Soviet Math. 47 (1989), 2896–2903. Zbl 0686.46027, MR 88h:46073. MR 0885079; reference:[52] Netrusov, Yu. V.: Embedding theorems for spaces with a given majorant of the modulus of continuity.Ph.D. Thesis, LOMI AN SSSR, Leningrad, 1988 (Russian).; reference:[53] skii S. M. Nikol,’ : Approximation of Functions of Several Variables and Imbedding Theorems.Die Grundlehren der mathematischen Wissenschaften 205. Springer–Verlag, Berlin, 1975. Zbl 0307.46024, MR 51 #11073. MR 0374877; reference:[54] Oswald P.: On the moduli of continuity of equimeasurable functions in the classes $\varphi (L)$.Mat. Zametki 17 (1975), no. 3, 231–244; English transl. in Math. Notes 17 (1975), 134–141. MR 53 #8342. MR 0404542; reference:[55] Oswald P.: Moduli of continuity of equimeasurable functions and approximation of functions by algebraic polynomials in $L^p$.Ph.D. Thesis, Odessa State University, Odessa, 1978 (Russian).; reference:[56] Oswald P.: On the boundedness of the mapping $f\rightarrow %7Cf%7C$ in Besov spaces.Comment. Math. Univ. Carolin. 33 (1992), no. 1, 57–66. Zbl 0766.46018, MR 93c:46052. Zbl 0766.46018, MR 1173747; reference:[57] Peetre J.: Espaces d’interpolation et espaces de Soboleff.Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1, 279–317. Zbl 0151.17903, MR 36 #4334. MR 0221282, 10.5802/aif.232; reference:[58] Pelczyński A., Wojciechowski M.: Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm.Studia Math. 107 (1993), no. 1, 61–100. Zbl 0811.46028, MR 94h:46050. Zbl 0811.46028, MR 1239425; reference:[59] Pérez F. J.: Embedding theorems for anisotropic Lipschitz spaces.Studia Math. 168 (2005), no. 1, 51–72. Zbl 1079.46025, MR 2006a:46037. Zbl 1079.46025, MR 2133387, 10.4064/sm168-1-4; reference:[60] Poornima S.: An embedding theorem for the Sobolev space $W^{1,1}$.Bull. Sci. Math., II. Ser. 107 (1983), no. 3, 253–259. Zbl 0529.46025, MR 85b:46042. MR 0719267; reference:[61] Runst T.: Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type.Anal. Math. 12 (1986), no. 4, 313–346. Zbl 0644.46022,MR 88f:46079. Zbl 0644.46022, MR 0877164, 10.1007/BF01909369; reference:[62] Stein E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Univ. Press, 1970. Zbl 0207.13501, MR 44 #7280. Zbl 0207.13501, MR 0290095; reference:[63] Stein E. M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 30. Princeton Univ. Press, Princeton, N.J., 1971. Zbl 0207.13501, MR 44 #7280. Zbl 0232.42007, MR 0304972; reference:[64] yanov P. L. Ul,’ : The embedding of certain function classes $H_p^\omega $.Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 649–686; English transl. in Math. USSR Izv. 2 (1968), 601–637. Zbl 0181.13404, MR 37 #6749. MR 0231194; reference:[65] yanov P. L. Ul,’ : Imbedding theorems and relations between best approximations (moduli of continuity) in various metrics.Mat. Sb. 81 (1970), no. 1, 104–131; English transl. in Math. USSR Sb. 10 (1970), no. 1, 103–126. Zbl 0215.17702, MR 54 #3393. MR 0415303; reference:[66] Wik I.: The non-increasing rearrangement as extremal function.Report no. 7. Univ. Umeå, Dept. of Math., Umeå, 1974. Zbl 0337.26007, MR 1352013; reference:[67] Wik I.: Symmetric rearrangement of functions and sets in $\R^n$.Preprint Univ. Umeå, Dept. of Math., no. 1, Umeå, 1977.; reference:[68] Yatsenko A. A.: Iterative rearrangements of functions and the Lorentz spaces.Izv. Vyssh. Uchebn. Zaved. Mat. (1998), no. 5, 73–77; English transl. in Russian Mathematics (Iz. VUZ) 42 (1998), no. 5, 71–75. MR 99i:46019. MR 1639194; reference:[69] Ziemer W. P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation.Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. Zbl 0692.46022, MR91e:46046. Zbl 0692.46022, MR 1014685

  4. 4
    Conference

    المؤلفون: Franchi, Bruno

    وصف الملف: application/pdf

    Relation: reference:[1] Ambrosio L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces.Adv. Math. 159 (2001), 51–67. Zbl 1002.28004, MR 2002b: 31002. Zbl 1002.28004, MR 1823840; reference:[2] Ambrosio L.: Fine properties of sets of finite perimeter in doubling metric measure spaces.In: Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), 111–128. Zbl 1037.28002, MR 1926376; reference:[3] Ambrosio L., Kirchheim B.: Rectifiable sets in metric and Banach spaces.Math. Ann. 318 (2000), 527–555. Zbl 0966.28002, MR 2003a:28009. Zbl 0966.28002, MR 1800768; reference:[4] Ambrosio L., Kirchheim B.: Currents in metric spaces.Acta Math. 185 (2000), 1–80. Zbl 0984.49025, MR 2001k:49095. Zbl 0984.49025, MR 1794185; reference:[5] Ambrosio L., Magnani V.: Some fine properties of $BV$ functions on sub-Riemannian groups.Preprint. Scuola Normale Superiore, 2002.; reference:[6] Anzellotti G., Giaquinta M.: $BV$ functions and traces.Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. Zbl 0432.46031, MR 82e:46046. MR 0555952; reference:[7] Auscher P., Qafsaoui M.: Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form.J. Funct. Anal. 177 (2000), 310–364. Zbl 0979.35044, MR 2001j:35057. Zbl 0979.35044, MR 1795955; reference:[8] Bakry D., Coulhon T., Ledoux M., Coste L. Saloff,- : Sobolev inequalities in disguise.Indiana Univ. Math. J. 44 (1995), 1033–1074. Zbl 0857.26006, MR 97c:46039. MR 1386760; reference:[9] Balogh Z.: Size of characteristic sets and functions with prescribed gradient.Preprint, 2000. Zbl 1051.53024, MR 2021034; reference:[10] Balogh Z., Rickly M., Cassano F. Serra: Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric.Preprint, 2001. MR 1970902; reference:[11] Bellaïche A.: The tangent space in subriemannian geometry.In: Subriemannian Geometry (A. Bellaïche and J. Risler, eds.). Progress in Mathematics 144. Birkhäuser, Basel, 1996, pp. 1–78. Zbl 0862.53031, MR 98a:53108.; reference:[12] Biroli M., Mosco U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 6 (1995), 37–44. Zbl 0837.31006, MR 96i:46034a. Zbl 0837.31006, MR 1340280; reference:[13] Bonfiglioli A.: Carnot groups related to sets of vector fields.Boll. Un. Mat. Ital. (to appear). Zbl 1178.35140; reference:[14] Bonfiglioli A., Uguzzoni F.: A note on lifting of Carnot groups.Preprint, 2002. Zbl 1100.35029; reference:[15] Buckley S., Koskela P., Lu G.: Boman equals John.In: 16th Rolf Nevanlinna Colloquium. Proceedings of the international conference held in Joensuu, Finland, August 1–5, 1995. (I. Laine et al., eds.). De Gruyter, Berlin, 1996, pp. 91–99. Zbl 0861.43007, MR 98m:43013. MR 1427074; reference:[16] Busemann H.: The geometry of geodesics.Academic Press, New York, N. Y., 1955. Zbl 0112.37002, MR 17,779a. Zbl 0112.37002, MR 0075623; reference:[17] Buttazzo G.: Semicontinuity, relaxation and integral rapresentation in the calculus of variations.Pitman Research Notes in Mathematics Series 207. Longman Scientific & Technical, Longman, Harlow, 1989. Zbl 0669.49005, MR 91c:49002. MR 1020296; reference:[18] Cancelier C., Franchi B., Serra E.: Agmon metric for sum-of-squares operators.J. Anal. Math. 83 (2001), 89–107. Zbl pre01640251, MR 2002e:35059. Zbl 1200.35061, MR 1828487; reference:[19] Capogna L., Danielli D., Garofalo N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality.Comm. Anal. Geom. 2 (1994), 203–215. Zbl 0864.46018, MR 96d:46032. Zbl 0864.46018, MR 1312686; reference:[20] Capogna L., Danielli D., Garofalo N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type.Math. Z. 226 (1997), 147–154. Zbl 0893.35023, MR 98i:35025. Zbl 0893.35023, MR 1472145; reference:[21] Cohn W., Lu G., Lu S.: Higher order Poincaré inequalities associated with linear operators on stratified groups and applications.Math. Z. (to appear). Zbl 1023.46032, MR 1992541; reference:[22] Coifman R. R., Weiss G.: Analyse harmonique non-commutative sur certains espaces homogenes. Etude de certaines intégrales singuliéres.Lecture Notes in Math. 242. Springer-Verlag, Berlin–Heidelberg–New York , 1971. Zbl 0224.43006, MR 58 #17690. Zbl 0224.43006, MR 0499948; reference:[23] Coulhon T.: Inégalités de Gagliardo-Nirenberg pour les semi-groupes d’opérateurs et applications.Potential Anal. 1 (1992), 343–353. Zbl 0768.47018, MR 94k:47064. Zbl 0768.47018, MR 1245890; reference:[24] Coulhon T., Russ E., Nachef V. Tardivel,- : Sobolev algebras on Lie groups and Riemannian manifolds.Amer. J. Math. 123 (2001), 283–342. Zbl 0990.43003, MR 2002g:43003. MR 1828225; reference:[25] Coulhon T., Coste L. Saloff,- : Semi-groupes d’opérateurs et espaces fonctionnels sur les groupes de Lie.J. Approximation Theory 65 (1991), 176–199. Zbl 0745.47030, MR 92c:47049. MR 1104158; reference:[26] Coulhon T., Coste L. Saloff,- : Isopérimétrie pour les groupes et les variétés.Revista Mat. Iberoamericana 9 (1993), 293–314. Zbl 0782.53066, MR 94g:58263. MR 1232845; reference:[27] Maso G. Dal: An introduction to $\Gamma $-convergence.Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser, Basel, 1993. Zbl 0816.49001, MR 94a:49001. MR 1201152; reference:[28] Danielli D., Garofalo N., Nhieu D. M.: Traces inequalities for Carnot-Carathéodory spaces and applications.Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser. 27 (1998), 195–252. Zbl 0938.46036, MR 2000d:46039. MR 1664688; reference:[29] David G., Semmes S.: Fractured fractals and broken dreams. Self-similargeometry through metric and measure.Oxford Lecture Series in Mathematics andits Applications 7. Clarendon Press, Oxford University Press, Oxford, 1997.Zbl 0887.54001, MR 99h:28018. MR 1616732; reference:[30] Giorgi E. De: Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni.Ann. Mat. Pura Appl., IV. Ser. 36 (1954), 191–213.Zbl 0055.28504, MR 15,945d. Zbl 0055.28504, MR 0062214; reference:[31] Giorgi E. De: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni.Ricerche Mat. 4 (1955), 95–113. Zbl 0066.29903, MR 17,596a. Zbl 0066.29903, MR 0074499; reference:[32] Delladio S.: Lower semicontinuity and continuity of function measures with respect to the strict convergence.Proc. Royal Soc. Edinburgh 119A (1991), 265–278. Zbl 0747.28007, MR 92i:28012. MR 1135973; reference:[33] Derridj M.: Sur un théorème de trace.Ann. Inst. Fourier (Grenoble) 22 (1972), 72–83. Zbl 0226.46041, MR 49 #7755. MR 0343011; reference:[34] Derridj M., Dias J.-P.: Le problème de Dirichlet pour une classe d’opérateurs non linéaires.J. Math. Pures Appl., IX. Sér. 51 (1972), 219–230. Zbl 0229.35038, MR 54 #8015. Zbl 0229.35038, MR 0419998; reference:[35] Derridj M., Zuily C.: Régularité $C_\infty $ à la frontière d’opérateurs dégénérés.C. R. Acad. Sci. Paris, Sér. A 271 (1970), 786–788. Zbl 0206.44702, MR 43 #2347. MR 0276603; reference:[36] Federer H.: Geometric measure theory.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer, Berlin, 1969. Zbl 0176.00801, MR 41 #1976. Zbl 0176.00801, MR 0257325; reference:[37] Fefferman C., Phong D. H.: Subelliptic eigenvalue problems.In: Harmonic analysis. Conference in honor of A. Zygmund, Chicago 1981, Vol. I, II. Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590–606. Zbl 0503.35071, MR 86c:35112. MR 0730094; reference:[38] Folland G. B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161–207. Zbl 0312.35026, MR 58 #13215. Zbl 0312.35026, MR 0494315; reference:[39] Folland G. B., Stein E. M.: Hardy spaces on homogeneous groups.Mathematical Notes 28. Princeton University Press, Princeton, N.J., 1982. Zbl 0508.42025, MR 84h:43027. Zbl 0508.42025, MR 0657581; reference:[40] Franchi B.: Stime subellittiche e metriche Riemanniane singolari II.Seminario di Analisi Matematica, Università di Bologna, 1983, VIII-1–VIII-17.; reference:[41] Franchi B.: Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations.Trans. Amer. Math. Soc. 327 (1991),125–158. Zbl 0751.46023, MR 91m:35095. Zbl 0751.46023, MR 1040042; reference:[42] Franchi B., Gallot S., Wheeden R. L.: Sobolev and isoperimetric inequalities for degenerate metrics.Math. Ann. 300 (1994), 557–571. Zbl 0830.46027, MR 96a:46066. MR 1314734; reference:[43] Franchi B., Gutiérrez C. E., Wheeden R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators.Comm. Partial Differ. Equations 19 (1994), 523–604. Zbl 0822.46032, MR 96h:26019. MR 1265808; reference:[44] Franchi B., Hajłasz P., Koskela P.: Definitions of Sobolev classes on metric spaces.Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. Zbl 0938.46037, MR 1738070; reference:[45] Franchi B., Lanconelli E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients.Ann. Scuola Norm. Super. Pisa, Cl. Sci., IV. Ser. 10 (1983), 523–541. Zbl 0552.35032, MR 85k:35094. Zbl 0552.35032, MR 0753153; reference:[46] Franchi B., Lu G., Wheeden R. L.: Representation formulas and weighted Poincaré inequalities for Hörmander vector fields.Ann. Inst. Fourier 45 (1995), 577–604. Zbl 0820.46026, MR 96i:46037. Zbl 0820.46026, MR 1343563; reference:[47] Franchi B., Lu G., Wheeden R. L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type.Internat. Math. Res. Notices (1996), 1–14. Zbl 0856.43006, MR 97k:26012. Zbl 0856.43006, MR 1383947; reference:[48] Franchi B., Pérez C., Wheeden R. L.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type.J. Funct. Anal. 153 (1998), 108–146. Zbl 0892.43005, MR 99d:42042. Zbl 0892.43005, MR 1609261; reference:[49] Franchi B., Pérez C., Wheeden R. L.: A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces.J. Fourier Anal. Appl. (to appear). Zbl 1074.46022, MR 2027891; reference:[50] Franchi B., Serapioni R., Cassano F. Serra: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields.Houston J. Math. 22 (1996), 859–890. Zbl 0876.49014, MR 98c:49037. MR 1437714; reference:[51] Franchi B., Serapioni R., Cassano F. Serra: Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields.Boll. Unione Mat. Ital., VII. Ser. 11-B (1997), 83–117. Zbl 0952.49010, MR 98c:46062. MR 1448000; reference:[52] Franchi B., Serapioni R., Cassano F. Serra: Sur les ensembles des périmètre fini dans le groupe de Heisenberg.C. R. Acad. Sci. Paris, Sér. I, Math. 329 (1999), 183–188. Zbl pre01340017, MR 2000e:49008. MR 1711057; reference:[53] Franchi B., Serapioni R., Cassano F. Serra: Rectifiability and perimeter in the Heisenberg group.Math. Ann. 321 (2001), 479–531. Zbl pre01695175,MR 1 871 966. MR 1871966; reference:[54] Franchi B., Serapioni R., Cassano F. Serra: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups.Comm. Anal. Geom. (to appear). MR 2032504; reference:[55] Franchi B., Serapioni R., Cassano F. Serra: Rectifiability and perimeter in step 2 groups.Proceedings of Equadiff 10, Prague, August 2001. Math. Bohem. 127 (2002), 219–228. Zbl pre01842893. MR 1981527; reference:[56] Franchi B., Serapioni R., Cassano F. Serra: On the structure of finite perimeter sets in step 2 Carnot groups.J. Geometric Anal. (to appear). MR 1984849; reference:[57] Franchi B., Wheeden R. L.: Compensation couples and isoperimetric estimates for vector fields.Colloq. Math. 74 (1997), 9–27. Zbl 0915.46028, MR 98g:46042. Zbl 0915.46028, MR 1455453; reference:[58] Franchi B., Wheeden R. L.: Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type.J. Inequal. Appl. 3 (1999), 65–89. Zbl 0934.46037, MR 2001b:53027. Zbl 0934.46037, MR 1731670; reference:[59] Friedrichs K. O.: The identity of weak and strong extensions of differential operators.Trans. Amer. Math. Soc. 55 (1944), 132–151. Zbl 0061.26201, MR 5,188b. Zbl 0061.26201, MR 0009701; reference:[60] Garofalo N., Nhieu D. M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces.Commun. Pure Appl. Math. 49 (1996), 1081–1144. Zbl 0880.35032, MR 97i:58032. MR 1404326; reference:[61] Garofalo N., Nhieu D. M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot Carathéodory spaces.J. Anal. Math. 74 (1998), 67–97. Zbl 0906.46026, MR 2000i:46025. Zbl 0906.46026, MR 1631642; reference:[62] Garofalo N., Pauls S. D.: The Bernstein problem in the Heisenberg group.(to appear). Zbl 1161.53024; reference:[63] Gromov M.: Carnot-Carathéodory spaces seen from within.In: Sub-Riemannian Geometry. Proceedings of the satellite meeting of the 1st European congress of mathematics “Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique”, Paris, June 30–July 1, 1992 (A. Bellaïche and J. Risler, eds.). Progress in Mathematics 144. Birkhäuser, Basel, 1996, pp. 79–323. Zbl 0864.53025, MR 2000f:53034. MR 1421823; reference:[64] Gromov M.: Metric structures for Riemannian and non-Riemannian spaces.Progress in Mathematics 152. Birkhäuser, Boston, MA, 1999. Zbl 0953.53002,MR 2000d:53065. Zbl 0953.53002, MR 1699320; reference:[65] Hajłasz P.: Sobolev spaces on an arbitrary metric space.Potential Anal. 5 (1996), 403–415. Zbl 0859.46022, MR 97f:46050. MR 1401074; reference:[66] Hajłasz P.: Geometric approach to Sobolev spaces and badly degenerated elliptic equations.In: Proceedings of the Banach Center minisemester on nonlinear analysis and applications, Warsaw, Poland, November 14–December 15, 1994. (N. Kenmochi et al., eds.). Int. Ser., Math. Sci. Appl. 7. Gakkotosho Co., Ltd. GAKUTO, Tokyo, 1995, pp. 141–168. Zbl 0877.46024, MR 97m:46051. MR 1422932; reference:[67] Hajłasz P., Koskela P.: Sobolev met Poincaré.Memoirs Amer. Math. Soc. 688 (2000). Zbl 0954.46022, MR 2000j:46063.; reference:[68] Heinonen J.: Calculus on Carnot groups.In: Fall School in Analysis, Jyväskylä, Finland, October 3–7, 1994 (T. Kilpeläinen, ed.). Univ. Jyväskylä Math. Inst. Report 68. Univ. of Jyväskylä, 1995, pp. 1–31. Zbl 0863.22009, MR 96j:22015. MR 1351042; reference:[69] Heinonen J.: Lectures on analysis on metric spaces.Universitext. Springer-Verlag, New York, 2001. Zbl 0985.46008. Zbl 0985.46008, MR 1800917; reference:[70] Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander condition.Duke Math. J. 53 (1986), 503–523. Zbl 0614.35066, MR 87i:35027. MR 0850547; reference:[71] Kirchheim B., Cassano F. Serra: Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group.Preprint, 2002. MR 2124590; reference:[72] Korányi A., Reimann H. M.: Foundation for the theory of quasiconformal mappings on the Heisenberg group.Adv. Math. 111 (1995), 1–87. Zbl 0876.30019, MR 96c:30021. MR 1317384; reference:[73] Lanconelli E., Morbidelli D.: On the Poincaré inequality for vector fields.Ark. Mat. 38 (2000), 327–342. MR 2002a:46037. Zbl 1131.46304, MR 1785405; reference:[74] Leonardi G., Rigot S.: Isoperimetric sets in the Heisenberg groups.Preprint, 2001.; reference:[75] Long R., Nie F.: Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators.In: Harmonic analysis. Proceedings of the special program at the Nankai Institute of Mathematics, Tianjin, PR China, March–July, 1988(M.-T. Cheng et al., eds.). Lect. Notes in Math. 1494. Springer, Berlin, 1991, pp. 131–141. Zbl 0786.46034, MR 94c:46066. MR 1187073; reference:[76] Lu G.: The sharp Poincaré inequality for free vector fields: an endpoint result.Rev. Mat. Iberoamericana 10 (1994), 453–466. Zbl 0860.35006, MR 96g:26023. Zbl 0860.35006, MR 1286482; reference:[77] Lu G.: Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups.Acta Math. Sin. (Engl. Ser.) 16 (2000), 405–444. Zbl 0973.46020, MR 2001k:46054. Zbl 0973.46020, MR 1787096; reference:[78] Lu G., Liu Y., Wheeden R. L.: Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces.Math. Ann. 323 (2002), 157–174. Zbl pre01801594, MR 1 906 913. Zbl 1007.46034, MR 1906913; reference:[79] Lu G., Liu Y., Wheeden R. L.: High order representation formulas and embedding theorems on stratified groups and generalizations.Studia Math. 142 (2000), 101–133. MR 2001k:46055. MR 1792599; reference:[80] Lu G., Wheeden R. L.: An optimal representation formula for Carnot-Carathéodory vector fields.Bull. London Math. Soc. 30 (1998), 578–584. Zbl 0931.31003, MR 2000a:31005. Zbl 0931.31003, MR 1642822; reference:[81] Lu G., Wheeden R. L.: Simultaneous representation and approximation formulas and higher order Sobolev embedding theorems on stratified groups.Preprint, 2002. MR 2078090; reference:[82] Luckhaus S., Modica L.: The Gibbs-Thompson relation within the gradient theory of phase transition.Arch. Rat. Mech. Anal. 107 (1989), 71–83. Zbl 0681.49012, MR 90k:49041. MR 1000224; reference:[83] Magnani V.: On a general coarea inequality and applications.Ann. Acad. Sci. Fenn. Math. 27 (2002), 121–140. MR 2002k:49080. Zbl 1064.49034, MR 1884354; reference:[84] Magnani V.: A blow-up theorem for regular hypersurfaces in nilpotent groups.Manuscripta Math. (to appear). MR 1951800; reference:[85] Magnani V.: An area formula in metric spaces.Preprint, 2002. Zbl 1231.28007, MR 2842953; reference:[86] Magnani V.: Perimeter measure and higher codimension rectifiability in homogeneous groups.Preprint, 2001.; reference:[87] Magnani V.: Elements of geometric measure theory on sub-Riemannian groups.PhD Thesis, Scuola Normale Superiore, Pisa, 2002 (to appear in the series Tesi of SNS Pisa). Zbl 1064.28007, MR 2115223; reference:[88] Maheux P., Coste L. Saloff,- : Analyse sur les boules d’un opérateur sous-elliptique.Math. Ann. 303 (1995), 713–740. Zbl 0836.35106, MR 96m:35049. MR 1359957; reference:[89] Martio O., Sarvas J.: Injectivity theorems in plane and space.Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1979), 383–401. Zbl 0406.30013, MR 81i:30039. Zbl 0406.30013, MR 0565886; reference:[90] Mattila P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability.Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge, 1995. Zbl 0819.28004, MR 96h:28006. Zbl 0819.28004, MR 1333890; reference:[91] Jr M. Miranda ,. : Functions of bounded variation on “good” metric spaces.J. Math. Pures Appl. (to appear). Zbl 1109.46030, MR 2005202; reference:[92] Mitchell J.: On Carnot-Carathèodory metrics.J. Differ. Geom. 21 (1985), 35–45. Zbl 0554.53023, MR 87d:53086. Zbl 0554.53023, MR 0806700; reference:[93] Montanari A., Morbidelli D.: Balls defined by nonsmooth vector fields and the Poincaré inequality.Preprint, 2003. Zbl 1069.46504, MR 2073841; reference:[94] Montefalcone F.: Sets of finite perimeter associated with vector fields and polyhedral approximation.Preprint, 2001. Zbl 1072.49031, MR 2104216; reference:[95] Montgomery R.: A tour of subriemannian geometries, their geodesics and applications.Mathematical Surveys and Monographs 91. American Mathematical Society, Providence, R.I., 2002. Zbl pre01731778, MR 2002m:53045. Zbl 1044.53022, MR 1867362; reference:[96] Monti R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces.PhD Thesis, University of Trento, 2001.; reference:[97] Monti R., Morbidelli D.: Regular domains in homogeneous groups.Preprint, 2001. Zbl 1067.43003, MR 2135732; reference:[98] Monti R., Morbidelli D.: Domains with the cone property in Carnot-Carathéodory spaces.Preprint, 2002.; reference:[99] Monti R., Cassano F. Serra: Surface measures in Carnot-Carathéodory spaces.Calc. Var. Partial Differ. Equations 13 (2001), 339–376. Zbl pre01703143, MR 2002j:49052. MR 1865002; reference:[100] Morbidelli D.: Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields.Studia Math. 139 (2000), 213–244. Zbl 0981.46034, MR 2002a:46039. Zbl 0981.46034, MR 1762582; reference:[101] Nagel A., Stein E. M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties.Acta Math. 155 (1985), 103–147. Zbl 0578.32044, MR 86k:46049. Zbl 0578.32044, MR 0793239; reference:[102] Pansu P.: Une inégalité isopérimétrique sur le groupe de Heisenberg.C. R. Acad. Sci. Paris, Sér. I 295 (1982), 127–130. Zbl 0502.53039, MR 85b:53044. Zbl 0502.53039, MR 0676380; reference:[103] Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. Math. 129 (1989), 1–60. Zbl 0678.53042, MR 90e:53058. Zbl 0678.53042, MR 0979599; reference:[104] Pansu P.: Geometrie du group d’Heisenberg.These pour le titre de Docteur 3ème cycle, Université Paris VII, Paris, 1982.; reference:[105] Pauls S. D.: The large scale geometry of nilpotent Lie groups.Commun. Anal. Geom. 9 (2001), 951–982. Zbl pre01751515. MR 1883722; reference:[106] Pauls S. D.: A notion of rectifiability modelled on Carnot groups.(to appear). MR 2048183; reference:[107] Reschetnyak, Yu. G.: Weak convergence of completely additive vector functions on a set.Sibirsk. Mat. Z. 9 (1968), 1386–1394. Zbl 0176.44402. MR 0240274; reference:[108] Rothschild L., Stein E. M.: Hypoelliptic differential operators and nilpotent groups.Acta Math. 137 (1976), 247–320. Zbl 0346.35030, MR 55 #9171. MR 0436223; reference:[109] Coste L. Saloff,- : A note on Poincaré, Sobolev and Harnack inequalities.Internat. Math. Res. Notices (1992), 27–38. Zbl 0769.58054, MR 93d:58158. MR 1150597; reference:[110] Coste L. Saloff,- : Aspects of Sobolev-type inequalities.London Mathematical Society Lecture Note Series 289. University Press, Cambridge, 2002. Zbl 0991.35002, MR 2003c:46048. MR 1872526; reference:[111] Sawyer E., Wheeden R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–874.Zbl 0783.42011, MR 94i:42024. Zbl 0783.42011, MR 1175693; reference:[112] Semmes S.: On the non existence of bilipschitz parametrization and geometric problems about $A_\infty $ weights.Revista Mat. Iberoamericana 12 (1996), 337–410. Zbl 0858.46017, MR 97e:30040. MR 1402671; reference:[113] Serrin J.: On the definition and properties of certain variational integrals.Trans. Amer. Math. Soc. 101 (1961), 139–167. Zbl 0102.04601, MR 25 #1466. Zbl 0102.04601, MR 0138018; reference:[114] Stein E. M.: Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals.Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. Zbl 0821.42001, MR 1232192; reference:[115] Varopoulos N. Th.: Analysis on Lie groups.J. Funct. Anal. 76 (1988), 346–410. Zbl 0634.22008, MR 89i:22018. Zbl 0634.22008, MR 0924464; reference:[116] Varopoulos N. Th., Coste L. Saloff,- Coulhon T.: Analysis and geometry on groups.Cambridge Tracts in Mathematics 100. Cambridge University Press, Cambridge, 1992. Zbl 0813.22003, MR 95f:43008. MR 1218884; reference:[117] Vodop’yanov S. K. : $\Cal P$-differentiability on Carnot groups in different topologies and related topics.In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 603–670. Zbl 0992.58005. MR 1847541

  5. 5
    Academic Journal

    المؤلفون: Li, Hongliang, Sun, Quinxiu

    وصف الملف: application/pdf

    Relation: mr:MR2782762; zbl:Zbl 1224.46065; reference:[1] Bastero, J., Milman, M., Blasco, F. Ruiz: A note on $L(\infty,q)$ spaces and Sobolev embeddings.Indiana Univ. Math. J. 52 (2003), 1215-1230. MR 2010324, 10.1512/iumj.2003.52.2364; reference:[2] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, Vol. 129.Academic Press Boston (1988). MR 0928802; reference:[3] Besov, O. V., Il'in, V. P., Nikol'skij, S. M.: Integral Representation of Functions and Imbedding Theorems, Vol. 1-2.V. H. Winston/John Wiley & Sons Washington, D. C./New York-Toronto-London (1978).; reference:[4] Boyd, D. W.: The Hilbert transform on rearrangement-invariant spaces.Can. J. Math. 19 (1967), 599-616. Zbl 0147.11302, MR 0212512, 10.4153/CJM-1967-053-7; reference:[5] Carro, M. J., Raposo, J. A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Amer. Math. Soc. Vol. 877.(2007). MR 2308059; reference:[6] Kolyada, V. I.: On an embedding of Sobolev spaces.Mat. Zametki 54 (1993), 48-71; English transl.: Math. Notes {\it 54}, (1993), 908-922. Zbl 0821.46043, MR 1248284; reference:[7] Kolyada, V. I.: Rearrangement of functions and embedding of anisotropic spaces of Sobolev type.East J. Approx. 4 (1998), 111-199. Zbl 0917.46019, MR 1638343; reference:[8] Kolyada, V. I., Pérez, F. J.: Estimates of difference norms for functions in anisotropic Sobolev spaces.Math. Nachr. 267 (2004), 46-64. MR 2047384, 10.1002/mana.200310152; reference:[9] Kudryavtsev, L. D., Nikol'skij, S. M.: Spaces of Differentiable Functions of Several Variables and Embedding Theorems. Current problems in mathematics. Fundamental directions.Russian Itogi nauki i Techniki, Akad. Nauk SSSR Moscow 26 (1988), 5-157. MR 1178111; reference:[10] Martín, J.: Symmetrization inequalities in the fractional case and Besov embeddings.J. Math. Anal. Appl. 344 (2008), 99-123. MR 2416295, 10.1016/j.jmaa.2008.02.028; reference:[11] Milman, M., Pustylnik, E.: On sharp higher order Sobolev embeddings.Commun. Contemp. Math. 6 (2004), 495-511. Zbl 1108.46029, MR 2068850, 10.1142/S0219199704001380; reference:[12] Nikol'skij, S. M.: Approximation of Functions of Several Variables and Imbedding Theorems.Springer Berlin-Heidelberg-New York (1975). Zbl 0307.46024; reference:[13] Lázaro, F. J. Pérez: A note on extreme cases of Sobolev embeddings.J. Math. Anal. Appl. 320 (2006), 973-982. MR 2226008, 10.1016/j.jmaa.2005.07.019; reference:[14] Lázaro, F. J. Pérez: Embeddings for anisotropic Besov spaces.Acta Math. Hung. 119 (2008), 25-40. MR 2400793, 10.1007/s10474-007-6235-y; reference:[15] Sobolev, S. L.: On the theorem of functional analysis.Mat. Sb. 4(46) (1938), 471-497.; reference:[16] Soria, J.: Lorentz spaces of weak-type.Quart. J. Math. Oxf., II. Ser. 49 (1998), 93-103. Zbl 0943.42010, MR 1617343, 10.1093/qmathj/49.1.93; reference:[17] Triebel, H.: Theory of Function Spaces.Birkhäuser Basel (1983). Zbl 0546.46028, MR 0781540; reference:[18] Triebel, H.: Theory of Function Spaces II.Birkhäuser Basel (1992). Zbl 0763.46025, MR 1163193

  6. 6
    Academic Journal

    المؤلفون: Vybíral, Jan, Sickel, Winfried

    وصف الملف: application/pdf

    Relation: mr:MR2357589; zbl:Zbl 1174.42027; reference:[1] D. R. Adams and L. I. Hedberg: Function spaces and potential theory.Springer, Berlin, 1996. MR 1411441; reference:[2] T. I. Amanov: Spaces of differentiable functions with dominating mixed derivatives.Nauka Kaz. SSR, Alma-Ata, 1976. (Russian) MR 0860038; reference:[3] D. B. Bazarkhanov: Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel function spaces of mixed smoothness.Trudy Mat. Inst. Steklov 243 (2003), 53-65. Zbl 1090.46025, MR 2049462; reference:[4] H.-J. Bungartz and M. Griebel: Sparse grids.Acta Numerica (2004), 1–123. MR 2249147; reference:[5] M. Frazier and B. Jawerth: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), 777–799. MR 0808825, 10.1512/iumj.1985.34.34041; reference:[6] M. Frazier and B. Jawerth: A discrete transform and decomposition of distribution spaces.J. Funct. Anal. 93 (1990), 34–170. MR 1070037, 10.1016/0022-1236(90)90137-A; reference:[7] I. W. Gelman and W. G. Maz’ya: Abschätzungen für Differentialoperatoren im Halbraum.Akademie-Verlag, Berlin, 1981. MR 0644480; reference:[8] M. Griebel, P. Oswald and T. Schiekofer: Sparse grids for boundary integral equations.Numer. Math 83 (1999), 279–312. MR 1712687, 10.1007/s002110050450; reference:[9] P. Grisvard: Commutativité de deux fonctuers d’interpolation et applications.J. Math. Pures Appl. 45 (1966), 143–290. MR 0221309; reference:[10] L. I. Hedberg and Y. Netrusov: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation.Memoirs of the AMS (to appear). MR 2326315; reference:[11] R. Hochmuth: A $\varphi $-transform result for spaces with dominating mixed smoothness properties.Result. Math. 33 (1998), 106–119. Zbl 0905.46017, MR 1610139, 10.1007/BF03322075; reference:[12] P. I. Lizorkin and S. M. Nikol’skij: Classification of differentiable functions on the basis of spaces with dominating mixed smoothness.Trudy Mat. Inst. Steklov 77 (1965), 143–167. MR 0192223; reference:[13] S. M. Nikol’skij: On boundary properties of differentiable functions of several variables.Dokl. Akad. Nauk SSSR 146 (1962), 542–545. MR 0143064; reference:[14] S. M. Nikol’skij: On stable boundary values of differentiable functions of several variables.Mat. Sbornik 61 (1963), 224–252. MR 0156182; reference:[15] P.-A. Nitsche: Sparse approximation of singularity functions.Constr. Approx. 21 (2005), 63–81. Zbl 1073.65118, MR 2105391; reference:[16] M. C. Rodríguez Fernández: Über die Spur von Funktionen mit dominierenden gemischten Glattheitseigenschaften auf der Diagonale, Ph.D-thesis, Jena.1997.; reference:[17] H.-J. Schmeisser: Vector-valued Sobolev and Besov spaces.Teubner-Texte zur Math. 96 (1987), 4-44. Zbl 0666.46039, MR 0932287; reference:[18] H.-J. Schmeisser and H. Triebel: Topics in Fourier analysis and function spaces.Wiley, Chichester, 1987. MR 0891189; reference:[19] G. Sparr: Interpolation of several Banach spaces.Ann. Mat. Pura Appl. 99 (1974), 247–316. Zbl 0282.46022, MR 0372641, 10.1007/BF02413728; reference:[20] H. Triebel: A diagonal embedding theorem for function spaces with dominating mixed smoothness properties.Banach Center Publications, Warsaw 22 (1989), 475–486. Zbl 0707.46020, MR 1097217; reference:[21] H. Triebel: Fractals and Spectra.Birkhäuser, Basel, 1997. Zbl 0898.46030, MR 1484417; reference:[22] H. Triebel: The Structure of Functions.Birkhäuser, Basel, 2001. Zbl 0984.46021, MR 1851996; reference:[23] J. Vybíral: Characterisations of function spaces with dominating mixed smoothness properties.Jenaer Schriften zur Mathematik und Informatik, Math/Inf/15/03, 2003.; reference:[24] J. Vybíral: Function spaces with dominating mixed smoothness.Diss. Math. 436 (2006), 1–73. MR 2231066; reference:[25] J. Vybíral: A diagonal embedding theorem for function spaces with dominating mixed smoothness.Funct. et Approx. 33 (2005), 101–120. MR 2274153; reference:[27] H. Yserentant: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives.Numer. Math. 98 (2004), 731–759. Zbl 1062.35100, MR 2099319, 10.1007/s00211-003-0498-1; reference:[28] H. Yserentant: Sparse grid spaces for the numerical solution of the electronic Schrödinger equation.Numer. Math. 101 (2005), 381–389. Zbl 1084.65125, MR 2195349, 10.1007/s00211-005-0581-x

  7. 7
    Academic Journal

    المؤلفون: Naumann, J., Simader, C. G.

    وصف الملف: application/pdf

    Relation: mr:MR1780700; zbl:Zbl 0941.46019; reference:[1] Adams R. A.: Sobolev Spaces.Academic Press, Inc, Boston, 1978, Zbl 0347.46040; reference:[2] Besov O. V., Il'in V. P., Nikol'skij S. M.: Integral Representations of Functions and Imbedding Theorems.Engl. Transl: V.H. Winston & Sons, Washington; J. Wiley & Sons, New York, vol. I: 1978, vol. II: 1979, Izd. Nauka, Moskva, 1975. (In Russian.) MR 0430771; reference:[3] Burenkov V. I.: Sobolev Spaces on Domains.B. G. Teubner, Stuttgart, 1998. Zbl 0893.46024, MR 1622690; reference:[4] Gilbarg D., Trudinger N. S.: Elliptic Partial Differential Equations of Second Order.(2nd ed.), Springer-Verlag, Berlin, 1983. Zbl 0562.35001, MR 0737190; reference:[5] Kufner A., John O., Fučík S.: Function Spaces.Academia, Prague, 1977. MR 0482102; reference:[б] Maz'ja V. G.: Sobolev Spaces.Springer-Verlag, Berlin, 1985. Zbl 0692.46023, MR 0817985; reference:[7] Maz'ja V. G., Poborchij S. V.: Differentiable Functions on Bad Domains.World Scientific, Singapore, 1997. MR 1643072; reference:[8] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584; reference:[9] Nikoľskij S. M.: Approximation of Functions of Several Variables and Imbedding Theorems.Engl. transl: Springer-Verlag, Berlin 1975, Izd. Nauka, Moskva, 1969 (In Russian.). MR 0374877; reference:[10] Sobolev S. L.: On some estimates related to families of functions having derivatives which are square integrable.Dokl. Akad. Nauk 1 (1936), 267-270. (In Russian.); reference:[11] Sobolev S. L.: On a theorem in functional analysis.Mat. Sborn. 4 (1938), 471-497 (In Russian.); Engl. transl. Amer. Math. Soc. Transl. II Ser. 34 (1963), 39-68.; reference:[12] Sobolev S. L.: Some Applications of Functional Analysis in Mathematical Physics.1st ed.: LGU Leningrad, 1950; 2nd ed.: NGU Novosibirsk, 1962; Зrd ed.; Izd. Nauka, Moskva 1988. (In Russian.) Engl. transl.: Amer. Math. Soc. Providence R.I, 1963; German transl: Akademie-Verlag Berlin 1964. MR 0986735; reference:[13] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.(2nd ed.), J. A.Barth Verlag, Beidelberg, 1995. Zbl 0830.46028, MR 1328645; reference:[14] Ziemer W. P.: Weakly Differentiable Functions.Springer-Verlag, New York, 1989. Zbl 0692.46022, MR 1014685

  8. 8
    Academic Journal

    المؤلفون: Malý, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1286576; zbl:Zbl 0812.30006; reference:[{1}] Bojarski B., Iwaniec T.: Analytical foundations of the theory of quasiconformal mapping in $\bold R^n$.Ann. Acad. Sci. Fenn. Ser. A I. Math. 8 (1983), 257-324. MR 0731786; reference:[{2}] Federer H.: Geometric Measure Theory.Springer-Verlag, Grundlehren, 1969. Zbl 0874.49001, MR 0257325; reference:[{3}] Federer H.: Surface area II.Trans. Amer. Math. Soc. 55 (1944), 438-456. MR 0010611; reference:[{4}] Feyel D., de la Pradelle A.: Hausdorff measures on the Wiener space.Potential Analysis 1,2 (1992), 177-189. Zbl 1081.28500, MR 1245885; reference:[{5}] Giaquinta M., Modica G., Souček J.: Area and the area formula.preprint, 1993. MR 1293774; reference:[{6}] Hedberg L.I., Wolff Th.H.: Thin sets in nonlinear potential theory.Ann. Inst. Fourier, Grenoble 33,4 (1983), 161-187. Zbl 0508.31008, MR 0727526; reference:[{7}] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Mathematical Monographs, Clarendon Press, 1993. MR 1207810; reference:[{8}] Malý J.: Hölder type quasicontinuity.Potential Analysis 2 (1993), 249-254. MR 1245242; reference:[{9}] Malý J., Martio O.: Lusin's condition (N) and mappings of the class $W^{1,n}$.Preprint 153, University of Jyväskylä, 1992.; reference:[{10}] Martio O., Ziemer W.P.: Lusin's condition (N) and mappings with non-negative Jacobians.Michigan Math. J., to appear. MR 1182504; reference:[{11}] Meyers N.G.: Continuity properties of potentials.Duke Math. J. 42 (1975), 157-166. Zbl 0334.31004, MR 0367235; reference:[{12}] Reshetnyak Yu.G.: On the concept of capacity in the theory of functions with generalized derivatives.Sibirsk. Mat. Zh. 10 (1969), 1109-1138. MR 0276487; reference:[{13}] Reshetnyak Yu.G.: Space Mappings with Bounded Distortion.Transl. Math. Monographs, Amer. Math. Soc., Providence, 1989. Zbl 0667.30018, MR 0994644; reference:[{14}] Ziemer W.P.: Weakly Differentiable Functions.Graduate Texts in Mathematics 120, Springer-Verlag, 1989. Zbl 0692.46022, MR 1014685

  9. 9
    Academic Journal

    المؤلفون: Práger, Milan

    وصف الملف: application/pdf

    Relation: mr:MR1202750; zbl:Zbl 0785.46034; reference:[1] V. Jarník: Differential Calculus.Publishing House of the Czech. Acad. Sci., Prague, 1953. (In Czech.)

  10. 10
    Academic Journal

    المؤلفون: Edmunds, D. E., Sun, Jiong

    وصف الملف: application/pdf

    Relation: mr:MR1126450; zbl:Zbl 0751.41019; reference:[1] M. S. Birman M. S. Solomjak: Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory.Amer. Math. Soc. Transl. (2) 114 (1980), 1 - 132. MR 0562305; reference:[2] D. E. Edmunds R. M. Edmunds: Entropy and approximation numbers of embeddings in Orlicz spaces.J. Lond. Math. Soc. (2) 32 (1985), 528-538. MR 0825929, 10.1112/jlms/s2-32.3.528; reference:[3] D. E. Edmunds W. D. Evans: Orlicz and Sobolev spaces on unbounded domains.Proc. Roy. Soc. A342 (1975), 373-400. MR 0394170; reference:[4] D. E. Edmunds W. D. Evans: Spectral theory and differential operators.Oxford University Press, Oxford, 1987. MR 0929030; reference:[5] D. E. Edmunds A. Kufner, Jiong Sun: Extensions of functions in weighted Sobolev spaces.Rend. Accad. Nat. Sci. XL Mem. Mat. (5) 14, 17 (1990), 327-339. MR 1106583; reference:[6] M. Krbec L. Pick: On imbeddings between weighted Orlicz spaces.Zeitschrift Anal. Anwend. (1) 10 (1991), 105-116. MR 1155360; reference:[7] A. Kufner: Weighted Sobolev spaces.John Wiley and Sons Ltd., 1985. Zbl 0579.35021, MR 0802206; reference:[8] A. Kufner: Boundary value problems in weighted spaces.Equadiff 6, Lecture Notes in Mathematics 1192, Springer-Verlag, Berlin-Heidelberg-New York, 1986, pp. 35-48. Zbl 0627.46032, MR 0877105; reference:[9] M. Namasivayam: Estimates of entropy numbers of embeddings of Sobolev spaces on unbounded domains.Quart. J. Math., Oxford (2) 36 (1985), 231-242. MR 0790483, 10.1093/qmath/36.2.231; reference:[10] E. W. Stredulinsky: Weighted inequalities and degenerate elliptic partial differential equations.Lecture Notes in Mathematics 1074, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl 0541.35001, MR 0757718; reference:[11] J.-O. Strömberg R. L. Wheeden: Fractional integrals on weighted $H^p$ and $L^p$ spaces.Trans. Amer. Math. Soc. 287 (1985), 293-321. MR 0766221; reference:[12] H. Triebel: Interpolation theory, function spaces, differential operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033, MR 0503903; reference:[13] N. S. Trudinger: On imbeddings into Orlicz spaces and some applications.J. Math. Mech., 17 (1967), 473-484. Zbl 0163.36402, MR 0216286

  11. 11
    Academic Journal

    المؤلفون: Malý, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1159812; zbl:Zbl 0753.46024; reference:[1] Giaquinta M., Modica G., Souček J.: Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity.Arch. Rat. Mech. Anal. 106 (1989), 97-159. {Erratum and addendum}. Arch. Rat. Mech. Anal. 109 (1990), 385-592. MR 0980756; reference:[2] Giaquinta M., Modica G., Souček J.: Cartesian currents and variational problems for mappings into spheres.Annali S.N.S. Pisa 16 (1989), 393-485. MR 1050333; reference:[3] Giaquinta M., Modica G., Souček J.: The Dirichlet energy of mappings with values into the sphere.Manuscripta Math. 65 (1989), 489-507. MR 1019705; reference:[4] Giaquinta M., Modica G., Souček J.: The Dirichlet integral for mappings between manifolds: Cartesian currents and homology.Università di Firenze, preprint, 1991. MR 1183409; reference:[5] V. Šverák: Regularity properties of deformations with finite energy.Arch. Rat. Mech. Anal. 100 (1988), 105-127. MR 0913960; reference:[6] W.P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Function of Bounded Variation.Graduate Text in Mathematics 120, Springer-Verlag, 1989. MR 1014685

  12. 12
    Academic Journal

    المؤلفون: Jarušek, Jiří

    وصف الملف: application/pdf

    Relation: mr:MR1109122; zbl:Zbl 0771.73008; reference:[1] O. V. Běsov V. P. Iljin S. M. Nikoľskij: Integral Transformations of Functions and Imbedding Theorems.(in Russian). Nauka, Moskva 1975.; reference:[2] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Math. 24, Pitman, Ibston - London - Melbourne 1985. Zbl 0695.35060, MR 0775683; reference:[3] P. Grisvard: Problèmes aux limites dans les polygones. Mode d'emploi.EDF Bull. Direct. Etud. Rech. Ser. C - Math. Inform. (1986), 21-59. Zbl 0623.35031, MR 0840970; reference:[4] J. Jarušek: Contact problems with bounded friction. Coercive case.Czech. Math. J. 33 (108) (1983), 237-261. MR 0699024; reference:[5] J. Jarušek: On the regularity of solutions of a thermoelastic system under noncontinuous heating regime.Apl. Mat. 35 (1990) 6, 426-450. MR 1089924; reference:[6] V. A. Kondratěv: Elliptic boundary value problems with conical or angular points.(in Russian). Trudy Mosk. Mat. Obšč., Vol. 16 (1967), 209-292. MR 0226187; reference:[7] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces.Teubner-Texte Math. Vol. 100, Teubner V., Leipzig 1987. MR 0926688; reference:[8] O. A. Ladyženskaya V. A. Solonnikov N. N. Uraltseva: Linear and Quasilinear Equations of Parabolic Type.(in Russian), Nauka, Moskva 1967.; reference:[9] J. L. Lions E. Magenes: Problèrnes aux limites non-homogènes et applications.Dunod, Paris 1968.; reference:[10] V. G. Maz'ja B. A. Plameněvskij: On the coefficients in asymptotics of solutions of elliptic boundary value problems in domains having conical points.(in Russian), Math. Nachr.76 (1977), 29-60. MR 0601608; reference:[11] A. M. Sänding U. Richter R. Sänding: The regularity of boundary value problems for the Lamé equation in polygonal domain.Rostock Math. Kolloq. 36 (1989), 21 - 50.; reference:[12] A. Visintin: Sur le problème de Stefan avec flux non-linéaire.Preprint No 230, Ist. Anal. Numer, C. N. R. Pavia, Pavia 1981. Zbl 0478.35084, MR 0631569

  13. 13
    Academic Journal

    المؤلفون: Jarušek, Jiří

    وصف الملف: application/pdf

    Relation: mr:MR1089924; zbl:Zbl 0754.73021; reference:[1] S. Agmon A. Douglis L. Nirenberg: Estimates near boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Part II.Comm. Pure Appl. Math. 17 (1964) 35-92. MR 0162050, 10.1002/cpa.3160170104; reference:[2] O. V. Běsov V. P. lljin S. M. Nikolskij: Integral Transformations of Functions and Imbedding Theorems.(in Russian). Nauka, Moskva 1975.; reference:[3] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Math. 24, Pitman, Boston-London-Melbourne 1985. Zbl 0695.35060, MR 0775683; reference:[4] P. Grisvard: Problemes aux limites dans les polygones, Mode d'emploi.EDF Bull. Direct. Etud. Rech. Ser. C. Math. Inform. (1986) 1, 21 - 59. Zbl 0623.35031, MR 0840970; reference:[5] J. Jarušek: Contact problems with bounded friction. Coercive case.Czech. Math. J. 33 (108) (1983), 237-261. MR 0699024; reference:[6] J. Jarušek: Remark to the generalized gradient method for the optimal large-scale heating problem.Probl. Control Inform. Theory 16 (1987) 2, 89-99. MR 0907452; reference:[7] J. Jarušek: Optimal control of thermoelastic processes III.(in Czech). Techn. rep. Inst. Inform. Th. Autom. No. 1561, Praha 1988.; reference:[8] V. A. Kondratěv: Elliptic boundary value problems with conical or angular points.(in Russian). Trudy Mosk. Mat. Obšč., Vol. 16 (1967), 209-292. MR 0226187; reference:[9] A. Kufner O. John S. Fučík: Function Spaces.Academia, Praha 1977. MR 0482102; reference:[10] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces.Teubner-Texte Math., Band 100, Teubner V., Leipzig 1987. MR 0926688; reference:[11] O. A. Ladyženskaja V. A. Solonnikov N. N. Uralceva: Linear and Quasilinear Equations of Parabolic Type.(in Russian). Nauka, Moskva 1967. MR 0241822; reference:[12] J. L. Lions E. Magenes: Problèmes aux limites non-homogènes et applications.Dunod, Paris 1968.; reference:[13] J. Nečas: Solution of the biharmonic problem for an infinite angle.(in Czech). Časopis pěst. mat. 83 (1958), Part I, 257-286, Part. II, 399-424.; reference:[14] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha 1967. MR 0227584; reference:[15] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner-Texte Math., Band 52, Teubner V., Leipzig 1983. MR 0731261; reference:[16] R. H. Nochetto: Error estimates for two-phases Stefan problem in several space variables. Part II: Nonlinear flux conditions.Preprint No. 416, 1st. Anal. Numer, CNR. Pavia, Pavia 1984. MR 0775859; reference:[17] A. M. Sändig U. Richter R. Sändig: The regularity of boundary value problems for the Lame equations in polygonal domain.Rostock. Math. Kolloq. 36 (1989), 21-50. MR 1006837; reference:[18] A. Visintin: Sur le problème de Stefan avec flux non-lineaire.Preprint No. 230, Ist. Anal. Numer. C. N. R. Pavia, Pavia 1981. Zbl 0478.35084, MR 0631569